Segmentation in the mean of heteroscedastic data via cross-validation - Archive ouverte HAL
Autre Publication Scientifique Année : 2009

Segmentation in the mean of heteroscedastic data via cross-validation

Résumé

This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. Whereas most existing methods are not robust to heteroscedasticity, a new family of algorithms is proposed showing that cross-validation methods can be successful in this framework. The robustness to heteroscedasticity of the new cross-validation based change-point detection algorithms is supported by an extensive simulation study, together with recent theoretical results. An application to comparative genomic hybridization data is provided, showing that robustness to heteroscedasticity can indeed be required for their analysis.
Fichier principal
Vignette du fichier
arxiv_AC_ChangePoints.pdf (418.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00363627 , version 1 (23-02-2009)
hal-00363627 , version 2 (08-04-2009)

Identifiants

Citer

Sylvain Arlot, Alain Celisse. Segmentation in the mean of heteroscedastic data via cross-validation. 2009. ⟨hal-00363627v1⟩
491 Consultations
573 Téléchargements

Altmetric

Partager

More