Entropy of semiclassical measures in dimension 2
Résumé
We study the asymptotic properties of eigenfunctions of the Laplacian in the case of a compact Riemannian surface of Anosov type or of nonpositive sectional curvature. In both cases, we show that the Kolmogorov-Sinai entropy of a semiclassical measure for the geodesic flow is bounded from below by half of the Ruelle upper bound
Origine | Fichiers produits par l'(les) auteur(s) |
---|