On the stabilization of persistently excited linear systems - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Control and Optimization Année : 2010

On the stabilization of persistently excited linear systems

Résumé

We consider control systems of the type $\dot x = A x +\alpha(t)bu$, where $u\in\R$, $(A,b)$ is a controllable pair and $\alpha$ is an unknown time-varying signal with values in $[0,1]$ satisfying a persistent excitation condition i.e., $\int_t^{t+T}\al(s)ds\geq \mu$ for every $t\geq 0$, with $0<\mu\leq T$ independent on $t$. We prove that such a system is stabilizable with a linear feedback depending only on the pair $(T,\mu)$ if the eigenvalues of $A$ have non-positive real part. We also show that stabilizability does not hold for arbitrary matrices $A$. Moreover, the question of whether the system can be stabilized or not with an arbitrarily large rate of convergence gives rise to a bifurcation phenomenon in dependence of the parameter $\mu/T$.
Fichier principal
Vignette du fichier
chitour_sigalotti_PE_bis.pdf (284.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00329540 , version 1 (12-10-2008)
hal-00329540 , version 2 (08-11-2008)
hal-00329540 , version 3 (18-05-2009)

Identifiants

Citer

Yacine Chitour, Mario Sigalotti. On the stabilization of persistently excited linear systems. SIAM Journal on Control and Optimization, 2010, 48 (6), pp.4032-4055. ⟨10.1137/080737812⟩. ⟨hal-00329540v3⟩
172 Consultations
266 Téléchargements

Altmetric

Partager

More