On the stabilization of permanently excited linear systems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

On the stabilization of permanently excited linear systems

Résumé

We consider control systems of the type $\dot x = A x +\alpha(t)bu$, where $u\in\R$, $(A,b)$ is a controllable pair and $\alpha$ is an unknown time-varying signal with values in $[0,1]$ satisfying a permanent excitation condition i.e., $\int_t^{t+T}\al\geq \mu$ for every $t\geq 0$, with $0<\mu\leq T$ independent on $t$. We prove that such a system is stabilizable with a linear feedback depending only on the pair $(T,\mu)$ if the real part of the eigenvalues of $A$ is non-positive. The stabilizability does not hold in general for matrices $A$ whose eigenvalues have positive real part. Moreover, the question of whether the system can be stabilized or not with an arbitrarily large rate of convergence gives rise to a bifurcation phenomenon in dependence of the parameter $\mu/T$.
Fichier principal
Vignette du fichier
chitour_sigalotti_PE2.pdf (293.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00329540 , version 1 (12-10-2008)
hal-00329540 , version 2 (08-11-2008)
hal-00329540 , version 3 (18-05-2009)

Identifiants

Citer

Yacine Chitour, Mario Sigalotti. On the stabilization of permanently excited linear systems. 2008. ⟨hal-00329540v2⟩
177 Consultations
269 Téléchargements

Altmetric

Partager

More