Half delocalization of semiclassical measures for Anosov surfaces
Résumé
We study the asymptotic properties of eigenfunctions of the Laplacian in the case of a compact Riemannian surface with Anosov geodesic flow. We show that the Kolmogorov-Sinai entropy of a semiclassical measure $\mu$ for the geodesic flow $g^t$ is bounded from below by half of the Ruelle upper bound.
Origine | Fichiers produits par l'(les) auteur(s) |
---|