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On the stabilization of persistently excited linear systems∗

Yacine Chitour† Mario Sigalotti‡

Abstract

We consider control systems of the type ẋ = Ax+α(t)bu, where u ∈ R, (A, b) is a controllable

pair and α is an unknown time-varying signal with values in [0, 1] satisfying a persistent excitation

condition i.e.,
∫ t+T

t
α(s)ds ≥ µ for every t ≥ 0, with 0 < µ ≤ T independent on t. We prove

that such a system is stabilizable with a linear feedback depending only on the pair (T, µ) if the

eigenvalues of A have non-positive real part. We also show that stabilizability does not hold for

arbitrary matrices A. Moreover, the question of whether the system can be stabilized or not with

an arbitrarily large rate of convergence gives rise to a bifurcation phenomenon in dependence of

the parameter µ/T .

1 Introduction

The present paper is a continuation of [9], where the study of control linear systems subject to scalar

persistently excited PE-signals was initiated. The general form of such systems is given by

ẋ = Ax + α(t)Bu , (1)

where x ∈ Rn, u ∈ Rm and the function α is a scalar PE-signal, i.e., α takes values in [0, 1] and

there exist two positive constants µ, T such that, for every t ≥ 0,

∫ t+T

t
α(s)ds ≥ µ. (2)
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† Laboratoire des Signaux et Systèmes, Supélec, 3, Rue Joliot Curie, 91192 Gif s/Yvette, France and Université
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Given two positive real numbers µ and T with µ ≤ T , we use G(T, µ) to denote the class of all PE

signals verifying (2).

In (1), the PE-signal α can be seen as an input perturbation modeling the fact that the instants

where the control u acts on the system are not exactly known. If α only takes the values 0 and 1, then

(1) actually switches between the uncontrolled system ẋ = Ax and the controlled one ẋ = Ax + Bu.

In that context, the PE condition (2) is designed to guarantee some action on the system. (For

a more detailed discussion on the interpretation of persistently excited systems and on the related

literature, see [9].)

Our main concern will be the global asymptotic stabilization of system (1) with a constant linear

feedback u = −Kx where the gain matrix K is required to be the same for all signals in the

considered class G(T, µ) i.e., K depends only on A, b, T, µ and not on a specific element of G(T, µ).

We refer to such a gain matrix K as a (T, µ)-stabilizer. It is clear that (A,B) must be stabilizable

for hoping that a (T, µ)-stabilizer exists and we will suppose that throughout the paper. Moreover,

the stabilizability analysis can be reduced to the controllability subspace and thus to the case where

(A,B) is controllable.

The questions studied in this paper find their origin in a problem stemming from identification

and adaptive control (cf. [3]). Such a problem deals with the linear system ẋ = −P (t)u, where the

matrix P (·) is symmetric non-negative definite and plays the role of α. If P ≡ I, then u∗ = x trivially

stabilizes the system exponentially. But what if P (t) is only semi-positive definite for all t? Under

which conditions on P does u∗ = x still stabilize the system? The answer for this particular case,

can be found in the seminal paper [13] which asserts that, if x ∈ Rn and P ≥ 0 is bounded and has

bounded derivative, it is necessary and sufficient, for the global exponential stability of ẋ = −P (t)x,

that P is also persistently exciting, i.e., that there exist µ, T > 0 such that

∫ t+T

t
ξT P (s)ξds ≥ µ, (3)

for all unitary vectors ξ ∈ Rn and all t ≥ 0. Therefore, as regards the stabilization of (1), the notion

of persistent excitation seems to be a reasonable additional assumption on the signals α.

Let us recall the main results of [9]. We first addressed the issue of controllability of (1), uniformly

with respect to α ∈ G(T, µ). We proved that, if the pair (A,B) is controllable, then (1) is (completely)

controllable in time t if and only if t > T −µ. We next focused on the existence of (T, µ)-stabilizers.

We first treated the case where A is neutrally stable and we showed that in this case the gain K = BT

is a (T, µ)-stabilizer for system (1) (see also [3]). Note that in the neutrally stable case K does not

depend on T and µ. We next turned to the case where A is not stable. In such a situation, even

in the one-dimensional case, a stabilizer K cannot be chosen independently of T and µ. In [9], we

considered the first nontrivial unstable case, namely the double integrator ẋ = J2x + αb0u, where
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J2 denotes the 2 × 2 Jordan block, the control is scalar and b0 = (0, 1)T . We showed that, for every

pair (T, µ), there exists a (T, µ)-stabilizer for ẋ = J2x + αb0u, α ∈ G(T, µ).

In this paper, we restrict ourselves to the single-input case

ẋ = Ax + α(t)bu, u ∈ R, α ∈ G(T, µ), (4)

and we provide two sets of results. The first one concerns the stabilizability of (4). Given two

arbitrary constants µ and T with 0 < µ ≤ T , we prove the existence of a (T, µ)-stabilizer for (4) when

the eigenvalues of A have non-positive real part. The second set of results concerns the possibility

of obtaining an arbitrary rate of convergence once stabilization is achieved. We essentially focus on

the two-dimensional case and we point out an interesting phenomenon: there exists ρ∗ ∈ (0, 1) so

that, for every controllable two-dimensional pair (A, b), every T > 0 and every µ ∈ (0, ρ∗T ), the

maximal rate of convergence of (4) is finite. Here maximality is evaluated with respect to all possible

(T, µ)-stabilizers. As a consequence, we prove the existence of matrices A (e.g., J2 + λId2 with λ

large enough) such that for every T > 0 and every µ ∈ (0, ρ∗T ), the PE system (4) does not admit

(T, µ)-stabilizers. The latter result is rather surprising when one compares it with the following two

facts: let ρ ∈ (0, 1]; (i) given a sequence (αn)n∈N with αn ∈ G(Tn, ρTn) and limn→+∞ Tn = 0, all its

weak-⋆ limit points α⋆ take values in [ρ, 1] (see Lemma 2.5) and (ii) the two-dimensional switched

system ẋ = J2x + α⋆b0u can be stabilized, uniformly with respect to α⋆ ∈ L∞(R≥0, [ρ, 1]), with an

arbitrary rate of convergence. The weak-⋆ convergence considered in (i) is the natural one in this

context since it renders the input-output mapping continuous.

Let us briefly comment on the technics used in this paper. First of all, it is clear that the notion of

common Lyapunov function, rather powerful in the realm of switched systems, cannot be of (direct)

help here since, at the differential level, one can evolve with an unstable dynamics ẋ = Ax, when

α = 0 takes the value zero. More refined tools as multiple and non-monotone Lyapunov functions

(see, e.g., [1, 2, 7, 10, 14, 16]) do not seem well-adapted to persistently excited systems, at least for

what concerns the proof of their stability. It seems to us that one must rather perform a trajectory

analysis, on a time interval of length at least equal to T , in order to achieve any information which

is uniform with respect to α ∈ G(T, µ). This viewpoint is more similar to the geometric approach

to switched systems behind the results in [4, 5, 6]. As a second consideration, notice that point

(i) described above, which is systematically used in the paper, presents formal similarities with

the technique of averaging but is rather different from it, since no periodicity nor constant-average

assumption is made here. Moreover, for a given persistently excited system, T is fixed and thus it

does not tend to zero.

The paper is organized as follows. In Section 2 we introduce the notations of the paper, the basic

definitions and some useful technical lemmas. We gather in Section 3 the stabilizability results for
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matrices whose spectrum has non-positive real part. Finally, the analysis of the maximal rates of

convergence and divergence is the object of Section 4. Since many of our results give rise to further

challenging questions, we propose in Section 5 several conjectures and open problems.

2 Notations and definitions

Let N denote the set of positive integers. Given n and m belonging to N, we use 0n×m to denote

the n × m matrix made of zeroes, Mn(R) the set of real-valued n × n matrices, and Idn the n × n

identity matrix. We also write 0n for 0n×1, σ(A) for the spectrum of a matrix A ∈ Mn(R), and ℜ(λ)

(respectively, ℑ(λ)) for the real (respectively, imaginary) part of a complex number λ.

Definition 2.1 (PE signal and (T, µ)-signal) Let µ and T be positive constants with µ ≤ T . A

(T, µ)-signal is a measurable function α : R≥0 → [0, 1] satisfying

∫ t+T

t
α(s)ds ≥ µ , ∀t ∈ R≥0 . (5)

We use G(T, µ) to denote the set of all (T, µ)-signals. A PE signal is a measurable function α :

R≥0 → [0, 1] such that there exist T, µ for which α is a (T, µ)-signal.

Definition 2.2 (PE system) Given two positive constants µ and T with µ ≤ T and a controllable

pair (A, b) ∈ Mn(R) × Rn, we define the PE system associated to T, µ,A, and b as the family of

linear control systems given by

ẋ = Ax + αub, α ∈ G(T, µ). (6)

Given a PE system (6), we address the following problem. We want to stabilize (6) uniformly with

respect to every (T, µ)-signal α, i.e., we want to find a vector K ∈ Rn which makes the origin of

ẋ = (A − α(t)bKT )x (7)

globally asymptotically stable, with K depending only on A, b, T and µ.

More precisely, referring to x(· ; t0, x0,K, α) as the solution of (7) with initial condition x(t0; t0, x0,K, α) =

x0, we introduce the following definition.

Definition 2.3 ((T, µ)-stabilizer) Let µ and T be positive constants with µ ≤ T . The gain K is

said to be a (T, µ)-stabilizer for (6) if (7) is globally asymptotically stable, uniformly with every (T, µ)-

signal α. Since (7) is linear in x, this is equivalent to say that (7) is exponentially stable, uniformly

with respect to α ∈ G(T, µ), i.e., there exist C, γ > 0 such that every solution x(· ; t0, x0,K, α) of (7)

satisfies

‖x(t; t0, x0,K, α)‖ ≤ Ce−(t−t0)γ‖x0‖, ∀t ≥ t0.
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The next two lemmas collect some properties of PE signals.

Lemma 2.4 1. If α(·) is a (T, µ)-signal, then, for every t0 ≥ 0, the same is true for α(t0 + ·).

2. If 0 < ρ′ < ρ and T > 0 then G(T, ρT ) ⊂ G(T, ρ′T ).

3. For η ∈ (0, µ), G(T, µ) ⊂ G(T + η, µ) ∩ G(T − η, µ − η).

4. If T ≥ τ > 0 and ρ > 0, then G(τ, ρτ) ⊂ G(T, (ρ/2)T ).

5. For every 0 < ρ′ < ρ there exists M > 0 such that for every T ≥ Mτ > 0 one has G(τ, ρτ) ⊂
G(T, ρ′T ).

Proof. We only provide an argument for points 4 and 5. Fix t ≥ 0, T ≥ τ , ρ > 0 and α ∈ G(τ, ρτ).

Let l be the integer part of T/τ . Since l ≥ max(1, T/τ − 1), then
∫ t+T
t α(s)ds ≥ lρτ ≥ max(τ, T −

τ)ρ ≥ Tρ/2. For ρ′ ∈ (0, ρ) and T/τ large enough, one has max(τ, T − τ) ≥ (ρ′/ρ)T and so
∫ t+T
t α(s)ds ≥ ρ′T . �

Let

b0 =





0

1



 , A0 =





0 1

−1 0



 .

Recall that an element f of L∞(R≥0, [0, 1]) is the weak-⋆ limit of a sequence (fk)k∈N of elements

of L∞(R≥0, [0, 1]) if, for every g ∈ L1(R≥0,R),
∫ ∞

0
f(s)g(s)ds = lim

k→∞

∫ ∞

0
fk(s)g(s)ds. (8)

It is well known that L∞(R≥0, [0, 1]) endowed with the weak-⋆ topology is compact (see, for instance,

[8]). Hence, each G(T, µ) is weak-⋆ compact. Unless specified, limit points of sequences of PE signals

are to be understood as limits of subsequences with respect to the weak-⋆ topology of L∞(R≥0, [0, 1]).

Lemma 2.5 Let (α(n))n∈N and (νn)n∈N be, respectively, a sequence of (T, µ)-signals and an increas-

ing sequence of positive real numbers such that limn→∞ νn = ∞.

1. Define αn as the (T/νn, µ/νn)-signal given by αn(t) = α(n)(νnt) for t ≥ 0. If α⋆ is a limit point

of the sequence (αn)n∈N, then α⋆ takes values in [µ/T, 1] almost everywhere.

2. Let j0 ∈ {0, 1} and h ∈ N. Let ωj, j = j0, . . . , h, be real numbers with ωj = 0 if and only if

j = 0 and {±ωj} 6= {±ωl} for j 6= l. For every t ≥ 0, let

v(t) =

















1

eω1A0tb0

...

eωhA0tb0

















if j0 = 0 or v(t) =











eω1A0tb0

...

eωhA0tb0











if j0 = 1.
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For every signal α and every t ≥ 0, define

αC(t) = α(t)v(t)v(t)T . (9)

Then αC is a time-dependent non-negative symmetric (2h + 1− j0)× (2h + 1− j0) matrix with

αC ≤ Id2h+1−j0 and there exists ξ > 0 only depending on T, µ and ωj0, . . . , ωh such that, for

every t ≥ 0,
∫ t+T

t
αC(τ)dτ ≥ ξ Id2h+1−j0 . (10)

Define, moreover, αC
n (t) = (α(n))C(νnt) for every t ≥ 0 and every n ∈ N. If αC

⋆ is a limit

point of the sequence (αC
n )n∈N for the weak-⋆ topology of L∞(R≥0,M2h+1−j0(R)), then αC

⋆ ≥
(ξ/T )Id2h+1−j0 almost everywhere.

Proof. Let us first prove point 1. Let α⋆ be the weak-⋆ limit of some sequence (αnk
)k≥1. For every

interval J contained in R≥0 of finite length |J | > 0, apply (8) by taking as g the characteristic

function of J . Since each αnk
is a (T/νnk

, µ/νnk
)-signal, it follows that

1

|J |

∫

J
α⋆(s)ds = lim

k→∞

1

|J |

∫

J
αnk

(s)ds ≥ lim inf
k→∞

µ

|J |νnk

I
( |J |νnk

T

)

=
µ

T
,

where I(·) denotes the integer part. Since α⋆ is measurable and bounded, almost every t > 0 is a

Lebesgue point for α⋆, i.e., the limit

lim
ε→0+

1

2ε

∫ t+ε

t−ε
α⋆(s)ds

exists and is equal to α⋆(t) (see, for instance, [15]). We conclude that, as claimed, α⋆ ≥ µ/T almost

everywhere.

For the first part of point 2 fix t ≥ 0 and notice that the map

α 7→
∫ t+T

t
αC(s)ds

is continuous with respect to the weak-⋆ topology and takes values in the set of non-negative sym-

metric matrices.

We claim that all such matrices are positive definite. Assume by contradiction that there exist

α ∈ G(T, µ) and x0 ∈ R2h+1−j0 \ {02h+1−j0} such that
∫ t+T
t xT

0 αC(s)x0ds = 0. Then, for almost

every s ∈ [t, t + T ], we would have α(s)xT
0 v(s) = 0. Since α(s) 6= 0 for s in a set of positive

measure, we deduce that the real-analytic function xT
0 v(·) is identically equal to zero. Let AC

0 =

diag(1, ω1A0, . . . , ωhA0) if j0 = 0 or AC
0 = diag(ω1A0, . . . , ωhA0) if j0 = 1. Then xT

0 (AC
0 )jv(0) = 0

for every non-negative integer j. The contradiction is reached, since (AC
0 , v(0)) is a controllable pair

and x0 6= 02h+1−j0 .
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Then, by weak-⋆ compactness of G(T, µ), we deduce the existence of ξ > 0 independent of α such

that (10) holds true. The independence of ξ with respect to t follows from the shift-invariance of

G(T, µ) pointed out in Lemma 2.4.

The second part of point 2 follows from the same argument used to prove point 1, noticing that,

for every t ≥ 0,
∫ t+ T

νn

t
αC

n (τ)dτ ≥ ξ

νn
Id2h+1−j0 .

3 Spectra with non-positive real part

We consider below the problem of whether a controllable pair (A, b) gives rise to a PE system that

can be (T, µ)-stabilized for every choice of µ and T . We will see in Section 4 that this cannot be

done in general. The scope of this section is to study the case in which each eigenvalue of A has

non-positive real part.

The first step is to consider the special case of the n-integrator. Let Jn ∈ Mn(R) be defined as

Jn =

































0 1 0 · · · · · · 0

0 0 1 0 · · · 0

...
. . .

. . .
...

0 · · · 0 1

0 · · · · · · 0

































.

Theorem 3.1 Let A = Jn and b = (0, . . . , 0, 1)T ∈ Rn. Then, for every T, µ with T ≥ µ > 0 there

exists a (T, µ)-stabilizer for (6).

Proof. In the special case of the n-integrator system (7) becomes







ẋj = xj+1, for j = 1, . . . , n − 1,

ẋn = −α(t)(k1x1 + · · · + knxn) ,
(11)

where K = (k1, . . . , kn)T .

For every ν > 0, define

Dn,ν = diag(νn−1, . . . , ν, 1). (12)

As done in [9] in the case n = 2, one easily checks that, in accordance with

νD−1
n,νJnDn,ν = Jn, Dn,νb = b, (13)
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the time-space transformation

xν(t) = D−1
n,νx(νt) , ∀t ≥ t0

ν
, (14)

of the trajectory x(·) = x(· ; t0, x0,K, α) satisfies

d

dt
xν(t) = Jnxν(t) − α(νt)νbKT Dn,νxν(t),

that is,

xν(·) = x(· ; t0/ν,D−1
n,νx0, νDn,νK,α(ν ·)). (15)

As a consequence, (11) admits a (T, µ)-stabilizer if and only if it admits a (T/ν, µ/ν)-stabilizer. More

precisely, K is a (T, µ)-stabilizer if and only if νDn,νK is a (T/ν, µ/ν)-stabilizer.

Let us introduce, for every gain K, the switched system






ẋj = xj+1, for j = 1, . . . , n − 1,

ẋn = −α⋆(t)(k1x1 + · · · + knxn),
α⋆ ∈ L∞(R≥0, [µ/T, 1]). (16)

Recall that (16) is said to be globally uniformly exponentially stable as a switched system if the

origin is globally exponentially stable, uniformly with respect to α⋆ ∈ L∞(R≥0, [µ/T, 1]), for the

dynamics of (16). (For this and other notions of stability of switched systems see, for instance, [12].)

For every K such that k1 6= 0, define X1 = k1x1 + · · · + knxn, X2 = k1x2 + · · · + kn−1xn, . . . ,

Xn = k1xn. The global uniform exponential stability of (16) is clearly equivalent to that of

Ẋj = Xj+1 − α⋆k̄jX1, j = 1, . . . , n, α⋆(t) ∈ [µ/T, 1], (17)

where k̄j = kn+1−j and, by convention, Xn+1 = 0n.

It has been proven in Gauthier and Kupka [11, Lemma 4.0] (where the result is attributed to

W.P. Dayawansa), that there exist K ∈ Rn, a scalar γ > 0 and a symmetric positive definite n × n

matrix S such that

(Jn − ᾱK(1, 0, . . . , 0))
T
S + S(Jn − ᾱK(1, 0, . . . , 0)) ≤ −γIdn, (18)

for every (constant) ᾱ ∈ [µ/T, 1].

Hence, there exist a gain K ∈ Rn such that (16) is globally uniformly exponentially stable and

a positive definite matrix S′ such that the quadratic Lyapunov function V (x) = xT S′x decreases

uniformly on all trajectories of (16). In particular, there exists a time τ such that every trajectory

of (16) starting in BV
2 = {x ∈ Rn | V (x) ≤ 2} at time 0 lies in BV

1 = {x ∈ Rn | V (x) ≤ 1} for every

time larger than τ .

We claim that, for some ν > 0, every trajectory of ẋ = (A − αν(t)bK
T )x with initial condition

in BV
2 and corresponding to a (T/ν, µ/ν)-signal αν stays in BV

1 for every time larger than 2τ . (In

8



particular, by homogeneity, K is a (T/ν, µ/ν)-stabilizer and thus ν−1D−1
n,νK is a (T, µ)-stabilizer.)

Assume, by contradiction, that for every l ∈ N there exist x0,l ∈ BV
2 , tl ∈ [2τ, 4τ ] and αl ∈ G(T/l, µ/l)

such that

x(tl; 0, x0,l,K, αl) 6∈ BV
1 for every l ∈ N. (19)

By compactness of BV
2 × [2τ, 4τ ] and by weak-⋆ compactness of L∞(R≥0, [0, 1]), we can assume that,

up to extracting a subsequence, x0,l → x0,⋆ ∈ BV
2 , tl → t⋆ ∈ [2τ, 4τ ] and αl converges weakly-⋆ to

α⋆ ∈ L∞(R≥0, [0, 1]) as l goes to infinity. Then x(tl; 0, x0,l,K, αl) converges, as l goes to infinity,

to x(t⋆; 0, x⋆,K, α⋆) (see [9, Appendix] for details). Since α⋆ ≥ µ/T almost everywhere (point 1 of

Lemma 2.5), then α⋆ can be taken as an admissible signal in (16).

By homogeneity of the linear system (16) and because t⋆ ≥ 2τ , we have that

V (x(t⋆; 0, x⋆,K, α⋆)) ≤ 1/2.

Therefore, for l large enough x(tl; 0, x0,l,K, αl) ∈ BV
1 contradicting (19). �

Let us now turn the general case where the spectrum of A has non-positive real part. The main

technical difficulties in order to adapt the proof of Theorem 3.1 come from the fact that A may have

several Jordan blocks of different sizes.

Theorem 3.2 Let (A, b) ∈ Mn(R)×Rn be a controllable pair and assume that the eigenvalues of A

have non-positive real part. Then, for every T, µ with T ≥ µ > 0 there exists a (T, µ)-stabilizer for

(6).

Proof. Fix a controllable pair (A, b) ∈ Mn(R)×Rn. Up to a linear change of variable, A and b can

be written as

A =





A1 A3

0(n−n′)×n′ A2



 , b =





b1

b2



 ,

where n′ ∈ {0, . . . , n}, A1 ∈ Mn′(R) is Hurwitz and all the eigenvalues of A2 ∈ Mn−n′(R) have

zero real part. From the controllability assumption, we deduce that (A2, b2) is controllable. Setting

x = (xT
1 , xT

2 )T according to the above decomposition, system (1) can be written as

ẋ1 = A1x1 + A3x2 + α(t)b1u, (20)

ẋ2 = A2x2 + α(t)b2u. (21)

If there exists a (T, µ)-stabilizer K2 for (21), then

K =





0n′

K2




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is a (T, µ) stabilizer for (1). It is therefore enough to prove the theorem under the extra hypothesis

that all eigenvalues of A lie on the imaginary axis.

Denote the distinct eigenvalues of A by ±iωj, j ∈ {j0, j0 + 1, . . . , h}, where j0 = 1 if 0 6∈ σ(A)

and j0 = 0 with ω0 = 0 otherwise. For every j ∈ {0, . . . , h}, let rj be the multiplicity of iωj, with

the convention that r0 = 0 if 0 6∈ σ(A).

Assume that A is decomposed in Jordan blocks. Since (A, b) is controllable, then A has a unique

(complex) Jordan block associated with each {iωj ,−iωj}, j0 ≤ j ≤ h. (Otherwise, the rank of

the matrix (A − iωjIdn | b) would be strictly smaller than n, contradicting the Hautus test for

controllability.) Therefore, for every j = 1, . . . , h, the Jordan block associated to iωj is ωjA
(j) + JC

rj
,

where A(j) = diag(A0, . . . , A0) ∈ M2rj
(R) and JC

rj
∈ M2rj

(R) is defined as

JC
rj

=

































02×2 Id2 02×2 · · · · · · 02×2

02×2 02×2 Id2 02×2 · · · 02×2

...
. . .

. . .
. . .

. . .
...

02×2

02×2 · · · 02×2 02×2 Id2

02×2 · · · · · · 02×2 02×2

































,

that is, in terms of the Kronecker product, JC
rj

= Jrj
⊗ Id2.

All controllable linear control systems associated with a pair (A, b) that have in common the

eigenvalues of A, counted according to their multiplicity, are state-equivalent, since they can be

transformed by a linear transformation of coordinates into the same system under companion form.

We exploit such an equivalence to deduce that, up to a linear transformation of coordinates, (1) can

be written as






ẋ0 = Jr0x0 + αb0u,

ẋj = (ωjA
(j) + JC

rj
)xj + αbju, for j = 1, . . . , h,

(22)

where b0 and bj are respectively the vectors of Rr0 and R2rj with all coordinates equal to zero except

the last one that is equal to one. Here x0 ∈ Rr0 and xj ∈ R2rj for j = 1, . . . , h

Write the feedback law as u = −KTx = −KT
0 x0 −

∑h
l=1 KT

l xl with K0 ∈ Rr0 and Kj ∈ R2rj for

every 1 ≤ j ≤ h.

For every ν > 0 consider the following change of time-space variables: let

y0(t) = D−1
r0,νx0(νt),

yj(t) = (DC
rj ,ν)

−1e−νtA(j)
xj(νt), for 1 ≤ j ≤ h,

where Dr0,ν is defined as in (12) and

DC
rj ,ν = Drj ,ν ⊗ Id2 ∈ M2rj

(R).

10



In accordance with

ν(DC
rj ,ν)

−1JC
rj

DC
rj ,ν = JC

rj
, DC

rj ,νb
j = bj,

we end up with the following linear time-varying system







ẏ0 = Jr0y0 − αν(t)b
0
(

KT
0,νy0 +

∑h
l=1 KT

l,νe
νtωlA

(l)
yl

)

,

ẏj = JC
rj

yj − αν(t)b
j,ν(t)

(

KT
0,νy0 +

∑h
l=1 KT

l,νe
νtωlA

(l)
yl

)

, for j = 1, . . . , h,
(23)

where K0,ν = νDr0,νK0, Kj,ν = νDC
rj ,νKj and bj,ν(t) = e−νtωjA(j)

bj for j = 1, . . . , h. Given ν > 0,

(7) admits a (T, µ)-stabilizer if and only if (23) admits a (T/ν, µ/ν)-stabilizer.

For each l = 1, . . . , h, assume that KT
l is of the form (0, kl

1, . . . , 0, k
l
rl

), that is,

KT
l = Kl ⊗ (0, 1), Kl = (kl

1, . . . , k
l
rl
).

For uniformity of notations, we also write K0 = KT
0 .

Let (αν)ν>0 be a family of signals satisfying αν ∈ G(T/ν, µ/ν) for every ν > 0. Consider a

sequence (νn)∈N going to infinity as n → ∞ such that the matrix-valued curve αC
νn

(·), defined as in

(9), has a weak-⋆ limit as n → ∞ in L∞(R≥0,M2h+1−j0(R)). Denote the weak-⋆ limit by C⋆. It

follows form point 2 of Lemma 2.5 that C⋆(t) is symmetric and

C⋆(t) ≥ ξId2h+1−j0 ,

for almost every t ≥ 0, for some positive scalar ξ only depending on T, µ and σ(A).

Define the 2 × 2 time-dependent matrices Cjl, 1 ≤ j, l ≤ h, the 1 × 2 time-dependent matrices

C0j , 1 ≤ j ≤ h, and the scalar time-dependent signal C00 by the relation

C⋆ = (Cjl)j0≤j,l≤h.

Consider, for every n ∈ N, system (23) with ν = νn and Kν = K. All coefficients of the sequence

of systems obtained in this way are weakly-⋆ convergent as n goes to infinity. The limit system is







ẏ0 = Jr0y0 − b0
(

C00K0y0 +
∑h

l=1 C0l(Kl ⊗ Id2)yl

)

,

ẏj = JC
rj

yj − (bj ⊗ Id2)
(

CT
0jK0y0 +

∑h
l=1 Cjl(Kl ⊗ Id2)yl

)

, for j = 1, . . . , h.
(24)

We consider (24) as a switched system depending on K in which the admissible switching laws are all

the time-varying matrix-valued coefficients Cjl obtained from the limit procedure described above.

In the sequel, we only treat the case where 0 is not an eigenvalue of A. The general case presents

no extra mathematical difficulties and can be treated similarly. Then system (24) takes the form

ẏj = JC
rj

yj − (bj ⊗ Id2)

h
∑

l=1

Cjl(Kl ⊗ Id2)yl, for j = 1, . . . , h. (25)

11



We also assume that the multiplicities r1, . . . , rh of the eigenvalues of A form a non-increasing se-

quence.

Let us impose a further restriction on the structure of the feedback K. Assume that there exist

k̄1, . . . , k̄r1 ∈ R, each of them different from zero, such that

kl
ξ = k̄rl+1−ξ, for 1 ≤ l ≤ h and 1 ≤ ξ ≤ rl.

We find it useful to provide an equivalent representation of system (25) in a higher dimensional

vector space, introducing some redundant variables. In order to do so, for l ∈ {1, . . . , r1}, associate

to y = (y1, . . . , yh) the 2h-vector

Yl =











(K1 ⊗ Id2)(J
C
r1

)l−1y1

...

(Kh ⊗ Id2)(J
C
rh

)l−1yh











.

Notice that the last 2h − 2ml coordinates of Yl are equal to zero, where ml denotes the number of

Jordan blocks of A of size not smaller than l, that is,

ml = #{j | 1 ≤ j ≤ h, rj ≥ l}.

For l ∈ {1, . . . , r1}, let pl be the orthogonal projection of R2h onto R2ml × {02h−2ml
}, i.e.,

pl = diag(Id2ml
, 0(2h−2ml)×(2h−2ml)).

By construction we have p1 = Id2r1 and plYj = Yj for 1 ≤ l ≤ j ≤ r1.

Notice that the map (y1, . . . , yh) 7→ (Y1, . . . , Yr1) is a bijection between Rn and the subspace

Eh
m1,...,mr1

of R2hr1 defined by

Eh
m1,...,mr1

= {(Y1, . . . , Yr1) | Yl ∈ R2h and plYl = Yl for l = 1, . . . , r1}.

Indeed, the matrix corresponding to the transformation is upper triangular, with the k̄l’s as elements

of the diagonal, if one considers the following choice of coordinates on Eh
m1,...,mr1

: take the first two

coordinates of the first copy of R2h, then the first two of its second copy and so on until the rth
1

copy; then take the third and fourth coordinates of the first copy of R2h and repeat the procedure

until its rth
2 copy; and so on, until the last two coordinates of the rth

h copy of R2h.

If y is a solution of system (25), then Y = (Y1, . . . , Yr1) is a trajectory in Eh
m1,...,mr1

satisfying

the system of equations

Ẏl = Yl+1 − k̄lplC⋆Y1, for l = 1, . . . , r1, (26)

where, by convention, Yr1+1 = 02h.

We prove in the following proposition that there exist k̄1, . . . , k̄r1 6= 0 such that system (26),

restricted to Eh
m1,...,mr1

, is exponentially stable uniformly with respect to all time-dependent mea-

surable symmetric matrices C⋆ satisfying ξId2h ≤ C⋆(t) ≤ Id2h almost everywhere.

12



Proposition 3.3 For every h, r1 ∈ N, for every non-increasing sequence of non-negative numbers

m1, . . . ,mr1 such that m1 ≤ h and for every ξ > 0, there exist λ, k̄1, . . . , k̄r1 > 0 and a symmetric

positive definite 2hr1 × 2hr1 matrix S such that, for every C⋆ ∈ L∞(R≥0,M2h(R)), if C⋆(t) is

symmetric and satisfies ξId2h ≤ C⋆(t) ≤ Id2h almost everywhere, then any solution Y : R≥0 →
Eh

m1,...,mr1
of (26) satisfies for almost every t ≥ 0 the inequality

d

dt

(

Y (t)T SY (t)
)

≤ −λ‖Y (t)‖2.

Proof. The proof is similar to that of [11, Lemma 4.0] and goes by induction on r1.

We start the argument for r1 = 1, with h ∈ N, 0 ≤ m1 ≤ h and ξ > 0 arbitrary. In that case the

system reduces to

Ẏ1 = −k̄1p1C⋆Y1,

with Y1 ∈ Eh
m1

= R2m1 × {02h−2m1}. The conclusion follows by taking k̄1 = 1 and S = Id2h.

Let r1 be a positive integer. Assume that the proposition holds true for every positive integer

j ≤ r1 and for every h ∈ N, 0 ≤ m1 ≤ · · · ≤ mr1 ≤ h and ξ > 0. Consider system (26) where l runs

between 1 and r1 + 1. Set Y = (Y T
2 , . . . , Y T

r1+1)
T . Note that if (Y T

1 , . . . , Y T
r1+1)

T ∈ Eh
m1,...,mr1+1

, then

Y ∈ Eh
m2,...,mr1+1

. The dynamics of (Y1, Y ) are given by







Ẏ1 = −k̄1C⋆Y1 + Π1Y,

Ẏ = −KC⋆Y1 + J Y,

where

Π1 = (Id2h, 02h×2h(r1−1)),

K =











k̄2p2

...

k̄r1+1pr1+1











,

J = Jr1 ⊗ Id2h.

Define the linear change of variables (Z1, Z) given by

Z1 = Y1, Z = Y + ΩY1,

where

Ω =











η2p2

...

ηr1+1pr1+1










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and the ηl’s are scalar constants to be chosen later. Note that Z belongs to Eh
m2,...,mr1+1

if Y does.

The dynamics of (Z1, Z) is given by






Ż1 = (−k̄1C⋆ + Π1Ω)Z1 + Π1Z,

Ż = −
(

(K + k̄1Ω)C⋆ + (J + ΩΠ1)Ω
)

Z1 + (J + ΩΠ1)Z.
(27)

Let us apply the induction hypothesis to the system

Ż = (J + ΩΠ1)Z, (28)

which is well defined on Eh
m2,...,mr1+1

and has the same structure as system (26). (Here C⋆ ≡ Id2h

and therefore one can take as ξ any positive constant smaller than one.) We deduce the existence of

λ > 0, ηl < 0, 2 ≤ l ≤ r1 +1 and a symmetric positive definite matrix S such that V̇ (t) ≤ −λ‖Z(t)‖2

where V (t) = Z(t)T SZ(t) and Z(t) is any trajectory of (28) in Eh
m2,...,mr1+1

. Therefore,

[

(J + ΩΠ1)
T S + S(J + ΩΠ1)

]∣

∣

Eh
m2,...,mr1+1

≤ −λ IdEh
m2,...,mr1+1

.

Since Ω is fixed, for every k̄1 > 0 there exists a unique K(k̄1) such that K(k̄1) + k̄1Ω = 02r1h×2h.

Assume that K = K(k̄1) and notice that the corresponding k̄2, . . . , k̄r1+1 are positive.

Choose S′ = (1/2)diag(Id2h, S) and define the corresponding Lyapunov function W (Z1, Z) =

‖Z1‖2/2 + ZTSZ/2. If (Z1, Z) is a trajectory of (27), then

d

dt
W (Z1, Z) = −ZT

1 ((k̄1C⋆ − Π1Ω)Z1 − Π1Z) − ZT S((J + ΩΠ1)ΩZ1 − (J + ΩΠ1)Z)

≤ ZT
1 (−k̄1C⋆ + Π1Ω)Z1 − λ‖Z‖2 + (‖Π1‖ + ‖S(J + ΩΠ1)Ω‖)‖Z1‖‖Z‖

≤ (−k̄1ξ + δ1)‖Z1‖2 − λ‖Z‖2 + δ2‖Z1‖‖Z‖,

where the constants δ1, δ2 > 0 do not depend on k̄1. Since

‖Z1‖‖Z‖ ≤ ε2‖Z1‖2 +
‖Z‖2

ε2

for every ε > 0, then

d

dt
W (Z1, Z) ≤

(

−k̄1ξ + δ1 +
δ2

ε2

)

‖Z1‖2 + (−λ + ε2δ2)‖Z‖2.

Choosing ε2 small enough in order to have −λ + ε2δ2 ≤ −λ/2 and k̄1 large enough, we have

d

dt
W (Z1, Z) ≤ −λ

2
(‖Z1‖2 + ‖Z‖2).

The proof is concluded, since (Z1, Z) and (Y1, Y ) are equivalent systems of coordinates on the

space Eh
m1,...,mr1+1

. �

The proof of Theorem 3.2 is completed by applying the same contradiction argument as in the

proof of Theorem 3.1. �
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4 Maximal rates of exponential convergence and divergence

Let (A, b) ∈ Mn(R)×Rn be a controllable pair, K belong to Rn and T, µ be positive constants such

that T ≥ µ. For α ∈ G(T, µ) let λ+(α,K) and λ−(α,K) be, respectively, the maximal and minimal

Lyapunov exponents associated with ẋ = (A − αbKT )x, i.e.,

λ+(α,K) = sup
‖x0‖=1

lim sup
t→+∞

log(‖x(t; 0, x0,K, α)‖)
t

, λ−(α,K) = inf
‖x0‖=1

lim inf
t→+∞

log(‖x(t; 0, x0,K, α)‖)
t

.

The rate of convergence (respectively, the rate of divergence) associated with the family of systems

ẋ = (A − αbKT )x, α ∈ G(T, µ), is defined as

rc(A, b, T, µ,K) = − sup
α∈G(T,µ)

λ+(α,K) (respectively, rd(A, b, T, µ,K) = inf
α∈G(T,µ)

λ−(α,K)). (29)

Notice that

rc(A, b, T, µ,K) ≤ min
ᾱ∈[µ/T,1]

min{−ℜ(σ(A − ᾱbKT ))}, (30)

and

rd(A, b, T, µ,K) ≤ min
ᾱ∈[µ/T,1]

min{ℜ(σ(A − ᾱbKT ))}.

Moreover, since a linear change of coordinates x′ = Px does not affect Lyapunov exponents, then

rc(A, b, T, µ,K) = rc(PAP−1, P b, T, µ, (P−1)T K), (31)

and

rd(A, b, T, µ,K) = rd(PAP−1, P b, T, µ, (P−1)T K). (32)

Define the maximal rate of convergence associated with the PE system ẋ = Ax+αbu, α ∈ G(T, µ),

as

RC(A,T, µ) = sup
K∈Rn

rc(A, b, T, µ,K), (33)

and similarly, the maximal rate of divergence as

RD(A,T, µ) = sup
K∈Rn

rd(A, b, T, µ,K). (34)

Notice that neither RC(A,T, µ) nor RD(A,T, µ) depend on b, as it follows from (31) and (32).

Remark 4.1 Let us collect some properties of RC and RD that follow directly from their definition.

First of all, one has

RC(A + λIdn, T, µ) = RC(A,T, µ) − λ, RD(A + λIdn, T, µ) = RD(A,T, µ) + λ. (35)

Then, by time-rescaling,

RC(A,T, ρT ) = RC(A/T, 1, ρ), RD(A,T, ρT ) = RD(A/T, 1, ρ). (36)
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Notice moreover that, thanks to (13), both RC(Jn, T, ρT ) and RD(Jn, T, ρT ) only depend on ρ and

thus are equal to RC(Jn, 1, ρ) and RD(Jn, 1, ρ), respectively. Finally, because of point 2 in Lemma 2.4,

RC and RD are monotone with respect to their third argument.

Remark 4.2 Given a controllable pair (A, b) and a class G(T, µ) of PE signals, whether or not RC

and RD are both infinite can be understood as whether or not a pole-shifting type property holds

true for the PE control system ẋ = Ax + αbu, α ∈ G(T, µ).

The study of the pole-shifting type property for two-dimensional PE systems actually reduces to

that of their maximal rates of convergence as a consequence of the following property.

Proposition 4.3 Consider the two-dimensional PE systems ẋ = Ax+αbu, α ∈ G(T, µ), with (A, b)

controllable. Then RC(A,T, µ) = +∞ if and only if RD(A,T, µ) = +∞.

Proof. According to (31), (32) and (35), it is enough to prove the result for (A, b) in companion

form and with Tr(A) = 0. Let then

A =





0 1

a 0



 b =





0

1



 , (37)

with a ∈ R.

Assume that RC(A,T, µ) = +∞. By definition, for every C > 0 there exists K ∈ R2 such that

rc(A, b, T, µ, k) > C. Therefore, by definition of rc,

lim sup
t→+∞

log(‖x(t; 0, x0,K, α)‖)
t

< −C, ∀α ∈ G(T, µ),∀‖x0‖ = 1. (38)

Moreover, due to (30), for C large enough we can assume that k1, k2 and k1/k2 are large positive

numbers.

Let K− = (k1,−k2). We claim that if C is large enough then RD(A, b, T, µ,K−) ≥ C. Assume

by contradiction that there exists ᾱ ∈ G(T, µ) such that λ−(ᾱ,K−) < C. Then there exists x̄ ∈ R2

of norm one and an increasing sequence (tn)n∈N of positive times going to infinity such that

log(‖x(tn; 0, x̄,K−, ᾱ)‖)
tn

< C, ∀ ∈ N.

Notice that for every t ∈ [0, tn],

x(t; 0, x̄,K−, ᾱ(·)) = diag(1,−1)x(tn − t; 0, xn,K, ᾱ(tn − ·)),

where xn = diag(1,−1)x(tn; 0, x̄,K−, ᾱ).

Therefore, by homogeneity,

log
(∥

∥

∥
x

(

tn; 0, xn

‖xn‖
,K, ᾱ(tn − ·)

)∥

∥

∥

)

tn
= − log(‖xn‖)

tn
= − log(‖x(tn; 0, x̄,K−, ᾱ)‖)

tn
> −C. (39)
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This would contradict (38) if, for some positive integer n, xn/‖xn‖ = x̄ and the signal obtained

by repeating ᾱ|[0,tn) by periodicity over R≥0 belonged to G(T, µ). Indeed, in such a case,

log (‖x (ktn; 0, x̄,K, α̃(·))‖)
ktn

> −C (40)

for every k ≥ 1, where α̃ ∈ G(T, µ) denotes the signal obtained by repeating ᾱ|[0,tn)(tn − ·) by

periodicity over R≥0.

In order to recover the periodic case, we are going to extend ᾱ backwards in time over an

interval [−2µ − τn, 0) as follows. First set A−
1 = A − bKT

−. We take ᾱ = 1 on the intervals

[−µ, 0) and [−2µ − τn,−µ − τ − n) and we extend ᾱ on [−µ − τn,−µ) in such a way that the

trajectory corresponding to ᾱ|[−µ−τn,−µ) and to the gain K− connects the half-line R≥0x
+
n to x̄−,

where x+
n = exp(µA−

1 )diag(1,−1)xn and x̄− = exp(−µA−
1 )x̄. We show below that this can be done

fulfilling the PE condition and with τn upper bounded by a constant independent of n. Hence, the

signal obtained extending ᾱ[−2µ−τn,tn] by periodicity belongs to G(T, µ) and we have

x (tn + 2µ + τn; 0, xn,K, ᾱ(tn + 2µ + τn − ·)) ∈ R≥0xn

log

(∥

∥

∥

∥

x

(

tn + 2µ + τn; 0,
xn

‖xn‖
,K, ᾱ(tn + 2µ + τn − ·)

)∥

∥

∥

∥

)

= log (‖x̃‖) − log(‖x(tn; 0, x̄,K−, ᾱ)‖),

where x̃ = x(τn + 2µ; 0,diag(1,−1)x̄,K, ᾱ|[−2µ−τn,0](− ·)). Note that log(‖x̃‖) can be lower bounded

independently of n, because of the uniform boundedness of τn. Therefore,

log (‖x (tn + 2µ + τn; 0, xn,K, ᾱ(tn + 2µ + τn − ·))‖)
tn + 2µ + τn

>
log (‖x̃‖)

tn + 2µ + τn
− Ctn

tn + 2µ + τn

is larger than −C for n large enough and we can conclude as in (40).

We are left to prove that the control system on the unit circle whose admissible velocities are

the projections of the linear vector fields x 7→ (A − ξbKT
−)x, ξ ∈ [0, 1], is completely controllable

in finite time by controls ξ = ξ(t) satisfying the PE condition. Notice that the equilibria of the

projection of a linear vector field x 7→ A′x on the unit circle are given by the eigenvalues of A′. All

other trajectories are heteroclinic connections between the equilibria, unless the eigenvalues of A′ are

non-real, in which case the phase portrait is given by a single periodic trajectory.

Denote by θ a point on the unit circle, identified with R/2πZ. Then, the above mentioned control

system on the unit circle can be written

θ̇ = a cos2(θ) − sin2(θ) + ξ cos(θ) (k2 sin(θ) − k1 cos(θ)) , ξ ∈ [0, 1]. (41)

We prove the controllability of (41) by exhibiting a trajectory θ̄ of (41) corresponding to a PE

control ξ̄, starting at some θ0 ∈ R/2πZ, making a complete turn and going back in finite time to θ0.

The PE condition will be verified by checking that the control ξ̄ = 0 is applied for a total time

that is smaller than T − µ. Define the angle θK ∈ (0, π/2) by

tan (θK) = 2
k2

k1
.
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Notice that the eigenvectors of A−
1 are proportional to the vectors (2, k2 ±

√

k2
2 − 4(k1 − a)). There-

fore, assuming that k1 is larger than a, the angle between any real eigenvector of A−
1 and the vertical

axis is smaller than θK .

Take θ0 = π/2 and apply ξ̄ = 0 until θ̄ reaches π/2 − θK . Since k2/k1 is small and θK is of the

same order as k2/k1, then we can assume that a cos2(θ) − sin2(θ) < −1/2 for θ ∈ [π/2 − θK , π/2].

Therefore, the time needed to go from π/2 to π/2−θK can be assumed to be smaller than (T −µ)/2.

When the trajectory θ̄ reaches π/2− θK , switch to ξ̄ = 1 and apply it until θ̄ reaches (in finite time)

−π/2. This is possible since either the eigenvectors of A−
1 are non-real or they are contained in the

cone

{(r cos θ, r sin θ) | r > 0, θ ∈ (π/2 − θK + mπ, π/2 + mπ), m ∈ Z}.

In both cases the dynamics of (41) with ξ = 1 describe a non-singular clockwise rotation on the arc

of the unit circle corresponding to [π/2, π/2 − θK ]. The trajectory is completed, by homogeneity,

taking ξ̄ = 0 until θ̄ reaches −π/2− θK and finally ξ̄ = 1 until θ̄ reaches −3π/2 = π/2 (mod 2π). As

required, the sum of the lengths of the intervals on which ξ̄ = 0 does not exceed T − µ.

This concludes the proof that RC(A,T, µ) = +∞ implies RD(A,T, µ) = +∞. The converse can

be proven by a perfectly analogous argument. �

4.1 Arbitrary rates of convergence and divergence for ρ large enough

This section aims at proving that for ρ large enough a persistently excited system can be either

stabilized with an arbitrarily large rate of exponential convergence or destabilized with an arbitrarily

large rate of exponential divergence. This will be done by adapting the classical high-gain technique.

Proposition 4.4 Let n be a positive integer. There exists ρ∗ ∈ (0, 1) such that for every controllable

pair (A, b) ∈ Mn(R)×Rn, every T > 0 and every ρ ∈ (ρ∗, 1] one has RC(A,T, ρT ) = RD(A,T, ρT ) =

+∞.

Proof. Fix T > 0 and let (A, b) ∈ Mn(R)×Rn be a controllable pair in companion form. According

to (35), it is enough to establish the result with the extra hypothesis that Tr(A) = 0. We therefore

assume in the sequel that b = (0, . . . , 0, 1)T , A = Jn + bKT
A and KT

Ab = 0.

We first prove the stabilization result. Fix K ∈ Rn such that Jn − bKT is Hurwitz. Let P be

the unique positive definite n × n matrix that solves the Lyapunov equation

(Jn − bKT )T P + P (Jn − bKT ) = −Idn.

Define V (x) = xT Px. Then, for every α ∈ L∞(R, [0, 1]) and every solution of ẋ = (Jn − αbKT )x,

one has
d

dt
V (x(t)) ≤ −C1V (x(t)) + C2(1 − α(t))V (x(t)),
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with C1, C2 two positive constants only depending on K. Choose ρ ∈ (0, 1) and assume that α is a

(T, Tρ)-signal. Then, for every t ≥ 0,

V (x(t + T )) ≤ V (x(t)) exp(−T (C1 − C2(1 − ρ))).

Therefore, if ρ > 1 − (C1/2C2) then RC(Jn, T, Tρ) ≥ C1/2 > 0. For every γ > 0, set Kγ = γDγK

(where, as in the previous section, Dγ = diag(γn−1, . . . , γ, 1)). Recall that Jn and Dγ satisfy (13).

Take a solution of ẋ = (A−αbKT
γ )x with α ∈ G(T, ρT ). Set z(·) = Dγx(·) and notice that for every

γ > 1
d

dt
V (z(t)) ≤ γ(−C1 + C2(1 − α(t)) + CA/γ2)V (z(t)),

where CA only depends on KA and P . Then clearly RC(A,T, Tρ) ≥ γC1/3 for ρ > 1 − (C1/2C2)

and γ large enough. Thus, RC(A,T, Tρ) = +∞ and one can choose ρ∗ ≥ 1 − (C1/2C2).

The destabilization result can be obtained by a similar argument based on the Lyapunov equation

(Jn − bLT )T Q + Q(Jn − bLT ) = Idn,

verified for some L ∈ Rn and some symmetric positive definite matrix Q. �

4.2 Finite maximal rate of convergence for ρ small enough

In this section we restrict our attention to the case n = 2.

Proposition 4.5 There exists ρ∗ ∈ (0, 1) such that for every controllable pair (A, b) ∈ M2(R)×R2,

every T > 0 and every ρ ∈ (0, ρ∗) one has RC(A,T, ρT ) < +∞.

Proof. Thanks to Remark 4.1, it suffices to show that there exists ρ∗ ∈ (0, 1) such that, for every

controllable pair (A, b) ∈ M2(R) × R2 with Tr(A) = 0, one has RC(A, 1, ρ∗) < +∞.

As in (37), take (A, b) in companion form, ie,

A = J2 + aH, b = (0, 1)T ,

with a ∈ R and H =





0 0

1 0



.

For θ ∈ [−π, π) set eθ = (sin θ, cos θ)T and define y0 = (−1, 0)T . Every gain can be written as

Kθ,γ = γDγeθ,

with γ ≥ 0 and θ ∈ [−π, π).

Moreover, if A − bKT is Hurwitz with K = γDγeθ then the sum and the product of its two

eigenvalues are, respectively, γ cos θ > 0 and γ2 sin θ − a > 0. In particular, θ ∈ (−π/2, π/2) and
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γ2 sin θ > a. If θ ∈ (−π/2, 0] with A− bKT Hurwitz, then |a− sin θγ2| ≤ |a| = −a and therefore the

convergence rate of A − bKT is upper bounded by a constant only depending on a.

Let Ω0 = (0, π/2) × (0,∞). We show in the following the existence of ρ > 0 and Ω = {(θ, γ) |
0 < θ < π/2, 0 < γ < γ(θ)} ⊂ Ω0 such that

if (θ, γ) ∈ Ω0 and Kθ,γ is a (1, ρ)-stabilizer of ẋ = Ax + αbu, then (θ, γ) ∈ Ω, (42)

and

sup
(θ,γ)∈Ω

min{−ℜ(σ(A − bKT
θ,γ))} < +∞, (43)

and the conclusion then follows from (30).

Fix θ ∈ (0, π/2). In order to find, for γ large enough, α ∈ G(1, ρ) and x0 ∈ R2 such that the

trajectory of

ẋ = Ax − αbKθ,γx, x(0) = x0,

is unbounded, we apply the transformation yγ(·) = Dγx(·/γ): the problem is now to find, for γ large

enough, α ∈ G(γ, ργ) and an unbounded trajectory of

ẏ =

(

J2 +
a

γ2
H

)

y − αbeθy. (44)

Due to the homogeneity of the system, the latter fact reduces to determine τ large enough and

α ∈ G(τ, 2ρτ) such that the solution y(· ; 0, y0, eθ, α) of (44) satisfies y(τ ; 0, y0, α) = −ξy0 with ξ > 1.

Indeed, for every γ > τ the extension of α|[0,τ) by periodicity is a (γ, ργ)-signal (see point 4 in

Lemma 2.4) and the sequence ‖y(mτ ; 0, y0, α)‖ = ξm goes to infinity as m goes to infinity.

Set

Mθ = J2 − beT
θ , Na,θ,γ = J2 +

a

γ2
H − beT

θ .

Consider h > 0 small to be fixed later. We distinguish two cases depending on whether θ ∈ (0, h)

or not.

The case θ ∈ [h, π/2).

We construct a PE signal α as follows: starting at y0 take α = 1 until the trajectory y(· ; 0, y0, eθ, α)

of (44) reaches, at time T1, the switching line sin(θ)x + cos(θ)y = 0. In order to ensure that the

switching line is reached in finite time and, moreover, that T1 is lower and upper bounded by two pos-

itive constants only depending on h (and not on θ ∈ [h, π/2)), it suffices to choose γ > Γ1(a, h) > 0

with Γ1(a, h) only depending on a and h. (Indeed, the bounds hold for all matrices in a neighborhood

of {Mθ | θ ∈ [h, π/2)} and it suffices to ensure that Na,θ,γ belongs to such neighborhood.)

From y(T1; 0, y0, eθ, α) set α = 0 until the first coordinate of y(· ; 0, y0, eθ, α) takes, at time

T1 + T2, the value 1. Finally, take α = 1 until the second coordinate of y(· ; 0, y0, eθ, α) reaches, at

time T1 + T2 + T3, the value 0. (See Figure 1.)
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−y0y0

sin(θ)x + cos(θ)y = 0

−ξy0

Figure 1: The trajectory y(· ; 0, y0, eθ, α) when θ ∈ [h, π/2)

Analogously to what happens for T1, the values T2 and T3 admit lower and upper positive bounds

only depending on h.

Define τ = T1 + T2 + T3 and notice that it admits an upper bound T1(h) only depending on h.

Finally, T1+T3
T1+T2+T3

admits a lower bound ρ1 only depending on h. The construction of the required

(τ, ρ1τ)-signal is achieved and we set

γ(θ) ≡ max(Γ1(a, h),T1(h)). (45)

The case θ ∈ (0, h).

Notice that the condition for Na,θ,γ to be Hurwitz is that γ2 > |a|/ sin θ. Choose γ > Γ2(a, θ) =

M
√

|a|/ sin θ with M large (to be fixed later independently of all parameters). In particular, for M

large enough and h0 > 0 small enough (independent of all parameters), for every θ ∈ (0, h0) and

every γ > Γ2(a, θ) the matrix Na,θ,γ has two real eigenvalues, denoted by µ+(a, θ, γ) > µ−(a, θ, γ)

and

−2 < µ−(a, θ, γ) < −1/2, −2 sin θ < µ+(a, θ, γ) < − sin θ/2. (46)

From now on we assume h ∈ (0, h0).

Similarly to what has been done above, we construct a PE signal α as follows: starting at

y0 take α = 1 in (44) for a time T1 = ρ̄M/|µ+(a, θ, γ)| with ρ̄ ∈ (0, 1) to be fixed later. Set

y1 = y(T1; 0, y0, eθ, α).

From y1 set α = 0 for a time T2 = M/|µ+(a, θ, γ)| and denote by y2 the point y(T1+T2; 0, y0, eθ, α).

Finally, take α = 1 until the second coordinate of y(· ; 0, y0, eθ, α) assumes, at time T1 + T2 + T3, the

value 0. (See Figure 2.)

We next show that there exist ρ̄ and M independent of θ and a such that T3 is well defined and

y(T1 + T2 + T3; 0, y0, eθ, α) = −ξy0 with ξ > 1.
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−y0
y0

y1

−ξy0

y2

Figure 2: The trajectory y(· ; 0, y0, eθ, α) when θ ∈ (0, h)

A simple computation yields

y1 =
1

µ−(a, θ, γ) − µ+(a, θ, γ)





eµ−(a,θ,γ)T1µ+(a, θ, γ) − eµ+(a,θ,γ)T1µ−(a, θ, γ)

µ−(a, θ, γ)µ+(a, θ, γ)(eµ−(a,θ,γ)T1 − eµ+(a,θ,γ)T1)





= e−ρ̄M





−1

µ+(a, θ, γ)



 + O(θ2),

with ‖O(θ2)‖ ≤ Cθ2 and C only depending on M and ρ̄. (Similarly, in the sequel the symbol O(θ)

stands for a function of θ upper bounded by Cθ with C only depending on M and ρ̄.)

In addition, one also gets that the first coordinate of y2 is equal to


















e−Mρ̄(M − 1) + O(θ) if a = 0,

e−Mρ̄
(

M µ+(a,θ,γ)
sin θ sinh

(

sin θ
µ+(a,θ,γ)

)

− cosh
(

sin θ
µ+(a,θ,γ)

))

+ O(θ) if a > 0,

e−Mρ̄
(

M µ+(a,θ,γ)
sin θ sin

(

sin θ
µ+(a,θ,γ)

)

− cos
(

sin θ
µ+(a,θ,γ)

))

+ O(θ) if a < 0.

Using (46) one deduces that the first coordinate of y2 is larger than






e−Mρ̄(M/2 sinh(1/2) − cosh(2)) + O(θ) if a > 0,

e−Mρ̄(M/2 sin(1/2) − cos(2)) + O(θ) if a < 0.

Then in all three cases the first coordinate of y2 becomes larger than

e−Mρ̄(MC0 − C1 + O(θ)),

and one also gets that the second coordinate of y2 can always be lower bounded by

sin θe−Mρ̄(C1 − C0/M + O(θ)),

with C0 > 0 and C1 > 0 independent of all the parameters.

Fix M large and ρ̄ ∈ (0, 1) such that

e−Mρ̄(MC0 − C1) ≥ 2, e−Mρ̄(C1 − C0/M) ≥ C1/2.

Finally, by eventually reducing h in order to make each O(θ) uniformly small, one can ensure

that the first coordinate of y2 remains larger than 1 and that its second coordinate is positive.
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Similar computations to the ones provided above show that it is possible to further ensure that

T3 ≤ 2T1.

Define τ = T1 + T2 + T3. Then M/(2 sin θ) < τ < 8M/ sin θ = T2(θ). Choose now

γ(θ) = M(8 +
√

a)/ sin θ ≥ max(T2(θ),Γ2(a, θ)). (47)

By construction, α ∈ G(τ, ρ̄τ). To conclude the proof it is enough to check condition (43) on

Ω∗ = {(θ, γ) | 0 < θ < h, 0 < γ < γ(θ)}.

For (θ, γ) ∈ Ω∗ define

Astab
θ,γ = A − bKT

γ,θ =





0 1

a − γ2 sin θ −γ cos θ



 .

Then

0 < det(Astab
θ,γ ) ≤ C0|Tr(Astab

θ,γ )| + |a|,

with C0 = 2M(8 +
√

|a|), implying (43). �

The following corollary is a direct consequence of Remark 4.1 and Proposition 4.5.

Corollary 4.6 Take ρ∗ as in the statement of Proposition 4.5. For every controllable pair (A, b) ∈
M2(R) × R2, every T > 0 and every ρ < ρ∗, if λ > 0 is large enough, then (A + λId2, b) is not

(T, ρT )-stabilizable. Moreover, if 0 < ρ < ρ∗ and λ > RC(J2, 1, ρ), then (J2 + λId2, b0) is not

(T, ρT )-stabilizable for every T > 0.

The above corollary establishes the existence of non-stabilizable PE systems if the ratio ρ = µ/T > 0

is small enough and regardless of T . This is rather intriguing when one recalls, on the one hand,

that any weak-⋆ limit point α⋆ of a sequence (αn), with αn ∈ G(Tn, ρTn) and limn→+∞ Tn = 0,

takes values in [ρ, 1] (see point 1 of Lemma 2.5) and, on the other hand, that the switched system

ẋ = J2x + α⋆(t)b0u, α⋆(t) ∈ [ρ, 1], can be uniformly stabilized with an arbitrary rate of convergence

by taking the feedback law uγ = −γDγKx, where γ > 0 is arbitrarily large and K is provided by

[11, Lemma 4.0].

Remark 4.7 One possible interpretation of Proposition 4.5 goes as follows. Consider the desta-

bilizing signals built in the argument of the proposition back in the original time-scale, i.e., as

(1, ρ)-signals. These signals take only the values 0, 1 over time intervals of length proportional to

1/γ. Therefore, the fundamental solution associated to ẋ = (A−αb0Kγ,θ)x is a power of the product

A1A2A3, where A1 = exp(T1(A − b0Kγ,θ)/γ), A2 = exp(T2A/γ) and A3 = exp(T3(A − b0Kγ,θ)/γ).

The stabilizing effect of A − b0Kγ,θ is countered by the overshoot phenomenon occurring when the

exponential of A − b0Kγ,θ is taken only over small intervals of time. If γ is large enough, such

overshoot eventually destabilizes ẋ = (A − αb0Kγ,θ)x.

23



4.3 Further discussion on the maximal rate of convergence

Let (A, b) ∈ M(n,R) × Rn be a controllable pair. Define

ρ(A,T ) = inf{ρ ∈ (0, 1] | RC(A,T, Tρ) = +∞}. (48)

Notice that ρ(A,T ) is equal to ρ(A/T, 1) and does not depend on Tr(A) (see Remark 4.1).

Proposition 4.4 implies that ρ(A,T ) ≤ ρ∗ for some ρ∗ ∈ (0, 1) only depending on n. In the case

n = 2, moreover Proposition 4.5 establishes a uniform lower bound ρ(A,T ) ≥ ρ∗ > 0.

The following lemma collects some further properties of the function T 7→ ρ(A,T ).

Lemma 4.8 Let (A, b) ∈ Mn(R) × Rn be a controllable pair. Then (i) T 7→ ρ(A,T ) is locally

Lipschitz on (0,+∞); (ii) there exist limT→+∞ ρ(A,T ) = supT>0 ρ(A,T ) and limT→0+ ρ(A,T ) =

infT>0 ρ(A,T ).

Proof. In order to prove (i), notice that point 3 in Lemma 2.4 implies that if RC(A,T, ρT ) < +∞
then for every η ∈ (0, ρT ),

RC

(

A,T + η,
ρT

T + η
(T + η)

)

< +∞, (49)

RC

(

A,T − η,
ρT − η

T − η
(T − η)

)

< +∞. (50)

From (49) we deduce that for every η ∈ (0, ρ(A,T )T ),

ρ(A,T + η) ≥ ρ(A,T )T

T + η
, (51)

and thus

ρ(A,T ) − ρ(A,T + η) ≤ η/T.

Similarly, (50) implies that, for every η ∈ (0, ρ(A,T )T ),

ρ(A,T − η) ≥ ρ(A,T )T − η

T − η
.

Therefore, one has

ρ(A,T ) ≥ ρ(A,T + η)(T + η) − η

T
(52)

for every η satisfying 0 < η < ρ(A,T + η)(T + η)) and in particular for every η ∈ (0, ρ(A,T )T ) (see

(51)). We obtain from (52) that ρ(A,T + η) − ρ(A,T ) ≤ η/T and we conclude that

|ρ(A,T + η) − ρ(A,T )| ≤ η

T

for every η ∈ (0, ρ(A,T )T ).

As for point (ii), it suffices to deduce from point 5 in Lemma 2.4 that if 0 < ρ′ < ρ < 1 then

there exists M > 0 such that whenever RC(A,T, ρT ) = +∞ one has RC(A, γ, ρ′γ) = +∞ for every

γ > 0 such that γ/T > M . �
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Remark 4.9 In the case A = Jn equality (15) implies that the function T 7→ ρ(Jn, T ) is constant.

When n = 2 its constant value is positive, due to Proposition 4.5.

5 Open problems

We conclude the paper by providing some questions that arose from our investigation of single-input

persistently excited linear systems.

Open problem 1 Does Proposition 4.3 still hold true in dimension bigger than two? Notice that

the proof provided here essentially relies on the controllability of (41) in finite time.

Open problem 2 Consider the constant ρ∗n defined as the upper lower bound for all the ρ∗’s satis-

fying the statement of Proposition 4.4 (n fixed). What can be said on the dependance of ρ∗n on n as

n → ∞?

Open problem 3 We conjecture that Proposition 4.5 holds true in dimension n > 2. Note however

that the proof given in the 2D case cannot be easily extended to the case in which n > 2. Indeed,

our strategy is based on a complete parameterization of the candidate feedbacks for stabilization

and on the explicit construction of a destabilizing signal α for every value of the parameter θ, which

takes values in the one-dimensional sphere. In the general case, the parameter would belong to an

(n − 1)-dimensional manifold and an explicit construction, if possible, would be more intricate.

Open problem 4 It is a challenging question to determine whether the function T 7→ ρ(A,T )

(defined in (48)) is constant for a general matrix A. If this is true, one may wonder whether its

constant value depends on A. Otherwise, a natural question would be to understand the dependence

of limT→0+ ρ(A,T ) and limT→+∞ ρ(A,T ) on the matrix A.

Open problem 5 Proposition 4.5 states that, for n = 2 and µ/T small, the PE control system ẋ =

Ax+αbu, α ∈ G(T, µ), does not have the pole-shifting property (see Remark 4.2). It makes therefore

sense to investigate additional conditions to impose on the PE signals (periodicity, positive dwell-

time, uniform bounds on the derivative of the PE signal, etc) so that the pole-shifting property holds

true for these restricted classes of PE signals, regardless of the ratio µ/T . First of all, the subclass of

periodic PE signals must be excluded, since the destabilizing inputs constructed in Proposition 4.5

are periodic. It is also clear that, for the subclass of G(T, µ) given by all signals with a positive dwell

time td > 0, one gets arbitrary rate of convergence (or divergence) with a linear constant feedback,

for every choice of T, µ, td. Here follows our conjecture.

Given T,M > 0 and ρ ∈ (0, 1], let D(T, ρ,M) be the subset of G(T, ρT ) whose signals are

globally Lipschitz over [0,+∞) with Lipschitz constant bounded by M . Then, given a controllable
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pair (A, b), we conjecture that it is possible to stabilize (respectively, destabilize) by a linear feedback

the system ẋ = Ax+αbu, α ∈ D(T, ρ,M), with an arbitrarily large rate of convergence (respectively,

divergence), i.e., we conjecture that for every C > 0 there exist two gains K1 and K2 such that for

every α ∈ D(T, ρ,M) the maximal Lyapunov exponent of ẋ = (A−αbKT
1 )x is smaller than −C and

the the minimal Lyapunov exponent of ẋ = (A − αbKT
2 )x is larger than C.
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