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ENTROPY OF SEMICLASSICAL MEASURES IN DIMENSION 2

GABRIEL RIVIÈRE

Abstract. We study the asymptotic properties of eigenfunctions of the Laplacian in the case
of a compact Riemannian surface of Anosov type or of nonpositive sectional curvature. In both
cases, we show that the Kolmogorov-Sinai entropy of a semiclassical measure µ for the geodesic
flow gt is bounded from below by half of the Ruelle upper bound, i.e.

hKS(µ, g) ≥
1

2

∫

S∗M

χ+(ρ)dµ(ρ).

1. Introduction

In quantum mechanics, the semiclassical principle asserts that in the high energy limit, one
should observe classical phenomena. Our main concern will be the study of this property when
the classical system is said to be chaotic.
Let M be a compact C∞ Riemannian surface. For all x ∈M , T ∗

xM is endowed with a norm ‖.‖x
given by the metric over M . The geodesic flow gt over T ∗M is defined as the Hamiltonian flow

corresponding to the Hamiltonian H(x, ξ) :=
‖ξ‖2

x

2 . This last quantity corresponds to the classical
kinetic energy in the case of the absence of potential. As any observable, this quantity can be

quantized via pseudodifferential calculus and the quantum operator corresponding to H is −~
2∆
2

where ~ is proportional to the Planck constant and ∆ is the Laplace Beltrami operator acting on
L2(M).
Our main result concerns the influence of the classical Hamiltonian behavior on the spectral as-
ymptotic properties of ∆. More precisely, our main interest is the study of the measure |ψ~(x)|2dx
where ψ~ is an eigenfunction of −~

2∆
2 associated to the eigenvalue 1:

−~2∆

2
ψ~ = ψ~.

This is equivalent to the study of large eigenvalues of ∆. As M is a compact Riemannian manifold,
the family −~−2 forms a discrete subsequence that tends to infinity. One natural question is to
study the (weak) limits of the probability measure |ψ~(x)|2dx as ~ tends to 0. This means studying
the asymptotic behavior of the probability to find a particle in x when the system is in the state ψ~.
In order to study the influence of the Hamiltonian flow, we first need to lift this measure to the
cotangent bundle. This can be achieved thanks to pseudodifferential calculus. In fact there exists
a procedure of quantization that gives us an operator Op~(a) on the phase space L2(M) for any
observable a(x, ξ) in a certain class of symbols. Then a natural way to lift the previous measure
is to define the following quantity:

µ~(a) =

∫

T∗M

a(x, ξ)dµ~(x, ξ) := 〈ψ~,Op
~
(a)ψ~〉L2(M).

This formula gives a distribution µ~ on the space T ∗M and describes now the distribution in
position and velocity.
Let (ψ~k

) be a sequence of orthonormal eigenfunctions of the Laplacian corresponding to the
eigenvalues −~−2

k such that the corresponding sequence of distributions µk on T ∗M converges as
k tends to infinity to a limit µ. Such a limit is called a semiclassical measure. Using standard
facts of pseudodifferential calculus, it can be shown that µ is a probability measure that does not
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2 G. RIVIÈRE

depend on the choice of the quantization Op~ and that is carried on the unit energy layer

S∗M :=

{

(x, ξ) : H(x, ξ) =
1

2

}

.

Moreover, another result from semiclassical analysis, known as the Egorov property, states that
for any fixed t:

(1) ∀a ∈ C∞
c (T ∗M), U−tOp

~
(a)U t = Op

~
(a ◦ gt) +Ot(~),

where U t denotes the quantum propagator e
ıt~∆

2 . Precisely, it says that for fixed times, the
quantum evolution is related to the classical evolution under the geodesic flow. From this, it
can be deduced that µ is invariant under the geodesic flow. One natural question to ask is what
measures supported on S∗M are in fact semiclassical measures. The corresponding question in
quantum chaos is: when the classical behavior is said to be chaotic, what is the set of semiclassical
measures? A first result in this direction has been found by Shnirelman [30], Zelditch [33], Colin
de Verdière [11]:

Theorem 1.1. Let (ψk) be an orthonormal basis of L2(M) composed of eigenfunctions of the
Laplacian. Moreover, suppose the geodesic flow on S∗M is ergodic with respect to Liouville mea-
sure. Then, there exists a subsequence (µkp

)p of density one that converges to the Liouville measure
on S∗M as p tends to infinity.

By ’density one’, we mean that 1
n ♯{p : 1 ≤ kp ≤ n} tends to one as n tends to infinity. This

theorem states that, in the case of an ergodic geodesic flow, almost all eigenfunctions concentrate
on the Liouville measure in the high energy limit. This phenomenon is called quantum ergodicity
and has many extensions. The Quantum Unique Ergodicity Conjecture states that the set of
semiclassical measures should be reduced to the Liouville measure in the case of Anosov geodesic
flow [27]. This question still remains widely open. In fact, in the case of negative curvature, there
are many measures invariant under the geodesic flow: for example, there exists an infinity of closed
geodesics (each of them carrying naturally an invariant measure). In recent papers, Lindenstrauss
proved a particular form of the conjecture, the Arithmetic Quantum Unique Ergodicity [25].
Precisely, he proved that for a sequence of Hecke eigenfunctions of the Laplacian on an arithmetic
surface, |ψ|2dx converges to the Lebesgue measure on the surface. This result is actually the
best-known positive result towards the conjecture.
In order to understand the phenomenon of quantum chaos, many people started to study toy
models as the cat map (a typical hyperbolic automorphism of T2). These dynamical systems
provide systems with similar dynamical properties to the geodesic flow on a manifold of negative
curvature. Moreover, they can be quantized using Weyl formalism and the question of Quantum
Ergodicity naturally arises. For example, Bouzouina and de Bièvre proved the Quantum Ergodicity
property for the quantized cat map [8]. However, de Bièvre, Faure and Nonnenmacher proved
that in this case, the Quantum Unique Ergodicity is too optimistic [18]. In fact, they constructed
a sequence of eigenfunctions that converges to 1

2 (δ0 + Leb), where δ0 is the Dirac measure on

0 and Leb is the Lebesgue measure on T2. Faure and Nonnenmacher also proved that if we
split the semiclassical measure into its pure point, Lebesgue and singular continuous components,
µ = µpp + µLeb + µsc, then µpp(T2) ≤ µLeb(T

2) and in particular µpp(T
2) ≤ 1/2 [19]. As in

the case of geodesic flow, there is an arithmetic point of view on this problem. Recently, Kelmer
proved that in the case of T2d (d ≥ 2, for a generic family of symplectic matrices), either there
exists isotropic submanifold invariant under the 2d cat map or one has Arithmetic Quantum
Unique Ergodicity [23]. Moreover, in the first case, he showed that we can construct semiclassical
measure equal to Lebesgue on the isotropic submanifold.

1.1. Statement of the main result. In recent papers [2], [5], Anantharaman and Nonnenmacher
got concerned with the study of the localization of eigenfunctions on M as in the case of the toy
models. They tried to understand it via the Kolmogorov-Sinai entropy. This paper is in the same
spirit and our main result gives an information on the set of semiclassical measures in the case
of a surface M of nonpositive sectional curvature. More precisely, we give an information on the
localization (or complexity) of a semiclassical measure:



ENTROPY OF SEMICLASSICAL MEASURES IN DIMENSION 2 3

Theorem 1.2. Let M be a C∞ Riemannian surface of nonpositive sectional curvature and µ a
semiclassical measure. Then,

(2) hKS(µ, g) ≥ 1

2

∫

S∗M

Uu(ρ)dµ(ρ),

where hKS is the Kolmogorv-Sinai entropy and Uu(ρ) is the unstable Riccati solution at ρ.

We recall that the lower bound can be expressed in term of the Lyapunov exponent [20] as

(3) hKS(µ, g) ≥ 1

2

∫

S∗M

χ+(ρ)dµ(ρ),

where χ+(ρ) is the upper Lyapunov exponent at the point ρ [7]. In order to comment this result, let
us recall a few facts about the Kolmogorov-Sinai (also called metric) entropy. It is a nonnegative
number associated to a flow g and a g-invariant measure µ, that estimates the complexity of µ
with respect to this flow. For example, a measure carried by a closed geodesic will have entropy
zero. In particular, this theorem shows that the support of a semiclassical measure cannot be
reduced to a closed unstable geodesic. Moreover, this lower bound seems to be the optimal result
we can prove using this method and only the dynamical properties of M . In fact, in the case
of the toy models some of the counterexamples that have been constructed (see [18], [23]) have

entropy equal to
1

2

∫

S∗M

χ+(ρ)dµ(ρ). We underline that our inequality is also coherent with the

’scars’ constructed by Donnelly [14]. In fact, his ’scars’ are supported on closed stable geodesics
(included in flat parts of a surface of nonpositive curvature) and have zero entropy. Recall also
that a standard theorem of dynamical systems due to Ruelle [28] asserts that, for any invariant
measure µ under the geodesic flow:

(4) hKS(µ, g) ≤
∫

S∗M

χ+(ρ)dµ(ρ)

with equality if and only if µ is the Liouville measure in the case of an Anosov flow [24]. We can
make a last observation on the assumptions of the theorem: it is not known whether the geodesic
flow is ergodic or not for the Liouville measure on a surface of nonpositive curvature. The best
result in this direction is that there exists an open invariant subset U of positive Liouville measure
such that the restriction g|U is ergodic with respect to Liouville [7].
The lower bound of theorem 1.2 was conjectured to hold for any semiclassical measure for an
Anosov manifold in any dimension by Anantharaman [2]. In fact, Anantharaman proved that
in any dimension, the entropy of a semiclassical measure should be bounded from below by a
(not really explicit) positive constant [2]. Then, Anantharaman and Nonnenmacher showed that
inequality (2) holds in the case of the Walsh Baker’s map [4] and in the case of constant negative
curvature in all dimension [5]. In the general case of an Anosov flow on a manifold of dimension
d, Anantharaman, Koch and Nonnenmacher [3] proved a lower bound using the same method:

hKS(µ, g) ≥
∫

S∗M

d−1
∑

j=1

χ+
j (ρ)dµ(ρ) − (d− 1)λmax

2
.

where λmax := limt→±∞
1
t log supρ∈S∗M |dρgt| is the maximal expansion rate of the geodesic flow

and the χ+
j ’s are the positive Lyapunov exponents [7]. In particular if λmax is very large, the

previous inequality can be trivial. However, they conjectured inequality (3) should hold in the
general case of manifolds without conjugate points by replacing χ+ by the sum of nonnegative
Lyapunov exponents [5], [3]. Our main result answers this conjecture in the particular case of
surfaces of nonpositive curvature (which are particular surfaces without conjugate points) and
our proof is really specific to this case. In fact, we use the continuity of Uu(ρ) (which is false
in the general case of surfaces without conjugate points [6]) and a strong result by Green [21]
and Eberlein [15] about uniform divergence of Jacobi fields which only holds in dimension 2. We
note that it could also be an interesting question to look for an extension of this result to ergodic
billiards for instance.
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In this paper, we also show that the main inequality holds for Anosov surfaces as conjectured by
Anantharaman [2]:

Theorem 1.3. Let M be a C∞ Riemannian surface and µ a semiclassical measure. Suppose the
geodesic flow (gt)t has the Anosov property. Then,

(5) hKS(µ, g) ≥ 1

2

∣

∣

∣

∣

∫

S∗M

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

,

where Ju(ρ) is the unstable Jacobian at the point ρ.

The lower bound can also be written in terms of the upper Lyapunov exponent [7]. In this
theorem, the hypothesis are slightly different. However the procedure of the proof is the same as
for theorem 1.2 but simpler in a way. So we will first prove theorem 1.3 and the modifications
that need to be made to prove theorem 1.2 will be given in appendix A of the paper. Now let us
discuss briefly the main ideas of our proof of theorem 1.3.

1.2. Heuristic of the proof. The procedure developed in [3] uses a result known as the entropic
uncertainty principle [26]. To use this principle in the semiclassical limit, we need to understand
the precise link between the classical evolution and the quantum one for large times. Typically,
we have to understand Egorov theorem (1) for large range of times of order t ∼ | log ~| (i.e.
have a uniform remainder term of (1) for a large range of times). For a general symbol a in
C∞
c (T ∗M), we can only expect to have a uniform Egorov property for times t in the range of times

[− 1
2 | log ~|/λmax,

1
2 | log ~|/λmax] [9]. However, if we only consider this range of times, we do not

take into account that the unstable jacobian can be very different between two points of S∗M .
In this paper, we would like to say that the range of times for which the Egorov property holds
depends also on the support of the symbol a(x, ξ) we consider. For particular families of symbol
of small support (that depends on ~), we show that we have a ’local’ Egorov theorem with an
allowed range of times that depends on our symbol (see (66) for example). To make this heuristic
idea work, we first try to reparametrize the flow [12] in order to have a uniform expansion rate on
the manifold. We define gτ (ρ) := gt(ρ) where

(6) τ := −
∫ t

0

log Ju(gsρ)ds.

This new flow g has the same trajectories as g. However, the ’velocity of motion’ along the
trajectory at ρ is | log Ju(ρ)|-greater for g than for g. We underline here that the unstable direction
is of dimension 1 (asM is a surface) and it is crucial because it implies that log Ju exactly measures
the expansion rate in the unstable direction at each point1. As a consequence, this new flow g has
a uniform expansion rate. Once this reparametrization is done, we use the following formula to
recover t knowing τ :

(7) tτ (ρ) = inf

{

s > 0 : −
∫ s

0

log Ju(gs
′

ρ)ds′ ≥ τ

}

.

The number tτ (ρ) can be thought of as a stopping time corresponding to ρ. We consider now
τ = 1

2 | log ~|. For a given symbol a(x, ξ) localized near a point ρ, t 1
2 | log ~|(ρ) is exactly the range of

times for which we can expect Egorov to hold. This new flow seems in a way more adapted to our
problem. Moreover, we can define a g-invariant measure µ corresponding to µ [12]. The measure

µ is absolutely continuous with respect to µ and verifies dµ
dµ(ρ) = log Ju(ρ)/

∫

S∗M
log Ju(ρ)dµ(ρ).

We can apply the classical result of Abramov:

hKS(µ, g) =

∣

∣

∣

∣

∫

S∗M

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

hKS(µ, g).

1In fact, for the Anosov case, the crucial point is that at each point ρ of S∗M , the expansion rate is the same

in any direction, i.e. dg−1
|Eu(g1ρ)

is of the form Ju(ρ)
1

d−1 vρ where d is the dimension of the manifold M and vρ

is an isometry. The proof of theorem 1.3 can be immediately adapted to Anosov manifolds of higher dimensions
satisfying this isotropic expansion property (for example manifolds of constant negative curvature).
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To prove theorem 1.3, we would have to show that hKS(µ, g) ≥ 1/2. However, the flow g has no
reason to be a Hamiltonian flow to which corresponds a quantum propagator U . As a consequence,
there is no particular reason that this inequality should be a consequence of [5]. In the quantum
case, there is also no obvious reparametrization we can make as in the classical case. However,
we will reparametrize the quantum propagator starting from a discrete reparametrization of the
geodesic flow and by introducing a small parameter of time η. To have an artificial discrete
reparametrization of the geodesic flow, we will introduce a suspension set [12]. Then, in this
setting, we will define discrete analogues of the previous quantities (6) and (7) that will be precised
in the paper. It will allow us to prove a lower bound on the entropy of a certain reparametrized
flow and then using Abramov theorem [1] deduce the expected lower bound on the entropy of a
semiclassical measure.
Finally, we would like to underline that in a recent paper [22], Gutkin also used a version of the
Abramov theorem to prove an analogue of theorem 1.3 in the case of toy models with an unstable
direction of dimension 1.

1.3. Organization of the paper. In section 2, we briefly recall properties we will need about
entropy in the classical and quantum settings. In particular, we recall the version of Abramov
theorem we will need. In section 3, we describe the assumptions we make on the manifold M
and introduce some notations. In section 4, we draw a precise outline of the proof of theorem 1.3
and state some results that we will prove in the following sections. Sections 5 and 6 are devoted
to the detailed proofs of the results we admitted in section 4. In appendix A, we explain which
points of the proof need to be modified in the case of nonpositive curvature (theorem 1.2). Finally,
sections 7 and appendix B are devoted to results of semiclassical analysis that are quite technical
and that we will use at different points of the paper (in particular in section 6).

Acknowledgments. First of all, I am very grateful to my advisor Nalini Anantharaman for her
time and her patience spent to teach me so many things about the subject. I also thank her
for having read carefully preliminary versions of this work and for her support. I would also
like to thank warmly Stéphane Nonnenmacher for enlightening explanations about semiclassical
analysis and more generally for his encouragement. I am grateful to Herbert Koch for helpful and
stimulating suggestions about the application of the entropic uncertainty principle.

2. Classical and quantum entropy

2.1. Kolmogorov-Sinai entropy. Let us recall a few facts about Kolmogorov-Sinai (or metric)
entropy that can be found for example in [32]. Let (X,B, µ) be a measurable probability space
and P := (Pα)α∈I a finite measurable partition of X , i.e. a finite collection of measurable subsets
that forms a partition. Each Pα is called an atom of the partition. Assuming 0 log 0 = 0, one
defines the entropy of the partition as:

(8) H(µ, P ) := −
∑

α∈I

µ(Pα) logµ(Pα) ≥ 0.

Given two measurable partitions P := (Pα)α∈I and Q := (Qβ)β∈K , one says that P is a refinement
of Q if every element of Q can be written as the union of elements of P and it can be shown that
H(µ,Q) ≤ H(µ, P ). Otherwise, one denotes P ∨Q := (Pα ∩Qβ)α∈I,β∈K their join (which is still
a partition) and one has H(µ, P ∨Q) ≤ H(µ, P ) +H(µ,Q) (subadditivity property). Let T be a
measure preserving transformation of X . The n-refined partition ∨n−1

i=0 T
−iP of P with respect to

T is then the partition made of the atoms (Pα0 ∩ · · · ∩ T−(n−1)Pαn−1)α∈{1,··· ,K}n . We define the
entropy with respect to this refined partition:

(9) Hn(µ, T, P ) = −
∑

|α|=n

µ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1) log µ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1).

Using the subadditivity property of entropy, we have for any integers n and m:

(10) Hn+m(µ, T, P ) ≤ Hn(µ, T, P ) +Hm(T n♯µ, T, P ) = Hn(µ, T, P ) +Hm(µ, T, P ).
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For the last equality, it is important to underline that we really use the T -invariance of the measure
µ. A classical argument for subadditive sequences allows us to define the following quantity:

(11) hKS(µ, T, P ) := lim
n→∞

Hn (µ, T, P )

n
.

It is called the Kolmogorov Sinai entropy of (T, µ) with respect to the partition P . The Kol-
mogorov Sinai entropy hKS(µ, T ) of (µ, T ) is then defined as the supremum of hKS(µ, T, P ) over
all partitions P of X . Finally, it can be denoted that this quantity can be infinite (not in our
case thanks to Ruelle inequality (4) for instance). Note also that if, for all index (α0, · · · , αn−1),
µ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1) ≤ Ce−βn with C positive constant, then hKS(µ, T ) ≥ β: the metric
entropy measures the exponential decrease of the atoms of the refined partition.

2.2. Quantum entropy. One can defined a quantum counterpart to the metric entropy. Let H
be an Hilbert space. We call a partition of identity (τα)α∈I a family of operators that satisfies the
following relation:

(12)
∑

α∈I

τ∗ατα = IdH.

Then, one defines the quantum entropy of a normalized vector ψ as:

(13) hτ (ψ) := −
∑

α∈I

‖ταψ‖2 log ‖ταψ‖2.

Finally, one has the following generalization of a theorem from [5] (the proof immediately gener-
alizes to this case), known as the entropic uncertainty principle [26]:

Theorem 2.1. Let Oβ be a family of bounded operators and U a unitary operator of an Hilbert
space (H, ‖.‖). Let δ′ be a positive number. Given τα and πβ two partitions of identity and ψ a
normalized vector in H such that

‖(Id−Oβ)πβψ‖ ≤ δ′.

Suppose both partitions are of cardinal less than N , then:

hτ (Uψ) + hπ(ψ) ≥ −2 log (cO(U) + N δ′) ,

where cO(U) = max
α,β

(

‖ταUπ∗
βOβ‖

)

, with ‖ταUπ∗
βOβ‖ the operator norm in H.

2.3. Entropy of a special flow. In the previous papers of Anantharaman, Koch and Nonnen-
macher (see [3] for example), the main difficulty that was faced to prove main inequality (5) was
that the value of log Ju(ρ) could change a lot depending on the point of the energy layer they
looked at. As was mentioned (see section 1.2), we will try to adapt their proof and take into
account the changes of the value of log Ju(ρ). To do this, we will, in a certain way, reparametrize
the geodesic flow. Before explaining precisely this strategy, let us recall a classical fact of dynam-
ical system for reparametrization of measure preserving transformations known as the Abramov
theorem.
First, let us define a special flow (see [1], [12]). Let (X,B, µ) be a probability space, T an auto-
morphism of X and f a measurable function such that f(x) > a > 0 for all x in X . The function
f is called a roof function. We are interested in the set:

(14) X := {(x, s) : x ∈ X, 0 ≤ s < f (x)}.
X is equipped with the σ-algebra by restriction of the σ-algebra on the cartesian product X ×R.
For A measurable, one defines µ(A) := 1

∫

X
fdµ

∫ ∫

A
dµ(x)ds and µ(X) = 1.

Definition 2.2. The special flow under the automorphism T , constructed by the function f is

the flow (T
t
) that acts on X in the following way, for t ≥ 0:

(15) T
t
(x, s) :=

(

T nx, s+ t−
n−1
∑

k=0

f
(

T kx
)

)

,
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where n is the only integer such that

n−1
∑

k=0

f
(

T kx
)

≤ s+ t <

n
∑

k=0

f
(

T kx
)

.

For t < 0, one puts, if s+ t > 0:

T
t
(x, s) := (x, s+ t) ,

and otherwise,

T
t
(x, s) :=

(

T−nx, s+ t+

−1
∑

k=−n

f
(

T kx
)

)

,

where n is the only integer such that −
−1
∑

k=−n

f
(

T kx
)

≤ s+ t < −
−1
∑

k=−n+1

f
(

T kx
)

.

Remark. A suspension semi-flow can also be defined from an endomorphism.

It can be shown that this special flow preserves the measure µ if T preserves µ [12]. Finally,
we can state Abramov theorem for special flows [1]:

Theorem 2.3. With the previous notations, one has, for all t ∈ R:

(16) hKS

(

T
t
, µ
)

=
|t|

∫

X
fdµ

hKS (T, µ) .

3. Classical setting of the paper

Before starting the main lines of the proof, we want to describe the classical setting for our
surface M and introduce notations that will be useful in the paper. We suppose the geodesic flow
over T ∗M to have the Anosov property for the first part of the paper (we will treat the adaptation
to the nonpositive curvature case in appendix A). This means that for any λ > 0, the geodesic
flow gt is Anosov on the energy layer E(λ) := H−1(λ) ⊂ T ∗M and in particular, the following
decomposition holds for all ρ ∈ E(λ):

TρE(λ) = Eu(ρ) ⊕ Es(ρ) ⊕ RXH(ρ),

where XH is the Hamiltonian vector field associated to H , Eu the unstable space and Es the
stable space [10]. It can be denoted that in the setting of this article, they are all one dimensional
spaces. The unstable Jacobian Ju(ρ) at the point ρ is defined as the Jacobian of the restriction
of g−1 to the unstable subspace Eu(g1ρ):

Ju(ρ) := det
(

dg−1
|Eu(g1ρ)

)

.

For θ small positive number (θ will be fixed all along the paper), one defines Eθ := H−1(]1/2 −
θ, 1/2 + θ[). As the geodesic flow is Anosov, we can suppose there exist 0 < a0 < b0 such that for
all ρ ∈ Eθ, a0 ≤ − log Ju(ρ) ≤ b0.

Remark. In fact, in the general setting of an Anosov flow, we can only suppose that there exists

k0 ∈ N such that det
(

dg−k0
|Eu(gk0ρ)

)

< 1 for all ρ ∈ Eθ. So, to be in the correct setting, we should

take gk0 instead of g in the paper. In fact, as hKS(µ, gk0) = k0hKS(µ, g) and

−
∫

S∗M

log det
(

dg−k0
|Eu(gk0ρ)

)

dµ(ρ) = −k0

∫

S∗M

log det
(

dg−1
|Eu(g1ρ)

)

dµ(ρ),

theorem 1.3 follows for k0 = 1 from the case k0 large. However, in order to avoid too many
notations, we will suppose k0 = 1.

Let ǫ and η be small positive constants lower than the injectivity radius of the manifold. We
choose η small enough to have (2 + b0

a0
)b0η ≤ ǫ

2 (this property will only be used in the proof of

proposition 5.3). We denote f the function − logJu and remark that there exists ε > 0 such that
if d(ρ, ρ′) ≤ ε with ρ, ρ′ ∈ Eθ, then |f(ρ) − f(ρ′)| ≤ a0ǫ.
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Consider a partition M =
⊔K
i=1Oi of diameter smaller than δ. Let (Ωi)

K
i=1 be a finite open cover

of M such that for all 1 ≤ i ≤ K, Oi ( Ωi. For γ ∈ {1, · · · ,K}2, define an open subset of T ∗M :

Uγ := (T ∗Ωγ0 ∩ g−ηT ∗Ωγ1) ∩ Eθ.
We choose the partition (Oi)i and the open cover (Ωi)

K
i=1 of M such that (Uγ)γ∈{1,··· ,K}2 is a

finite open cover of diameter smaller than ε of Eθ. Then, we define the following quantity, called
the discrete Jacobian in time η:

(17) Juη (γ) := sup {Ju(ρ) : ρ ∈ Uγ} ,
if the previous set is non empty, e−Λ otherwise (where Λ is a very large constant). Outline that
Juη (γ) depends on η as Uγ depends on η. The definition can seem quite asymmetric as we consider
the supremum of Ju(ρ) and not of Juη (ρ). However, this choice makes things easier for our analysis.
For simplicity of notations, we also define:

(18) f(γ) := −η log Juη (γ) ≤ ηb0 ≤ ǫ

2
,

where the upper bound follows from the previous hypothesis. Moreover, we have for all ρ ∈ Uγ ,

(19) |f(γ) + η log Ju(ρ)| ≤ a0ηǫ.

Remark. This last inequality shows that even if our choice for Juη (γ) seems quite asymmetric, it
allows to have an explicit bound in η for quantity (19) and it will be quite useful. With a more
symmetric choice, we would not have been able to get an explicit bound in η for (19).

4. Outline of the proof

Let (ψ~k
) be a sequence of orthonormal eigenfunctions of the Laplacian corresponding to the

eigenvalues −~−2
k such that the corresponding sequence of distributions µk on T ∗M converges as k

tends to infinity to the semiclassical measure µ. For simplicity of notations and to fit semiclassical
analysis notations, we will denote ~ tends to 0 the fact that k tends to infinity and ψ~ and ~−2

the corresponding eigenvector and eigenvalue. As was already mentioned, we will for simplicity
concentrate first on the proof of the main inequality (3) in the case of an Anosov flow and we will
give in appendix A the adaptations that need to be made in the case of nonpositive curvature. To
prove this inequality, we will in particular give a symbolic interpretation of a semiclassical measure
and apply the previous results on special flows to this measure.
Let ǫ′ > 4ǫ be a positive number, where ǫ was defined in 3. The link between the two quantities ǫ
and ǫ′ will only be used in section 7 to define ν. In the following of the paper, the Ehrenfest time
nE(~) will be the quantity:

(20) nE(~) := [(1 − ǫ′)| log ~|].
We also consider a smaller non integer time:

(21) TE(~) := (1 − ǫ)nE(~).

4.1. Quantum partitions of identity. In order to find a lower bound on the metric entropy of
the semiclassical measure µ, we would like to apply the entropic uncertainty principle (theorem 2.1)
and see what informations it will give (when ~ tends to 0) on the metric entropy of the semiclassical
measure µ. To do this, we define quantum partitions of identity corresponding to a given partition
of the manifold.

4.1.1. Partitions of identity. In section 3, we considered a partition of small diameter (Oi)i of M .
We also defined (Ωi)i a corresponding finite open cover of small diameter of M . By convolution
of the characteristic functions 1Oi

, we obtain P = (Pi)i=1,..K a smooth partition of unity on M
i.e. for all x ∈M :

K
∑

i=1

P 2
i (x) = 1.
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We assume that for all 1 ≤ i ≤ K, Pi is an element of C∞
c (Ωi). To this classical partition

corresponds a quantum partition of identity of L2(M). In fact, if Pi denotes the multiplication
operator by Pi(x) on L2(M), then one has:

(22)

K
∑

i=1

P ∗
i Pi = IdL2(M).

4.1.2. Refinement of the quantum partition under the Schrödinger flow. Like in the classical setting
of entropy (9), we would like to make a refinement of the quantum partition. To do this refinement,

we use the Schrödinger propagation operator U t = e
ıt~∆

2 . We define A(t) := U−tAU t, where A is
an operator on L2(M). To fit as much as possible with the metric entropy (see definition (9) and
Egorov property (1)), we define the following operators:

(23) τα = Pαk
(kη) · · ·Pα1(η)Pα0

and

(24) πβ = Pβ−k
(−kη) · · ·Pβ−2(−2η)Pβ0Pβ−1(−η),

where α = (α0, · · · , αk) and β = (β−k, · · · , β0) are finite sequences of symbols such that αj ∈ [1,K]
and β−j ∈ [1,K]. We can remark that the definition of πβ is the analogue for negative times of
the definition of τα. The only difference is that we switch the two first terms β0 and β−1. The
reason of this choice will appear later in the application of the quantum uncertainty principle (see
equality (40) in section 5.3). One can see that for fixed k, using the Egorov property (1):

(25) ‖Pαk
(kη) · · ·Pα1(η)Pα0ψ~‖2 → µ(P 2

αk
◦ gkη × · · ·P 2

α1
◦ gη × P 2

α0
) as ~ tends to 0.

This last quantity is the one used to compute hKS(µ, gη) (with the notable difference that the Pj
are here smooth functions instead of characteristic functions: see (9)). As was discussed in the
heuristic of the proof 1.2, we will have to understand for which range of times kη, the Egorov
property can be be applied. In particular, we will study for which range of times, the operator τα
is a pseudodifferential operator of symbol Pαk

◦ gkη × · · ·Pα1 ◦ gη × Pα0 (see (25)). In [5] and [3],
they only considered kη ≤ | log ~|/λmax where λmax := limt→±∞

1
t log supρ∈S∗M |dρgt|. This choice

was not optimal and in the following, we try to define sequences α for which we can say that τα
is a pseudodifferential operator.

4.1.3. Index family adapted to the variation of the unstable Jacobian. Let α = (α0, α1, · · · ) be a
sequence (finite or infinite) of elements of {1, · · · ,K} whose length is larger than 1. We define the
following quantity (see (18)):

f(α) := f(α0, α1).

We also define a natural shift on these sequences (again finite or infinite and larger than 1 in
length):

σ((α0, α1, · · · )) := (α1, · · · ).
In the paper, we will try to use the symbol x for infinite sequences and α for finite ones. For
negative times, we define the analogous functions, for β := (· · · , β−1, β0):

f(β) := f(β−1, β0)

and the backward shift

T (β) := (· · · , β−1).

Let α and β be as previously (finite or infinite). We define:

β.α := (· · · , β−1, β0, α0, α1, · · · ).
The same obviously works for any sequences of the form (· · · , βp−1, βp) and (αq, αq+1, · · · ). Then,
as described in section 5, index families depending on the value of the unstable Jacobian can be
defined as follows:

(26) Iη(~) := Iη(TE(~)) =

{

(α0, · · · , αk) : k ≥ 3,

k−2
∑

i=1

f
(

σiα
)

≤ TE(~) <

k−1
∑

i=1

f
(

σiα
)

}

,
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(27) Kη(~) := Kη(TE(~)) =

{

(β−k, · · · , β0) : k ≥ 3,
k−2
∑

i=1

f
(

T iβ
)

≤ TE(~) <
k−1
∑

i=1

f
(

T iβ
)

}

.

These sets define the maximal sequences for which we can expect to have Egorov property for
the corresponding τα. The sums used to define these sets are in a way a discrete analogue of
the integral in the inversion formula (7) defined in the introduction2. The sums used to define
the allowed sequences are in fact Riemann sums (with small parameter η) corresponding to the
integral (6). We can think of the time |α|η as a stopping time for which property (25) will hold
(for a symbol a corresponding to α).
A good way of thinking of these families of words is by keeping in mind picture 1. On this figure,
we draw the case K = 4. The biggest square has sides of length 1. Each square represents an
element of Iη(~) and each square with sides of length 1/2k represents a sequence of length k + 1
(for k ≥ 0). If we denote C(α) the square that represents α, then we can represent the sequences
α.γ for each γ in {1, · · · , 4} by subdividing the square C(α) in 4 squares of same size. Finally, by
definition of Iη(~), we can remark that if α.γ is represented in the subdivision (for γ in {1, · · · , 4}),
then α.γ′ is represented in the subdivision for each γ′ in {1, · · · , 4}. Families of operators can

C(11) C(12)

C(31) C(421)

Figure 1. Refinement of variable size

be associated to these families of index: (τα)α∈Iη(~) and (πβ)β∈Kη(~). One can show that these
partitions form quantum partitions of identity (see section 5):

Proposition 4.1.
∑

α∈Iη(~)

τ∗ατα = IdL2(M) and
∑

β∈Kη(~)

π∗
βπβ = IdL2(M).

4.2. Symbolic interpretation of semiclassical measures. Now that we have defined these
partitions of variable size, we want to show that they are adapted to compute the entropy of a
certain measure with respect to some reparametrized flow associated to the geodesic flow. To
do this, we start by giving a symbolic interpretation of the quantum partitions. Denote Σ :=
{1, · · · ,K}N and Ci the subset of sequences (xn)n∈N such that x0 = i. Define also:

[α0, · · · , αk] := Cα0 ∩ · · · ∩ σ−kCαk
,

where σ is the shift σ((xn)n∈N) = (xn+1)n∈N (it fits the notations of the previous section). The
set Σ is then endowed with the probability measure (not necessarily σ-invariant):

µΣ
~ ([α0, · · · , αk]) = µΣ

~

(

Cα0 ∩ · · · ∩ σ−kCαk

)

= ‖Pαk
(kη) · · ·Pα0ψ~‖2.

Using the property (12), it is clear that this definition assures the compatibility conditions to
define a probability measure:

∑

αk+1

µΣ
~

([α0, · · · , αk+1]) = µΣ
~

([α0, · · · , αk]) .

2In the higher dimension case mentioned in the footnote of section 1.2, we should take (d− 1)TE(~) (where d is
the dimension of M) instead of TE(~) in the definition of Iη(~) and Kη(~).
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Then, we can define the special flow, in the sense of Abramov (section 2.3), associated to this
probability measure. To do this, the suspension set (14) is defined as:

(28) Σ := {(x, s) : α ∈ Σ, 0 ≤ s < f (x)}.
Recall that the roof function f is defined as f(x) := f(x0, x1). We define a probability measure

µΣ
~

on Σ:

(29) µΣ
~

= µΣ
~
× dt
∑

α∈{1,··· ,K}2 f(α)‖Pαψ~‖2
= µΣ

~
× dt
∑

α∈{1,··· ,K}2 f(α)µΣ
~

([α])
.

The semi-flow (15) associated to σ is for time s:

(30) σs (x, t) :=



σn−1(x), s+ t−
n−2
∑

j=0

f
(

σjx
)



 ,

where n is the only integer such that
n−2
∑

j=0

f
(

σjx
)

≤ s+ t <
n−1
∑

j=0

f
(

σjx
)

. In the following, we will

only consider time 1 of the flow and its iterates and we will denote σ := σ1.

Remark. It can be underlined that the same procedure holds for the partition (πβ). The only
differences are that we have to consider Σ− := {1, · · · ,K}−N, T ((xn)n≤0) = (xn−1)n≤0 and that
the corresponding measure is, for k ≥ 1:

µ
Σ−

~
([β−k, · · · , β0]) = µ

Σ−

~

(

T−kCβ−k
∩ · · · ∩ Cβ0

)

= ‖Pβ−k
(−kη) · · ·Pβ0Pβ−1(−η)ψ~‖2.

For k = 0, one should take the only possibility to assure the compatibility condition:

µ
Σ−

~
([β0]) =

K
∑

j=1

µ
Σ−

~
([β−1, β0]) .

The definition is quite different from the positive case but in the semiclassical limit, it will not
change anything as Pβ0 and Pβ−1(−η) commute.

Now let α be an element of Iη(~). Define:

(31) C̃α := Cα0 ∩ · · · ∩ σ−kCαk
.

This new family of subsets forms a partition of Σ. Then, a partition C~ of Σ can be defined
starting from the partition C̃ and [0, f(α)[. An atom of this suspension partition is an element

of the form Cα = C̃α × [0, f(α)[. For Σ
−

(the suspension set corresponding to Σ−), we define an

analogous partition C−

~ . Finally, with this interpretation, equality (48) from section 5.3 (which is
just a careful adaptation of the uncertainty principle) can be read as follows:

(32) H
(

µΣ
~ , C~

)

+H
(

µ
Σ−

~
, C−

~

)

≥ (1 − ǫ′)(1 − ǫ)| log ~| + C,

where H is defined by (8). To fit as much as possible with the setting of the classical metric
entropy, we expect C~ to be a refined partition under the special flow. It is not exactly the case
but we can prove the following lemma (see proposition 5.3):

Lemma 4.2. There exists an explicit partition C of Σ, independent of ~ such that ∨nE(~)−1
i=0 σ−iC

is a refinement of the partition C~. Moreover, let n be a fixed positive integer. Then, an atom of
the refined partition ∨n−1

i=0 σ
−iC is of the form C̃α × B(α), where α = (α0, · · · , αk) is a k + 1-uple

such that (α0, · · · , αk) verifies n(1 − ǫ) ≤
k−1
∑

j=0

f
(

σjα
)

≤ n(1 + ǫ) and B(α) is a subinterval of

[0, f(α)[.
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Then applying basic properties of H (see section 2.1), one finds that:

(33) H
(

µΣ
~
, C~

)

≤ H
(

µΣ
~
,∨nE(~)−1

i=0 σ−iC
)

= HnE(~)

(

µΣ
~
, σ, C

)

.

To conclude this symbolic interpretation of quantum entropy, with natural notations, inequal-
ity (32) together with (33) give the following proposition:

Proposition 4.3. With the previous notations, one has the following inequality:

(34)
1

nE(~)

(

HnE(~)

(

µΣ
~
, σ, C

)

+HnE(~)

(

µ
Σ−

~
, T , C−

))

≥ (1 − ǫ) +
C

nE(~)
.

The quantum entropic uncertainty principle gives an information on the entropy of a special
flow. Now, we would like to let ~ tends to 0 to find a lower on the metric entropy of a limit measure
(that we will precise in section 4.3) with respect to σ. However, both nE(~) and µ~ depend on ~

and we have to be careful before passing to the semiclassical limit.

4.3. Subadditivity of the entropy. The Egorov property (1) implies that µΣ
~

tends to a measure
µΣ on Σ (as ~ tends to 0) defined as follows:

(35) µΣ ([α0, · · · , αk]) = µ
(

P 2
αk

◦ gkη × · · · × P 2
α0

)

.

Using the property of partition, this defines a probability measure on Σ. To this probability

measure corresponds a probability measure µΣ on the suspension set Σ. It is an immediate

corollary that µΣ is the limit of the probability measure µΣ
~
. Moreover, using Egorov one more

time, one can check that the measure µΣ is σ-invariant and using results about special flows [12],

µΣ is σ-invariant. The same works for µ
Σ−

~
and µ

Σ−

~
.

Remark. In the following, we will often prove properties in the case of Σ. The proofs are the same
in the case of Σ−.

As nE(~) and µ~ depend both on ~, we cannot let ~ tend to 0 if we want to keep an information
about the metric entropy. In fact, the left quantity in (34) does not tend a priori to the Kolmogorov-
Sinai entropy. We want to proceed as in the classical case (see (10)) and prove a subadditivity
property. This will allow to replace nE(~) by a fixed n0 (see below) in the left hand side of (34).
This is done with the following theorem that will be proved in section 6:

Theorem 4.4. Let C be the partition of lemma (4.2). There exists a function R(n0, ~) on N×(0, 1]
such that

∀n0 ∈ N, lim
~→0

|R(n0, ~)| = 0.

Moreover, for any ~ ∈ (0, 1] and any n0,m ∈ N such that n0 +m ≤ nE(~), one has:

Hn0+m

(

µΣ
~ , σ, C

)

≤ Hn0

(

µΣ
~ , σ, C

)

+Hm

(

µΣ
~ , σ, C

)

+R(n0, ~).

The same holds for Σ−.

This theorem says that the entropy satisfies almost the subadditivity property (see (10)) for
time lower than the Ehrenfest time. It is an analogue of a theorem from [5] (proposition 2.8)
except that we have taken into account the fact that the unstable jacobian varies on the surface
and that we can make our semiclassical analysis for larger time than in [5]. The proof of this
theorem is the object of section 6 and 7 (where semiclassical analysis for ’local Ehrenfest time’ is
performed). Then, one can apply the standard argument for subadditive sequences. Let n0 be a
fixed integer in N and write the euclidian division nE(~) = qn0 + r with r < n0. The previous
theorem then implies:

HnE(~)

(

µΣ
~
, σ, C

)

nE(~)
≤
Hn0

(

µΣ
~
, σ, C

)

n0
+
Hr

(

µΣ
~
, σ, C

)

nE(~)
+
R(n0, ~)

n0
.

As r stays uniformly bounded in n0, the inequality (34) becomes:

(36)
1

n0

(

Hn0

(

µΣ
~
, σ, C

)

+Hn0

(

µ
Σ−

~
, σ−, C−

))

≥ (1 − ǫ) +
C(n0)

nE(~)
− 2

R(n0, ~)

n0
.
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4.4. Application of the Abramov theorem. Using inequality (36), we can conclude using
Abramov theorem (16). Making ~ tend to 0, one finds that (as was mentioned at the beginning
of 4.3):

1

n0

(

Hn0

(

µΣ, σ, C
)

+Hn0

(

µΣ− , T , C−

))

≥ (1 − ǫ).

The Abramov theorem holds for automorphisms so one can look at the natural extension Σ′ =
{1, · · · ,K}Z of Σ and the same inequality holds:

(37)
1

n0

(

Hn0

(

µΣ′
, σ′, C′

)

+Hn0

(

µΣ′
, σ′−1

, C′
−

))

≥ (1 − ǫ),

where σ′ is the two-sided shift on Σ′ and C′ is the lift of the partition C to the natural extension.
In view of section 5, we have an exact expression for C in terms of the functions (Pi)i (see propo-

sition 5.3). The measure µΣ′
is σ′-invariant as µΣ′

is σ′-invariant [12]. In the previous inequality,
there is still one notable difference with the metric entropy: we consider smooth partitions of iden-
tity (Pi)i (as it was necessary to make the semiclassical analysis). To return to the classical case,
the procedure of [5] can be adapted using the exact form of the partition C (see proposition 5.3).
Recall that each Pi is an element of C∞

c (Ωi) and that we considered a partition M =
⊔

iOi of
small diameter δ, where each Oi ( Ωi (see section 3). We suppose it is small enough so that
µ does not charge the boundary of the Oi. By convolution of the 1Oi

, we obtained the smooth
partition (Pi)i of identity of diameter smaller than 2δ. The previous inequality does not depend
on the derivatives of the Pi. Regarding also the form of the partition C (see lemma 4.2), we can
replace the smooth functions Pi by the characteristic functions 1Oi

in inequality (37). One can
let n0 tend to infinity and find:

2hKS

(

µΣ′

, σ′
)

≥ hKS

(

µΣ′

, σ′, C′
)

+ hKS

(

µΣ′

, σ′−1
, C′

−

)

≥ (1 − ǫ).

We used the fact that hKS(µ, T−1) = hKS(µ, T ) for the metric entropy of a dynamical system
(X,µ, T ). Then, using Abramov theorem (16), the previous inequality implies:

ηhKS(µ, g) = h(µ, gη) = hKS

(

µΣ′

, σ′
)

≥ −1

2
(1 − ǫ)

∑

γ∈{1,··· ,K}2

η log Ju (γ)µΣ′

([γ]) .

After division by η and letting the diameter of the partition and ǫ tend to 0, one gets:

hKS(µ, g) ≥ 1

2

∣

∣

∣

∣

∫

S∗M

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

.�

5. Partitions of variable size

In this section, we define precisely the index families Iη and Kη depending on the unstable
jacobian used in section 4. These families are used to construct quantum partitions of identity
and partitions adapted to the special flow (see section 5.2). In the last section, we apply the
uncertainty principle to eigenfunctions of the Laplacian for these quantum partitions of variable
size.

5.1. Stopping time. Let t be a real positive number that will be greater than 2b0η. Define index
families as follows (see section 4.1.3 for definitions of f , σ, f and T ):

Iη(t) :=

{

α = (α0, · · · , αk) : k ≥ 3,
k−2
∑

i=1

f
(

σiα
)

≤ t <
k−1
∑

i=1

f
(

σiα
)

}

,

Kη(t) :=

{

β = (β−k, · · · , β0) : k ≥ 3,

k−2
∑

i=1

f
(

T iβ
)

≤ t <

k−1
∑

i=1

f
(

T iβ
)

}

.

Let x be an element of {1, · · · ,K}N. We denote kt(x) the unique integer k such that

k−2
∑

i=1

f
(

σix
)

≤ t <

k−1
∑

i=1

f
(

σix
)

.
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In the probability language, kt is a stopping time in the sense that the property {kt(x) ≤ k}
depends only on the k + 1 first letters of x. For a finite word α = (α0, · · · , αk), we say that
k = kt(α) if α satisfies the previous inequality. With these notations, Iη(t) := {α : |α| = kt(α)+1}.
The same holds for Kη(t).

Remark. This stopping time kt(α) for t ∼ nE(~)
2 will be the time for which we will later try to

make the Egorov property work. Precisely, we will prove an Egorov property for some symbols
corresponding to the sequence α (see (66) for example).

5.2. Partitions associated.

5.2.1. Partitions of identity. Let α = (α0, · · · , αk) be a finite sequence. Recall that we denoted
τα := Pαk

(kη) · · ·Pα0 , where A(s) := U−sAUs. In [5] and [3], they used quantum partitions of
identity by considering (τα)|α|=k. In our paper, we consider a slightly different partition that is
more adapted to the variations of the unstable jacobian:

Lemma 5.1. Let t be in [2b0η,+∞[. The family (τα)α∈Iη(t) is a partition of identity:

∑

α∈Iη(t)

τ∗ατα = IdL2(M).

Proof. We define for each 1 ≤ l ≤ N (where N + 1 is the size of the longest word of Iη(t)):

Iηl (t) := {α = (α0, · · · , αl) : ∃γ = (γl+1, · · · , γk), N ≥ k > l s.t. α.γ ∈ Iη(t)} .

For l = N , this set is empty. We want to to show that for each 2 ≤ l ≤ N , we have:

(38)
∑

α∈Iη(t),|α|=l+1

τ∗ατα +
∑

α∈Iη

l
(t)

τ∗ατα =
∑

α∈Iη

l−1(t)

τ∗ατα.

To prove this equality we use the fact that
∑K

γ=1 Pγ(l)
∗Pγ(l) = IdL2(M) to write:

∑

α∈Iη

l−1(t)

τ∗ατα =

K
∑

γ=1

∑

α∈Iη

l−1(t)

τ∗α.γτα.γ .

We split then this sum in two parts to find equality (38). To conclude the proof, we write:

∑

α∈Iη(t)

τ∗ατα =

N
∑

k=2

∑

α∈Iη(t),|α|=k+1

τ∗ατα

As t > 2b0η ≥ maxγ f(γ), the set Iη1 (t) is equal to {1, · · · ,K}2. By induction from N to 1 using
equality (38) at each step, we find then:

∑

α∈Iη(t)

τ∗ατα = IdL2(M).

�

Remark. A step of the induction can be easily understood by looking at figure 2 where each square
represents an index over which the sum is made (as it was explained for figure 1).

Following the same procedure, we denote πβ = Pβ−k
(−kη) · · ·Pβ0Pβ−1(−η) for β in Kη(t).

These operators follow the relation:
∑

β∈K

π∗
βπβ = IdL2(M). As was mentioned in section 4.1.2, be-

cause of a technical reason that will appear in the application of the entropic uncertainty principle
(see (40)), the two definitions are slightly different.
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(a) (b)

Figure 2. A step of the induction

5.2.2. Partitions of {1, · · · ,K}N associated. In this section, we would like to consider some parti-
tions of Σ := {1, · · · ,K}N and of Σ (see (28)) associated to the family Iη(1). Recall that:

Iη(1) :=

{

α = (α0, · · · , αk) : k ≥ 3,

k−2
∑

i=1

f
(

σiα
)

≤ 1 <

k−1
∑

i=1

f
(

σiα
)

}

.

For α ∈ Iη(1), it can be easily remarked that

k−1
∑

j=0

f
(

σjα
)

> 1. It means that there exists a unique

integer k′ ≤ k such that:
k′−2
∑

j=0

f
(

σjα
)

≤ 1 <

k′−1
∑

j=0

f
(

σjα
)

.

In the following, k and k′ will be often denoted k(α) = k1(α) and k′(α) to remember the depen-
dence in α. The following lemma can be easily shown:

Lemma 5.2. Let α ∈ Iη(1). One has |k(α) − k′(α)| ≤ b0
a0

+ 1.

Proof. Suppose k′ + 1 < k (otherwise it is trivial). Write:

k−2
∑

j=1

f
(

σjα
)

−
k′−1
∑

j=0

f
(

σjα
)

≤ 1 − 1 implies

k−2
∑

j=k′

f
(

σjα
)

≤ f (α) .

And finally, one finds (k − 2 − k′ + 1)a0η ≤ b0η. �

Let α be an element of Iη(1). We make a partition of the interval [0, f(α)[ under a form that
will be useful (as it is adapted to the dynamics of the special flow). Motivated by the definition
of a special flow, let us divide it as follows for k = k(α) and k′ = k′(α):

Ik′−2(α) = [0,

k′−1
∑

j=0

f
(

σjα
)

− 1[, · · · Ip−2(α) = [

p−2
∑

j=0

f
(

σjα
)

− 1,

p−1
∑

j=0

f
(

σjα
)

− 1[, · · ·

Ik−2(α) = [

k−2
∑

j=0

f
(

σjα
)

− 1, f (α) [,

where k′(α) ≤ p ≤ k(α). If k(α) = k′(α), one puts Ik′−2(α) = Ik−2(α) = [0, f(α)[.

A partition C̃ of Σ can be defined. It is composed of the following atoms:

C̃γ := Cγ0 ∩ · · · ∩ σ−kCγk
,

where γ be an element of Iη(1). A partition C of Σ can be constructed starting from the partition

C̃ and the partition of [0, f(γ)[. In fact, let γ be in Iη(1) and k′(γ) ≤ p ≤ k(γ). An atom of the

partition C is defined as Cγ,p = C̃γ × Ip−2(γ). The choice of these specific intervals allows to know
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the exact action of σ on each atom of the partition: for (x, t) ∈ Cγ,p, σ(x, t) = (σp−1(x), 1 + t −
∑p−2

j=0 f(σjx)).

5.2.3. Partitions adapted to the special flow. In this section, lemma 4.2 is shown and proves in
particular that the previous partitions are well adapted to the special flow on Σ. Lemma 4.2 can
be written precisely:

Proposition 5.3. Let n be a positive integer. Let (γi, pi)0≤i≤n−1 be a family of couples such that
γi ∈ Iη(1) and k′(γi) ≤ pi ≤ k(γi). There exists α′ in Iη(n(1 − ǫ)) such that:

Cγ0,p0 ∩ · · · ∩ σ−(n−1)Cγn−1,pn−1 ⊂ C̃α′ × [0, f(γ0)[.

Moreover, an atom of the refined partition ∨n−1
i=0 σ

−iC can be written as follows:

(39) Cγ0,p0 ∩ · · · ∩ σ−(n−1)Cγn−1,pn−1 = C̃α ×B(γ),

where α = (α0, · · · , αk) is a k + 1-uple and B(γ) a subinterval of [0, f(γ0)[ (possibly empty).

Finally, (α0, · · · , αk) satisfies

k−1
∑

j=0

f
(

σjα
)

≤ n(1 + ǫ).

Before entering the proof, a simple reformulation of the first part of the proposition is that

∨n−1
i=0 σ

−iC is a refinement of the partition
(

C̃α′ × [0, f(α′)[
)

α′∈Iη(n(1−ǫ))
.

Proof. We begin by proving the second part of the proposition. First suppose the considered atom
is a non empty atom of ∨n−1

i=0 σ
−iC (otherwise the result is trivial by taking B(γ) empty).

Let (x, t) be an element of Cγ0,p0 ∩ · · · ∩ σ−(n−1)Cγn−1,pn−1 . We denote kj = k(γj). The sequence

x is of the form (γ0
0 , · · · , γk00 , x′) and t belongs to Ip0−2(γ0). We recall that for (x, t) ∈ Cγ0,p0 :

σ(x, t) =



σp0−1(x), 1 + t−
p0−2
∑

j=0

f
(

σjx
)



 .

Necessarily, one has γ1 = (γp0−1
0 , · · · , γk00 , γk0−p0+2

1 , · · · , γk11 ). Proceeding by induction, one finds

that x = (γ0
0 , · · · , γk00 , γk0−p0+2

1 , · · · , γkn−1

n−1 , x”). Define then α = (γ0
0 , · · · , γk00 , γk0−p0+2

1 , · · · , γkn−1

n−1 )
and:

B(γ) :=
{

t ∈ [0, f(γ0)[: ∃x st (x, t) ∈ Cγ0,p0 ∩ · · · ∩ σ−(n−1)Cγn−1,pn−1

}

.

The first inclusion Cγ0,p0 ∩ · · · ∩ σ−(n−1)Cγn−1,pn−1 ⊂ C̃α ×B(γ) is clear.

Now we will prove the converse inclusion. Consider (x, t) an element of Cγ0,p0∩· · ·σ−(n−1)Cγn−1,pn−1 .

The only thing to prove is that (X, t) = ((γ0
0 , · · · , γk00 , γk0−p0+2

1 , · · · , γkn−1

n−1 , x
′), t) is still an ele-

ment of Cγ0,p0 ∩ · · ·σ−(n−1)Cγn−1,pn−1 , for every x′ in {1, · · · ,K}N. We proceed by induction and

suppose (X, t) belongs to Cγ0,p0 ∩ · · ·σ−(j−1)Cγj−1,pj−1 for some j < n. We have to verify that

σj(X, t) belongs to Cγj ,pj
. As (X, t) belongs to Cγ0,p0 ∩ · · ·σ−(j−1)Cγj−1,pj−1 , we have:

σj(X, t) =



σp0+···+pj−1−j(X), j + t−
p0+···+pj−1−j−1

∑

i=0

f(σiX)



 .

It has already been mentioned that for all i, (γ0
i , · · · , γki−pi+1

i ) = (γ
pi−1−1
i−1 , · · · , γki

i−1) (as the

considered atom is not empty). It follows that σp0+···+pj−1−j(X) belongs to C̃γj
. We know that

σj(x, t) is an element of Cγj,pj
and as a consequence:

j + t−
p0+···+pj−1−j−1

∑

i=0

f(σiX) = j + t−
p0+···+pj−1−j−1

∑

i=0

f(σix) ∈ Ipj−2(γj).
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By induction, equality (39) is true. For each 0 ≤ j ≤ n− 1, t belongs to B(γ) implies that:

t ∈ Ipj−2(γj) − j +

p0+···+pj−1−j−1
∑

i=0

f(σiα).

The set B(γ) is then defined as the intersection of n subintervals of [0, f(γ0)[ and is in fact a
subinterval of [0, f(γ0)[.

It remains now to prove upper and lower bounds on

k−1
∑

j=0

f
(

σjα
)

. Recall that:

α = (γ0
0 , · · · , γk00 , γk0−p0+2

1 , · · · , γk11 , · · · , γkn−1

n−1 ).

As 0 ≤ f(γ) ≤ ǫ
2 for all γ (finite or infinite subsequence: see inequality (18)), we have then:

k−1
∑

j=0

f
(

σjα
)

≤
n−2
∑

l=0

kl−2
∑

j=0

f
(

σjγl
)

+

kn−1−1
∑

j=0

f
(

σjγn−1

)

≤ n(1 + ǫ).

For the lower bound, the same kind of procedure works with a little more care. For γ0:

k0−1
∑

j=1

f(σjα) =

k0−1
∑

j=1

f(σjγ0) > 1 > 1 − ǫ.

and for 1 ≤ l ≤ n− 1, one has using lemma 5.2:

kl−1
∑

j=kl−1−pl−1+1

f(σjγl) > 1 − (kl−1 − pl−1 + 1)b0η > 1 − (2 +
b0
a0

)b0η > 1 − ǫ,

where the relations between ǫ, η, a0 and b0 are defined in section 3. A lower bound on

k−1
∑

j=1

f(σjα) is

n(1− ǫ). Considering a word α′ starting like α but of smaller size, the first part of the proposition
is proved as:

Iη(n(1 − ǫ)) :=







(α′
0, · · · , α′

k) : k ≥ 2,

k−2
∑

j=1

f
(

σjα′
)

≤ n(1 − ǫ) <

k−1
∑

j=1

f
(

σjα′
)







.

�

Remark. As a final comment on this section, we underline again that all the proofs have been
written in the case of {1, · · · ,K}N.

5.3. Uncertainty principle for eigenfunctions of the Laplacian. In the previous section 5.2,
we have seen that the partitions of variable size are well adapted to the reparametrized flow (used
in the Abramov theorem). In section 4, we used also the fact that we have a lower bound (32) on

the entropy of µΣ
~

with respect to the suspension application σ. The goal of this last section is
to prove this lower bound (precisely proposition 5.7). To do this, we use the entropic uncertainty
principle (theorem 2.1).

5.3.1. Energy cutoff. Before applying the uncertainty principle, we proceed to sharp energy cutoffs
so as to get precise lower bounds on the quantum entropy (as it was done in [2], [5] and [3]). These
cutoffs are made in our microlocal analysis in order to get as good exponential decrease as possible
of the norm of the refined quantum partition. This cutoff in energy is possible because even if the
distributions µ~ are defined on T ∗M , they concentrate on the energy layer S∗M . The following
energy localization is made in a way to compactify the phase space and in order to preserve the
semiclassical measure.
Let δ be a positive number less than 1 and χδ(t) in C∞(R, [0, 1]). Moreover, χδ(t) = 1 for |t| ≤ e−δ/2
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and χδ(t) = 0 for |t| ≥ 1. As in [5], the sharp ~-dependent cutoffs are then defined in the following
way:

∀~ ∈ (0, 1), ∀n ∈ N, ∀ρ ∈ T ∗M, χ(n)(ρ, ~) := χδ(e
−nδ~−1+δ(H(ρ) − 1/2)).

For n fixed, the cutoff χ(n) is localized in an energy interval of length 2enδ~1−δ centered around
the energy layer E . In this paper, indices n will satisfy 2enδ~1−δ << 1. It implies that the widest
cutoff is supported in an energy interval of microscopic length and that n ≤ Kδ| log ~|, where
Kδ ≤ δ−1. Using then a non standard pseudodifferential calculus (see [5] for a brief reminder of
the procedure from [31]), one can quantize these cutoffs into pseudodifferential operators. We will
denote Op(χ(n)) the quantization of χ(n). The main properties of this quantization are recalled
in section B.2. In particular, the quantization of these cutoffs preserves the eigenfunctions of the
Laplacian:

‖ψ~ − Op(χ(n))ψ~‖ = O(~∞)‖ψ~‖.

5.3.2. Applying the entropic uncertainty principle. To get bound on the entropy of the suspen-
sion measure, the entropic uncertainty principle should not be applied to the family of operators
(τα)α∈Iη(~) directly but it will be applied several times to get terms of the form cα‖ταψ~‖2 (see (32))

instead of one of the form ‖ταψ~‖2 in the formula of the quantum entropy (13). We remind that

the cα correspond to the Lebesgues part of the suspension measure µΣ
~
. They are defined by

cα =
f(α)

∑

γ∈{1,··· ,K}2 f(γ)µΣ
~
([γ])

.

The previous goal can be achieved after defining new families of quantum partitions.
Let γ = (γ0, γ1) be an element of {1, · · · ,K}2. Denote then:

I~(γ) := {(α′) : γ.α′ ∈ Iη(~)} ,

K~(γ) := {(β′) : β′.γ ∈ Kη(~)} .
The following partitions of identity can be associated to them, for α′ ∈ I~(γ) and β′ ∈ K~(γ):

τ̃α′ = Pα′
n
(nη) · · ·Pα′

2
(2η),

π̃β′ = Pβ′
−n

(−nη) · · ·Pβ′
−2

(−2η).

For analogous reasons as the case of Iη(~), the families (τ̃α′ )α′∈I~(γ) and (π̃β′)β′∈I~(γ) form quan-

tum partitions of identity for every γ = (γ0, γ1) ∈ {1, · · · ,K}2.
Given these new quantum partitions of identity, the entropic principle should be applied for given
initial conditions in times 0 and 1. Let ‖ψ~‖ = 1 be a fixed element of the sequence of eigenfunc-
tions of the Laplacian defined earlier, associated to the eigenvalue 1

~2 .

Let γ = (γ0, γ1) be an element of {1, · · · ,K}2. Define:

Pγ := Pγ1Pγ0(−η).
We underline that for α′ ∈ I~(γ) and β′ ∈ K~(γ):

(40) τ̃α′U−ηPγ = τγ.α′U−η and π̃β′Pγ = πβ′.γ ,

where γ.α′ ∈ Iη(~) and β′.γ ∈ Kη(~) by definition. In equality (40) appears the fact that the
definitions of τ and π are slightly different (see (23) and (24)). It is due to the fact that we want
to compose τ̃ and π̃ with the same operator Pγ . Suppose that ‖Pγψ~‖ is not equal to 0 (otherwise
the obtained result is trivial). We apply the quantum uncertainty principle (2.1) to the partitions
of identity: (τ̃α′)α′∈I~(γ) and (π̃β′)β′∈K~(γ). These two partitions are of cardinality N ≃ ~−K0

where K0 is some fixed positive number (depending on the cardinality of the partition K, on a0,

on b0 and η). We choose Op(χ(k′)) for the family of bounded bounded operators Oβ′ (where k′

is the length of β′) and δ′ = ‖Pγψ~‖−1~L (see corollary B.2) such that ~L−K0 << h1/2(1−ǫ′)(1−ǫ).

The isometry chosen is U−η and the normalized vector is ψ̃~ :=
Pγψ~

‖Pγψ~‖
. Applying the entropic

uncertainty principle (2.1), one gets:
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Corollary 5.4.

hτ̃ (U
−ηψ̃~) + hπ̃(ψ̃~) ≥ −2 log

(

cγχ(U
−η) + ~L−K0‖Pγψ~‖−1

)

,

where cγχ(U−η) = max
α′∈I~(γ),β′∈K~(γ)

(

‖τ̃α′U−ηπ̃∗
β′Op(χ(k′))‖

)

.

First, remark that the quantity cγχ(U−η) can be easily replaced by

(41) cχ(U−η) := max
γ∈{1,··· ,K}2

max
α∈I~(γ),β∈K~(γ)

(

‖τ̃αU−ηπ̃∗
βOp(χ(k′))‖

)

,

which is independent of γ. Then, it can be noted that the quantity hτ̃ (U
−ηψ̃~) can be written:

hτ̃ (U
−ηψ̃~) = −

∑

α′∈I~(γ)

‖τ̃α′U−ηψ̃~‖2 log ‖τ̃α′U−ηPγψ~‖2 +
∑

α′∈I~(γ)

‖τ̃α′U−ηψ̃~‖2 log ‖Pγψ~‖2.

Using the fact that ψ~ is an eigenvector of Uη and that (τ̃α′)α′∈I~(γ) is a partition of identity, one
has:

hτ̃ (U
−ηψ̃~) = − 1

‖Pγψ~‖2

∑

α′∈I~(γ)

‖τγ.α′ψ~‖2 log ‖τγ.α′ψ~‖2 + log ‖Pγψ~‖2.

The same holds for hπ̃(ψ̃~) (using here equality (40)):

hπ̃(ψ̃~) = − 1

‖Pγψ~‖2

∑

β′∈K~(γ)

‖πβ′.γψ~‖2 log ‖πβ′.γψ~‖2 + log ‖Pγψ~‖2.

Then, the quantity

(42) −
∑

α′∈I~(γ)

‖τγ.α′ψ~‖2 log ‖τγ.α′ψ~‖2 −
∑

β′∈K~(γ)

‖πβ′.γψ~‖2 log ‖πβ′.γψ~‖2

is bounded from below by:

(43) −2‖Pγψ~‖2 log
(

cχ(U
−η)‖Pγψ~‖ + ~L−K0

)

≥ −2‖Pγψ~‖2 log
(

cχ(U−η) + ~L−K0
)

as ‖Pγψ~‖ ≤ 1. As was already mentioned, this lower bound is trivial in the case where ‖Pγψ~‖
is equal to 0. Using the fact that:

(44) cγ =
f(γ)

∑

γ′∈{1,··· ,K}2 f(γ′)‖Pγ′ψ~‖2
,

one easily checks that
∑

γ∈{1,··· ,K}2

cγ‖Pγψ~‖2 = 1. If we multiply (42) and (43) by cγ and make

the sum over all γ in {1, · · · ,K}2, we find:

−
∑

α∈Iη(~)

cα‖ταψ~‖2 log ‖ταψ~‖2 −
∑

β∈Kη(~)

cβ‖πβψ~‖2 log ‖πβψ~‖2 ≥ −2 log
(

cχ(U−η) + ~L−K0
)

.

Finally, we have the following property:

Corollary 5.5. Define:
(45)

hcτ (ψ~) := −
∑

α∈Iη(~)

cα‖ταψ~‖2 log
(

cα‖ταψ~‖2
)

, hcπ(ψ~) := −
∑

β∈Kη(~)

cβ‖πβψ~‖2 log
(

cβ‖πβψ~‖2
)

where cα = cα0,α1 and cβ = cβ−1,β0 . One has:

(46) hcτ (ψ~) + hcπ(ψ~) ≥ −2 log
(

cχ(U−η) + ~L−K0
)

− log

(

max
γ

cγ

)

.
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To prove this corollary, it has been used that
∑

α∈Iη(~)

cα‖ταψ~‖2 = 1 and
∑

β∈Kη(~)

cβ‖πβψ~‖2 = 1.

Precisely it was used to take into account the introduction of the weight cα in the expression (45)
of hc. This new quantity is slightly different from the one used in the definition of the quantum
entropy (see (13)). In fact, we have introduced some weights cγ in each term of the sum. However,

if we think of the definition of µΣ
~

(which is of the form CµΣ
~
× Leb: see (29)), this quantity is

more adapted to compute the classical entropy of µΣ
~

than the usual quantum entropy.

5.3.3. Exponential decrease of the atoms of the quantum partition. Now that we have lower bound (46),
we give an estimate on the exponential decrease of the atoms of the quantum partition. As
in [2], [5], [3], one has3:

Theorem 5.6. [2] [5] [3] For every K > 0 (K ≤ Cδ), there exists ~K and CK such that uniformly
for all ~ ≤ ~K, for all k + k′ ≤ K| log ~|,

‖Pαk
UηPαk−1

· · ·UηPα0U
3ηPα′

k
Uη · · ·Pα′

0
Op(χ(k′))‖L2(M)

(47) ≤ CK~− 1
2 exp



−1

2





k−1
∑

j=0

f(σjα) +

k′−1
∑

j=0

f(σjα′)







 .

Outline that the crucial role of the sharp energy cutoff appears in particular to prove this
theorem. In fact, without the cutoff, the previous norm operator could have only be bounded by
1 and the entropic uncertainty principle would have been empty. The previous inequality (47)
allows to give an estimate on the quantity (41) (as it allows us to bound cχ(U

−η)). In fact, one
has, for each γ ∈ {1, · · · ,K}2:

‖τ̃αU−ηπ̃∗
βOp(χ(k′))‖ = ‖Pαk

UηPαk−1
· · ·UηPα2U

3ηPβ−2U
η · · ·Pβ−k′ Op(χ(k′))‖,

where (α2, · · · , αk) ∈ I~(γ) and (β−k′ , · · · , β−2) ∈ K~(γ). Using the definition of the sets
Iη(~) (26) and Kη(~) (27), one has k + k′ ≤ 2

a0η
| log ~|. Using theorem (5.6) with K = 2

a0η
,

one has:

‖τ̃αU−ηπ̃∗
βOp(χ(k′))‖ ≤ CK~− 1

2 exp



−1

2





k−1
∑

j=2

f(σjα) +
k′−1
∑

j=2

f(T jβ)







 ,

where CK does not depend on ~. Using again the definition of the sets Iη(~) (26) and Kη(~) (27),
one has:

cχ(U−η) = max
γ∈{1,··· ,K}2

max
α∈I~(γ),β∈K~(γ)

(

‖τ̃αU−ηπ̃∗
βOp(χ(k′))‖

)

≤ C̃K~
1
2 (1−ǫ′)(1−ǫ),

where C̃K does not depend on ~. The main inequality (46) for the quantum entropy can be
rewritten and the discussion of this section can be summarized finally by the following proposition:

Proposition 5.7. Define:

hcτ (ψ~) := −
∑

α∈Iη(~)

cα‖ταψ~‖2 log
(

cα‖ταψ~‖2
)

, hcπ(ψ~) := −
∑

β∈Kη(~)

cβ‖πβψ~‖2 log
(

cβ‖πβψ~‖2
)

where cα = cα0,α1 , cβ = cβ−1,β0 and cγ = f(γ)
∑

γ∈{1,··· ,K}2 f(γ)‖Pγψ~‖2 . One has:

(48) hcτ (ψ~) + hcπ(ψ~) ≥ (1 − ǫ′)(1 − ǫ)| log ~| + C,

where C ∈ R does not depend on ~.

3In the higher dimension case mentioned in the footnote of section 1.2, we should replace ~
− 1

2 (where d is the

dimension of M) by ~
− d−1

2 in inequality (47).
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This lower bound is the one we used in section 4 to get lower bound on the classical entropy. In
fact, this last inequality gives a lower bound on hcτ and hcπ and we already explained in section 4.2

that these quantities are in fact the classical entropy of the measure µΣ
~

for a specific partition
(see (31) and (32)).

6. Subadditivity of the quantum entropy

As was mentioned in section 4 and proved in section 5, the uncertainty principle gives (if we
forget the backward side Σ−):

1

nE(~)
HnE(~)

(

µΣ
~
, σ, C

)

≥ 1

2
(1 − ǫ).

To prove our main theorem 1.3, we need to show that this lower bound holds for a fixed n0 on

the quantity
1

n0
Hn0

(

µΣ
~
, σ, C

)

(as we need to let ~ tend to 0 independently of n to recover the

semiclassical measure µΣ: see section 4.3). To do this we want to reproduce the classical argument
for the existence of the metric entropy (see (10)), i.e. we need to prove a subadditivity property
for logarithmic time:

Theorem 6.1. Let C be the partition of proposition 5.3. There exists a function R(n0, ~) on
N × (0, 1] such that

∀n0 ∈ N, lim
~→0

|R(n0, ~)| = 0.

Moreover, for any ~ ∈ (0, 1], any n0,m ∈ N such that n0 +m ≤ TE(~), one has:

Hn0+m

(

µΣ
~
, σ, C

)

≤ Hn0

(

µΣ
~
, σ, C

)

+Hm

(

µΣ
~
, σ, C

)

+R(n0, ~).

A key point to prove the subadditivity property in the case of the metric entropy is that the
measure is invariant under the dynamics (see (10)). In our case, invariance of the semiclassical
measure under the geodesic flow is a consequence of the Egorov property (1): to prove that
subadditivity almost holds (in the sense of the previous theorem), we will have to prove an Egorov
property for logarithmic times. We will see that with our choice of ’local’ Ehrenfest time, this will
be possible and the previous theorem will then hold. The proof of this theorem is the subject of
this section (and it also uses results from section 7).
Let n0 and m be two positive integers such that que m+ n0 ≤ TE(~). One has:

H
(

∨n+n0−1
i=0 σ−iC, µΣ

~

)

= H
(

∨n−1
i=0 σ

−iC ∨ ∨n0+n−1
i=n σ−iC, µΣ

~

)

.

Using classical properties of the metric entropy, one has (see section 2.1):

Hn+n0

(

σ, µΣ
~
, C
)

≤ Hn

(

σ, µΣ
~
, C
)

+Hn0

(

σ, σn♯µΣ
~
, C
)

.

Using proposition 6.2 and the continuity of the function x log x on [0, 1], there exists a function

R(n0, ~) with the properties of theorem 6.1 such that Hn0

(

σ, σn♯µΣ
~ , C

)

= Hn0

(

σ, µΣ
~ , C

)

+

R(n0, ~) and thus:

(49) Hn+n0

(

σ, µΣ
~
, C
)

≤ Hn

(

σ, µΣ
~
, C
)

+Hn0

(

σ, µΣ
~
, C
)

+R(n0, ~).�

So the crucial point to prove this theorem is to show that the measure of the atoms of the refined
partition is almost invariant under σ (proposition 6.2). In the following of this section, A is defined
as:

A = Cγ0,p0 ∩ · · · ∩ σ−(n0−1)Cγn0−1,pn0−1 .

Remark. In this section, only the case of {1, · · · ,K}N is treated. The proof of the backward case
{1, · · · ,K}−N works in the same way.
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6.1. Pseudo-invariance of the measure of the atoms of the partitions. From this point,
our main goal is to show the pseudo invariance of the atoms of the refined partition. More precisely:

Proposition 6.2. Let m,n0 be two positive integers such that m+n0 ≤ TE(~). Consider an atom

of the refined partition A = Cγ0,p0 ∩ · · · ∩ σ−(n0−1)Cγn0−1,pn0−1 . One has:

µΣ
~

(

σ−mA
)

= µΣ
~

(A) +O(~(1−2ν)/6),

with a uniform constant in n0 and m in the allowed interval. The constant ν < 1/2 is the one
defined by theorem 7.1.

This result says that the measure µΣ
~

is almost σ invariant for logarithmic times. As a conse-
quence, the classical argument (see (10)) for subadditivity of the entropy can be applied as long
as we consider times where the pseudo invariance holds (see (49)).
Let A be as in the proposition. From proposition 5.3, there exists (α0, · · · , αk) and B(γ) such
that:

A =
(

Cα0 ∩ · · ·σ−kCαk

)

×B(γ).

Still from proposition 5.3, one knows that B(γ) is a subinterval of [0, f(γ0)[. Moreover, the
following property on α holds:

(50) n0(1 − ǫ) ≤
k−1
∑

j=0

f(σjα) ≤ n0(1 + ǫ).

The plan of the proof of proposition 6.2 is the following. First, we will give an exact expression in

terms of α and B(γ) of µΣ
~

(

σ−mA
)

. Then, we will see how to prove the proposition making the
simplifying assumption that all operators (Pi(kη))i,k commute. Finally, we will estimate the error
term due to the fact that operators do not exactly commute.

6.1.1. Computation of µΣ
~
(σ−mA). We choose a positive integer m. As a first step of the proof,

we want to give a precise formula for the measure of σ−mA. To do this, we have to determine the
shape of the set σ−mA. Let us then define:

Σ
m

p :=







(x, t) ∈ Σ :

p−2
∑

j=0

f(σjx) ≤ m+ t <

p−1
∑

j=0

f(σjx)







.

We underline that because m ≥ 1, we have that Σ
m

p is empty for p ≤ 3. One has then Σ =
⊔

p≥3

Σ
m

p

and as a consequence:

σ−mA =
⊔

p≥3

(

Σ
m

p ∩ σ−mA
)

=
⊔

p≥3







(x, t) ∈ Σ
m

p : m+ t−
p−2
∑

j=0

f(σjx) ∈ B(γ), (xp−1, · · · , xp+k−1) = α







.

Note that t ∈ B(γ) − m +
∑p−2
j=0 f(σjx) together with (xp−1, · · · , xp+k−1) = α imply that

∑p−2
j=0 f(σjx) ≤ m+ t <

∑p−1
j=0 f(σjx). It allows to rewrite:

σ−mA =
⊔

p≥3







(x, t) ∈ Σ × R+ : 0 ≤ t < f(x), t ∈ B(γ) −m+

p−2
∑

j=0

f(σjx), (xp−1, · · · , xp+k−1) = α







.

Finally, one can write the measure of this suspension set:

µΣ
~

(

σ−mA
)

=
∑

p≥1

∑

|β| = p + k

(βp−1, · · · , βp+k−1) = α

cβ,α(m)‖Pβk+p−1
((k+p−1)η)Pβk+p−2

((k+p−2)η) · · ·Pβ0ψ~‖2,
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where

cβ,α(m) = λ Leb



B(γ) ∩ [m−
p−2
∑

j=0

f(σjβ),m−
p−2
∑

j=1

f(σjβ)[





with λ−1 :=
∑

γ′∈{1,··· ,K}2

f(γ′)µΣ
~ ([γ′]) the normalization constant of the measure. Outline that

the previous sum is finite with at most 2b0/a0 non zeros terms in each string β (as c•,α(m) is
zero except a finite number of times). For simplicity of the following of the proof, we reindex the
previous expressions:
(51)

µΣ
~

(

σ−mA
)

=
∑

p≥3

∑

|β| = p + k

(β0, · · · , βk) = α

cβ,α(m)‖Pβk
((k + p− 1)η)Pβk−1

((k + p− 2)η) · · ·Pβ−p+1ψ~‖2,

where cβ,α(m) = λ Leb
(

B(γ) ∩ [m−∑p−2
j=0 f(σjβ),m−∑p−2

j=1 f(σjβ)[
)

with λ defined as previ-

ously. Then, to prove proposition 6.2, we have to show that the previous quantity (51) is equal
to:

λ Leb (B(γ)) ‖Pαk
(kη) · · ·Pα0ψ~‖2

L2 +OL2(~(1−2ν)/6).

6.1.2. If everything commutes... We will now use our explicit expression for µΣ
~

(

σ−mA
)

(see (51))

and verify it is equal to µΣ
~

(A) under the simplifying assumption that all the involved pseudo-
differential operators commute. In the next section, we will then give an estimate of the error
term due to the fact that the operators do not exactly commute. In order to prove the pseudo
invariance, denote:

Km(α) := {β = (β−p+1, · · · , βk) : (β0, · · · , βk) = α, cβ,α(m) 6= 0}
and

K(q)
m (α) := {(β−q+1, · · · , βk) : ∃γ = (γ−p+1, · · · , γ−q) s.t. q < p, γ.β ∈ Km(α)} .

With these notations, we can write (51) as follows:

(52) µΣ
~

(

σ−mA
)

=
∑

β∈Km(α)

cβ,α(m)‖τβψ~‖2 =

N
∑

p=3

∑

β∈Km(α):|β|=k+p

cβ,α(m)‖τβψ~‖2.

Recall that by definition (see (23)) τβ := Pβk
((k + p − 1)η)Pβk−1

((k + p − 2)η) · · ·Pβ−p+1 . For
simplicity of notations, let us denote B(γ) = [a, b[ (where a and b obviously depend on γ). A last
notation we define is for β such that |β| = k + q and σq−1β = α:

(53) cβ,α(m) := λ Leb



[a, b[∩[a,m−
q−2
∑

j=1

f(σjβ)[



 ,

where λ is the normalization constant of the measure previously defined. Suppose now that all
the operators (Pi(kη))i,k commute. We have the following lemma:

Lemma 6.3. If all the operators (Pi(kη))i,k commute, then one has, for 2 ≤ q ≤ N :
∑

β∈Km(α):|β|=k+q

cβ,α(m)‖τβψ~‖2 +
∑

β∈K
(q)
m (α)

cβ,α(m)‖τβψ~‖2 =
∑

β∈K
(q−1)
m (α)

cβ,α(m)‖τβψ~‖2.

Proof. Let 2 ≤ q ≤ N . Consider β an element of K
(q−1)
m (α). Using the property of partition of

identity, we have:

∑

β∈K
(q−1)
m (α)

cβ,α(m)‖τβψ~‖2 =

K
∑

γ=1

∑

β∈K
(q−1)
m (α)

cβ,α(m)‖Pγ(−η)τβψ~‖2.

For each 1 ≤ γ ≤ K, we have the following property for cγ.β,α(m) (as f ≥ 0):

cβ,α(m) = cγ.β,α(m) + cγ.β,α(m).
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We can write then:

∑

β∈K
(q−1)
m (α)

cβ,α(m)‖τβψ~‖2 =

K
∑

γ=1

∑

β∈K
(q−1)
m (α)

(cγ.β,α(m) + cγ.β,α(m))‖Pγ(−η)τβψ~‖2.

Notice that we have assumed the operators commute, we have:

(54) Pγ(−η)Pβk
((k + q − 2)η) · · ·Pβ−q+2ψ~ = Pβk

((k + q − 1)η) · · ·Pβ−q+2Pγ(−η)ψ~.

As a consequence, we have:

∑

β∈K
(q−1)
m (α)

cβ,α(m)‖τβψ~‖2 =
K
∑

γ=1

∑

β∈K
(q−1)
m (α)

(cγ.β,α(m) + cγ.β,α(m))‖τβPγ(−η)ψ~‖2.

By definition of the different sets Km and as ψ~ is an eigenfunction of the Laplacian, this last
equality allows to conclude the proof of the lemma. �

Proceeding then by induction from N to 1 (see equality (52)) and using the previous lemma at
each step, we can conclude that if all the operators commute:

µΣ
~

(

σ−mA
)

= µΣ
~

(A) .

6.1.3. Estimates of the error terms. Regarding to the previous section, we have to see what is
exactly the error term we forgot at each step of the recurrence and we have to verify that it is
bounded by some positive power of ~. Precisely, we have to understand what is the error term in
equation (54) if we do not suppose anymore that all the operators commute. Precisely, the error
term we have to take into account in (54) is:

Rβ,γ,~ =
k
∑

j=−q+2

Pβk
((k + q − 2)η) · · ·Pβj+1((j + q − 1)η)Rj(β, γ)Pβj−1 ((j + q − 3)η) · · ·Pβ−q+2ψ~,

where Rj(β, γ) = [Pγ(−η), Pβj
((j+q−2)η)] is the bracket of the two operators. We denote Rjβ,γ,~

each term of the previous sum. The error term we forgot at each step q of the induction in the
previous section is then:

(55) E(~, q) :=

K
∑

γ=1

∑

β∈K
(q−1)
m (α)

(〈Rβ,γ,~, Pγ(−η)τβψ~〉 + 〈τβPγ(−η)ψ~, Rβ,γ,~〉) .

So for each step q of the induction to prove the pseudo invariance of the measure, a first error
term we have to estimate is of the form:

(56)

k
∑

j=−q+2

K
∑

γ=1

∑

β∈K
(q−1)
m (α)

cβ,α(m)
〈

Rjβ,γ,~, Pγ(−η)τβψ~

〉

.

Using Cauchy Schwarz inequality twice and the fact that 0 ≤ cβ,α(m) ≤ Leb(B(γ)) ≤ b0η, this
last quantity is bounded by

(57) λb0η





k
∑

j=−q+2

K
∑

γ=1

∑

β∈K
(q−1)
m (α)

‖Rjβ,γ,~‖2





1
2




k
∑

j=−q+2

K
∑

γ=1

∑

β∈K
(q−1)
m (α)

‖Pγ(−η)τβψ~‖2





1
2

.

The last term of the product is bounded as:

k
∑

j=−q+2

K
∑

γ=1

∑

β∈K
(q−1)
m (α)

‖Pγ(−η)τβψ~‖2 ≤ (k + q)K
∑

|β|=k+q−1

‖τβψ~‖2 = (k + q)K = O(| log ~|).
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As a consequence, the error term (57) is bounded by:

C| log ~|





k
∑

j=−q+2

K
∑

γ=1

∑

β∈K
(q−1)
m (α)

‖Rjβ,γ,~‖2





1
2

,

where C is some positive uniform constant (depending only on the partition and on η). We extend

now the definition of Rj(β, γ) (previously defined as [Pγ(−η), Pβj
((j+q−2)η)] for β in K

(q−1)
m (α))

to any word β of length k + q − 1. If j + q − 1 letters of β are also the j + q − 1 first letters

of a word β′ in K
(q−1)
m (α), we take Rj(β, γ) := [Pγ(−η), Pβj

((j + q − 2)η)]. Otherwise, we take

Rj(β, γ) := ~ IdL2(M). We define then for any sequence of length k + q − 1:

Rjβ,γ,~ = Pβk
((k + q − 2)η) · · ·Pβj+1((j + q − 1)η)Rj(β, γ)Pβj−1((j + q − 3)η) · · ·Pβ−q+2ψ~.

In theorem 6.4 from the section 6.2, we will prove in particular that for every β of size q + k − 1
and for each −q + 2 ≤ j ≤ k:
(58)
‖Rj(β, γ)Pβj−1 ((j+q−3)η) · · ·Pβ−q+2ψ~‖L2(M) ≤ C~1−2ν‖Pβj−1((j+q−3)η) · · ·Pβ−q+2ψ~‖L2(M),

where C is a uniform constant for n0 andm positive integers such that n0+m ≤ TE(~) and ν < 1/2

(defined in section 7). The theorem 6.4 can be applied as
∑k+q−2
j=0 f(σjβ) ≤ (n0+m)(1+ǫ) ≤ nE(~)

(see (50) and (53)). Using bound (58) and the property of partition of identity, we have:
∑

|β|=k+q−1

‖Rjβ,γ,~‖2 = O(~2(1−2ν)).

The error term (57) (and as a consequence (56)) is then bounded by:

C̃| log ~|





k
∑

j=−q+2

K
∑

γ=1

∑

|β|=k+q−1

‖Rjβ,γ,~‖2





1
2

= O(~
1−2ν

4 ).

Looking at equation (55), we see that the other error term for the step q of the induction can

be estimated with the same method and is also a O(~
1−2ν

4 ). As the number N of steps in the
induction is a O(| log ~|), the error term we forgot in the previous section (due to the fact that the

operators do not commute) is a O(~
1−2ν

6 ). This concludes the proof of proposition 6.2.�

6.2. Commutation of pseudodifferential operators. In order to complete the proof of the
pseudo invariance of the measure (proposition 6.2), we need to prove inequality (58). It will be a
consequence of (60) below. Once we have proved this inequality, the subadditivity property will
be completely proved. The exact property we need is stated by the following theorem:

Theorem 6.4. Let (γ0, · · · , γk) be such that

(59)

k−1
∑

j=0

f(σjγ) ≤ nE(~).

One has:
(60)
∥

∥[Pγk
(kη), Pγ0 ]Pγk−1

((k − 1)η) · · ·Pγ1(η)ψ~

∥

∥

L2 ≤ C~1−2ν
∥

∥Pγk−1
((k − 1)η) · · ·Pγ1(η)ψ~

∥

∥

L2 ,

where ν < 1/2 is defined in section 7, C is a constant depending on the partition and uniform in
all γ satisfying (59).

Let γ be a finite sequence as in the previous theorem. Denote t(γ) =

k(γ)−1
∑

j=0

f(σjγ). This

quantity is less than nE(~) in the setting of theorem 6.4. There exists a unique integer l(γ) < k(γ)
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such that:
l(γ)−2
∑

j=0

f(σjγ) ≤ t(γ)

2
<

l(γ)−1
∑

j=0

f(σjγ).

In the following, the dependence of l and k in γ will be often omitted for simplicity of notations
and will be recalled only when it is necessary. This definition allows to write the quantity we want
to bound

∥

∥[Pγk
(kη), Pγ0 ]Pγk−1

((k − 1)η) · · ·Pγ1(η)ψ~

∥

∥

L2

in the following way:
(61)
∥

∥[Pγk
((k − l + 1)η), Pγ0((−l + 1)η)]Pγk−1

((k − l)η) · · ·Pγl
(η)Pγl−1

· · ·Pγ1((−l + 2)η)ψ~

∥

∥

L2 .

The reason why we choose to write the quantity we want to bound in (60) in the previous form
instead of its original form is to have a more symmetric situation for our semiclassical analysis.
To prove the bound in theorem 6.4, a class of symbols taken from [13] will be used (see (79) for
a definition) and results about them are recalled in appendix B. Before starting the proof, using
proposition B.3, we can restrict ourselves to observables carried on a thin energy strip around the
energy layer Eθ. It means that the quantity we want to bound is the following norm:
(62)
∥

∥

∥

[

P̂γk
((k − l + 1)η), P̂γ0((−l + 1)η)

]

P̂γk−1
((k − l)η) · · · P̂γl

(η)P̂γl−1
· · · P̂γk−1

((−l + 2)η)ψ~

∥

∥

∥

L2
,

where P̂i is now equal to Op~(P fi ), where P fi is compactly supported in T ∗Ωi ∩ Eθ (see proposi-
tion B.3).

6.2.1. Defining cutoffs. If we consider quantity (62), we can see that because we consider large

times kη, we can not estimate directly the norm of the bracket
[

P̂γk
((k − l+ 1)η), P̂γ0((−l + 1)η)

]

.

However, the quantity we are really interested in is the norm of this bracket on the image of
P̂γk−1

((k−l)η) · · · P̂γl
(η)P̂γl−1

· · · P̂γk−1
((−l+2)η). So we will introduce some cutoff operators to lo-

calize the bracket we want to estimate on the image of P̂γk−1
((k−l)η) · · · P̂γl

(η)P̂γl−1
· · · P̂γk−1

((−l+
2)η). Then, as was discussed in section 1.2, we will have to verify that it defines a particular family
of operators for which the Egorov theorem can be applied for large times.
First, we introduce a new family of functions (Qi)

K
i=1 such that such that for each 1 ≤ i ≤ K,

Qi belongs to C∞(T ∗Ωi ∩ Eθ), 0 ≤ Qi ≤ 1 and Qi ≡ 1 on suppP fi . We then define two cutoffs
associated to the strings (γ1, · · · , γl−1) and (γl, · · · , γk−1):

(63) Qγk−1,··· ,γl
:= Qγl

◦ g−(k−l)η · · ·Qγk−1
◦ g−η

and

(64) Q̃γl−1,··· ,γ1 := Qγ1 ◦ gη · · ·Qγl−1
◦ g(l−1)η.

The first point of our discussion will be to prove that Egorov theorem can be applied for large
times to the pseudodifferential operators corresponding to these two symbols.
We prove the Egorov property for Qγk−1,··· ,γl

for example (the proof works in the same way for
the other one). Recall that one has the exact equality, for a symbol a:

(65) U−tOp~(a)U t − Op~(a(t)) =

∫ t

0

U−s(Diffat−s)Usds,

where a(t) := a ◦ gt and Diffat := ı
~
[−~2∆,Op~(a(t))] − Op~({H, a(t)}). Here, we will consider

a := Qγk−1,··· ,γl
. One has, for 0 ≤ t ≤ (k − l+ 1)η:

Qγk−1,··· ,γl
(t) := Qγk−1,··· ,γl

◦ gt = Qγl
◦ g−(k−l)η+t · · ·Qγk−1

◦ g−η+t.
There exists a unique integer 1 ≤ j ≤ (k − l) such that t − jη is negative and t − (j − 1)η is
nonnegative. This allows us to rewrite:

Qγk−1,··· ,γl
(t) =

(

Qγl
◦ g−(k−l−j)η · · ·Qγk−j

)

◦ g−jη+t
(

Qγk−j+1
· · ·Qγk−1

◦ g(j−2)η
)

◦ g−(j−1)η+t.
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Using the last part of theorem 7.1 and its subsequent remark, we know that Qγl
◦g−(k−l−j)η · · ·Qγj

and Qγj−1 · · ·Qγk−1
◦ g(j−2)η are symbols of the class S−∞,0

ν (see the appendix for a definition

of this class of symbols), where ν := 1−ǫ′+4ǫ
2 . Moreover the constants in the bounds of the

derivatives are uniform for the words γ in the allowed set (see theorem 7.1 and proposition 7.3).
As −η ≤ t − jη < 0 ≤ t − (j − 1)η ≤ η and as the class S−∞,0

ν is stable by product, we have
then that Qγ1,··· ,γk−l

(t) is in the class S−∞,0
ν , for 0 ≤ t ≤ (k − l + 1)η, with uniform bounds in

t and γ in the allowed set. As, in [5], we can verify that DiffQtγk−1,··· ,γl
is in S−∞,ν−1

ν and then

apply the Calderon-Vaillancourt theorem for Ψ−∞,ν−1
ν . As a consequence, there exists a constant

C depending only on the family Qi and on the derivatives of gs (for −η ≤ s ≤ η) such that:

(66) ∀0 ≤ t ≤ (k − l + 1)η, ‖Op
~
(Qγk−1,··· ,γl

)(t) − Op
~
(Qγk−1,··· ,γl

(t))‖L2 ≤ C~
1−ν
2 .

As we mentioned it in the heuristic of the proof (section 1.2), taking into account the support
of the symbol, we have proved a ’local’ Egorov property for a range of time that depends on the
support of our symbol. Precisely, we have shown that the Egorov property holds until the stopping
time defined in section 5.1.

6.2.2. Proof of theorem 6.4. Before proving theorem 6.4, we define (in order to have simpler
expressions):

ψγ
~

:= P̂γk−1
((k − l)η) · · · P̂γ1((−l + 2)η)ψ~.

To prove theorem 6.4, we need to bound quantity (62) and precisely to estimate (62), we have to
estimate:

(67) (62) =
∥

∥

∥

[

P̂γ0((−l + 1)η), P̂γk
((k − l + 1)η)

]

ψγ
~

∥

∥

∥

L2
.

Now we want to introduce our cutoff operators Op~(Q•) in the previous expression:

P̂γ0((−l + 1)η)P̂γk
(k − l + 1)η) = P̂γ0((−l + 1)η)

(

Id−
(

P̂γk
Op~(Qγk−1,··· ,γl

)
)

((k − l + 1)η)
)

+
(

P̂γk
Op~(Qγk−1,··· ,γl

)
)

((k − l+ 1)η) .

We will first estimate the norm
∥

∥

∥
P̂γ0((−l + 1)η)

(

Id−
(

P̂γk
Op

~
(Qγk−1,··· ,γl

)
)

((k − l + 1)η)
)

ψγ
~

∥

∥

∥

L2
.

To do this, we first outline that P̂γk
is in Ψ−∞,0(M) and Op~(Qγk−1,··· ,γl

) is in Ψ−∞,0
ν (M). Using

the standard rules for a product, we know that the previous expression can be transformed as
follows:

∥

∥

∥P̂γ0((−l + 1)η)
(

Id− Op~(P fγk
Qγk−1,··· ,γl

)((k − l + 1)η)
)

ψγ
~

∥

∥

∥

L2
+R1

γ(~),

where ‖R1
γ(~)‖L2 ≤ C~1−2ν‖ψγ

~
‖L2 (where C is independent of k − l as the bounds implied in

the derivatives in theorem 7.1 are uniform for words γ in the allowed set: see proposition 7.3).
We can apply the strategy of the previous section to prove an Egorov property for the operator

Op~(P fγk
Qγk−1,··· ,γl

). So, up to a OL2(~
1−ν
2 ), Op~(P fγk

Qγk−1,··· ,γl
)((k − l + 1)η) is equal to the

pseudodifferential operator in Ψ−∞,0
ν :

Op~

(

(P fγk
Qγk−1,··· ,γl

) ◦ g(k−l+1)η
)

supported in g−ηT ∗Ωγl
∩· · · ∩g−(k−l+1)ηT ∗Ωγk

∩Eθ. Using then theorem 7.1, the following holds:
(

Id− Op
~

(

(P fγk
Qγk−1,··· ,γl

) ◦ g(k−l+1)η
))

P̂γk−1
((k − l)η) · · · P̂γ1((−l + 2)η)ψ~ = OL2(~∞).

Even if the proof of this fact is rather technical, it is intuitively quite clear. In fact, if we suppose
that the standard pseudodifferential rules (Egorov, composition) apply, P̂γk−1

((k−l)η) · · · P̂γ1((−l+
2)η) is a pseudodifferential operator compactly supported in g(l−2)ηT ∗Ωγ1 ∩· · ·∩g(l−k)ηT ∗Ωγk−1

∩
Eθ. On this set, by definition of the cutoff operators (Qi ≡ 1 on supp(Pi)), (1− (P fγk

Qγk−1,··· ,γl
) ◦

g(k−l+1)η) is equal to 0. As a consequence, we consider the product of two pseudodifferential
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operators of disjoint supports: it is OL2(~∞). The statement of theorem 7.1 makes this argument
work. To conclude the previous lines of the proof, we have:

(68)
∥

∥

∥P̂γ0((−l + 1)η)
(

Id−
(

P̂γk
Op~(Qγk−1,··· ,γl

)
)

((k − l+ 1)η)
)

ψγ
~

∥

∥

∥

L2
≤ C̃~1−2ν‖ψγ

~
‖L2 .

Performing this procedure for the other operators, we finally obtain that the only quantity we
need to bound to prove theorem 6.4 is the following quantity:

(69)
∥

∥

∥

[

(P̂γk
Op~(Qγk−1,··· ,γl

))((k − l + 1)η), (P̂γ0Op~(Q̃γl−1,··· ,γ1))((−l + 1)η)
]∥

∥

∥

L2
.

Using the property of the product on Ψ−∞,0
ν , we know that, up to a OL2(~1−2ν), the previous

quantity is equal to
∥

∥

∥

[

Op~(P fγk
Qγk−1,··· ,γl

)((k − l + 1)η),Op~(P fγ0Q̃γl−1,··· ,γ1)((−l + 1)η)
]∥

∥

∥

L2
.

Using the same method that in the previous section (which uses theorem 7.1), we can prove an
Egorov property for the two pseudodifferential operators that are in the previous bracket and show
that, up to a OL2(~1−2ν), the quantity (69) is equal to:

∥

∥

∥

[

Op~((P fγk
Qγk−1,··· ,γl

) ◦ g(k−l+1)η),Op~((P fγ0Q̃γl−1,··· ,γ1) ◦ g(−l+1)η)
]∥

∥

∥

L2
.

Using the pseudodifferential rules in Ψ−∞,0
ν (M) (proceeding as in the previous section, the two

symbols stay in the good class of symbol using theorem 7.1), we know that the previous bracket is in
Ψ−∞,2ν−1
ν . Using the Calderon-Vaillancourt theorem, we know that quantity (69) is a OL2(~1−2ν),

where the constant depends only on the partition. This concludes the proof of theorem 6.4.�

7. Products of many evolved pseudodifferential operators

The goal of this section is to prove a property used in the proof of theorem 6.4. Precisely,
the following theorem states that the product of a large number of evolved pseudodifferential
operators remains in a good class of pseudodifferential operators provided the range of times is
smaller than the ’local’ Ehrenfest time. First, recall that using proposition B.3, we can restrict
ourselves to observables carried on a thin energy strip around the energy layer Eθ. We underline
that we do not suppose anymore that this thin energy strip is of size ~1−δ: we only need to have a
small macroscopic neighborhood of the unit energy layer. Moreover, the class of symbols we will

consider will be the class S−∞,0
ν (see (79) for a precise definition) with ν := 1−ǫ′+4ǫ

2 (< 1/2, see
section 4).

Theorem 7.1. Let (Qi)
K
i=1 be a family of smooth functions on T ∗M such that for each 1 ≤ i ≤ K,

Qi belongs to C∞(T ∗Ωi ∩Eθ) and 0 ≤ Qi ≤ 1. Consider a family of indices (γ1, · · · , γl) such that:

l−1
∑

j=1

f(γj+1, γj) ≤
nE(~)

2
.

Then, for any 1 ≤ j ≤ l, one has:

Op~(Qγ1)Op~(Qγ2)(−η) · · ·Op~(Qγj
)(−(j − 1)η) = Op~ (Aγ1,··· ,γj ) (−jη) +OL2(~∞),

where Aγ1,··· ,γj is in the class S−∞,0
ν . Precisely, one has the following asymptotic expansion:

Aγ1,··· ,γj ∼
∑

p≥0

~pAγ1,··· ,γj
p ,

where A
γ1,··· ,γj
p is in the class S−∞,pǫ

ν (with the symbols semi norm uniform for γ in the allowed
set of sequences and 1 ≤ j ≤ l: see proposition 7.3) and compactly supported in g−ηT ∗Ωγj

∩
· · · g−jηT ∗Ωγ1 ∩ Eθ. Finally the principal symbol A

γ1,··· ,γj

0 is given by the following formula:

A
γ1,··· ,γj

0 = Qγj
◦ gη · · ·Qγ2 ◦ g(j−1)ηQγ1 ◦ gjη.
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Remark. We underline that the asymptotic expansion (except for the order 0 term) is not in-
trinsically defined as it depends on the choice of coordinates on M . We also remark that this
theorem holds in particular for the smooth partition of identity we considered previously on the
paper. Note also that the the result can be rephrased by saying that Op~(Qγ1)(jη)Op~(Qγ2)((j−
1)η) · · ·Op~(Qγj

)(η) is, up to a OL2(~∞), a pseudodifferential operator of the class Ψ−∞,0
ν and of

well determined support. Under the assumption
∑l−1

j=1 f(γj , γj+1) ≤ nE(~)
2 , we would have proved

that Op~(Qγ1)(−jη)Op~(Qγ2)(−(j−1)η) · · ·Op~(Qγj
)(−η) is, up to a OL2(~∞), a pseudodifferen-

tial operator of the class Ψ−∞,0
ν and of well determined support. These are exactly the properties

we used in section 6.2.

The plan of the proof is the following. First, we will construct formally Aγ1,··· ,γj and its
asymptotic expansion in powers of ~. Then, we will check that these different symbols are in a
good class. Finally, we will check that these operators approximate the product we considered.
For simplicity of notations, we will forget (for a time) the dependence on γ and denote the previous
symbol Aj for l ≥ j ≥ 1.

7.1. Definition of Aγ1,··· ,γl
. In this section, we construct formally the symbol Aj . The way to

do it is by induction on j. First, we will see how to define formally Aj from Aj−1. Then, using the
formulas of the previous section, we will construct the formal order N expansion associated to this
Aj . We only construct what the order N expansion should be regarding to the formal formulas.

7.1.1. Definition at each step. To construct Aj , we proceed by induction and at the first step, we
consider Op~(Qγ1) and we write it into the form Op~(A1)(−η). This means that we have defined
formally for 0 ≤ t ≤ η:

Op~(A1(t)) := U−tOp~(Qγ1)U
t.

Using Egorov theorem for fixed time η and the corresponding asymptotic expansion (see sec-
tion B.3.2 for explicit formulas of the asymptotic expansion), we prove that, up to a OL2(~∞),
Op~(Qγ1) is equal to Op~(A1(η))(−η), where A1(η) is in S−∞,0, given by the asymptotic expan-
sion of the Egorov theorem and supported in g−ηT ∗Ωγ1 ∩ Eθ. We can continue this procedure
formally. At the second step, we have

Op~(Qγ1)Op~(Qγ2)(−η) = UηOp~(A1(η))Op~(Qγ2)U
−η.

We want this quantity to be of the form Op~(A2(η))(−2η). This means that we have defined
formally for 0 ≤ t ≤ η:

Op~(A2(t)) := U−tOp~(A1(η))Op~(Qγ2)U
t.

Using rules of pseudodifferential operators (see section B.3.1 and B.3.2), we can obtain a formal
asymptotic expansion for A2(η) (see next section) starting from the expansion of A1(η). One can
easily check that this formal expansion is supported in g−ηT ∗Ωγ2 ∩ g−2ηT ∗Ωγ1 ∩ Eθ. Following
the previous method, we will construct a formal expansion of Aj(t) (for 0 ≤ t ≤ η) starting from
the expansion of Aj−1(η) (see next section). To do this, we will write at each step 1 ≤ j ≤ l,

(70) Op
~
(Aj(t)) := U−tOp

~
(Aj−1(η))Op

~
(Qγj

)U t.

With this definition, we will have:

Op~(Aj(η))(−jη) :=
(

Op~(Aj−1(η))Op~(Qγj
)
)

(−(j − 1)η) .

Using again rules of pseudodifferential calculus (see section B.3.1 and B.3.2), we can obtain a formal
asymptotic expansion for Aj(t) (see next section) starting from the expansion of Aj−1(η). One

can easily check that this formal expansion is supported in g−t
(

T ∗Ωγj
∩ · · · ∩ g−jηT ∗Ωγ1

)

∩ Eθ.
In the next section, we will use the induction formula (70) to deduce the ~-expansion of Aj(t)
from the expansion for the composition of Op~(Aj−1(η)) and Op~(Qγj

) and from the expansion
for the Egorov theorem for times 0 ≤ t ≤ η. At each step 1 ≤ j ≤ l of the induction, we will have
to prove that Aj stays in a good class of symbols to be able to continue the induction.
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7.1.2. Definition of the order N expansion. We fix a large integer N (to be determined). We study
the previous construction by induction up to O(~N ). From this point, we truncate Aj(t) at the
order N of its expansion. First, we see how we construct the symbols Aj(t) by induction. To do
this, we use the formulas for the asymptotic expansions for the composition of pseudodifferential
operators and for the Egorov theorem (see section B.3.1 and B.3.2). Suppose that

Aj−1(η) =

N
∑

p=0

~pAj−1
p (η)

is well defined, we have to define the expansion of Aj(t) from the asymptotic expansion of Aj−1(η),
for 0 ≤ t ≤ η. First, we define:

(71) A
j

:=

N
∑

p=0

~pA
j

p, where A
j

p :=

p
∑

q=0

(

Aj−1
p−q(η)♯MQγj

)

q
.

The symbol ♯M represents an analogue on a manifold of the Moyal product (see appendix B.3.1):
(a♯M b)p is the order p term in the expansion of the symbol of Op~(a)Op~(b). Recall from the

appendix that (Aj−1
p−q♯MQγj

)q is a linear combination (that depends on the local coordinates and

on the (Qi)i) of the derivatives of order less than q of Aj−1
p−q(η). Then, we define Aj(t) using the

exact asymptotic expansion given by proposition B.4 in appendix B.3.2. To do this, we define:

Aj0(t) := A
j

0(g
t)

and for 1 ≤ p ≤ N ,

Ajp(t) := A
j

p(g
t) +

p−1
∑

q=0

∫ t

0

{

H,Ajq(t− s)
}(p,q)

M
(gs(ρ)) ds,

where H(ρ) =
‖ξ‖2

x

2 is the Hamiltonian. This expression for the order p term comes from propo-
sition B.4 from the appendix where an exact expression for Op~(a)(t) is given. Recall also from

proposition B.4 that for each 0 ≤ q ≤ p − 1, {H,Ajq(t − s)}(p,q)
M is a linear combination of the

derivatives of order less than p+ 1 − q of Ajq(t− s) that depends on the choice of the coordinates
on the manifold. This construction is the precise way we want to define the asymptotic expansion
of the symbol Aj(t) in theorem 7.1. If we want the theorem to be valid, we have to check now
that the remainders we forget at each step are negligible (with an arbitrary high order in ~). To
do this, we will first have to control at each step j the derivatives of Aj(t) (see next section).

Remark. The support of Ajp(t) is included in g−t
(

T ∗Ωγj
∩ · · · ∩ g−(j−1)ηT ∗Ωγ1

)

∩ Eθ regarding
the previous construction.

7.2. Estimates of the derivatives. The goal of the first part of this section is to prove the
following lemma.

Lemma 7.2. Let N be a fixed integer. Fix also two integers 0 ≤ p ≤ N and m ≤ 2(N −
p + 1). Then, there exists a constant C(m, p) such that for all j ≥ 1 and for all ρ in the set
g−t

(

T ∗Ωγj
∩ · · · ∩ g−(j−1)ηT ∗Ωγ1

)

∩ Eθ:

∀0 ≤ t ≤ η, |dmAjp(t, ρ)| ≤ C(m, p)jm+p2 |dgt+(j−1)η(ρ)|m.

If ρ is not in this set, the bound is trivially 0 by construction. Here the constant C(m, p) depends
only on m, p, the atlas we chose for the manifold and the size of the (Ωγ)γ .

Once this lemma will be proved, we will check that it also tells us that the Ajp’s are in a nice
class of symbols.
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7.2.1. Proof of lemma 7.2. To make all the previous pseudodifferential arguments work, we will
have to obtain estimates on the m-differential forms dmAjp, for each m ≤ 2(N + 1− p). If we have
estimates on these derivatives, we will then check that all the asymptotic expansions given by the
pseudodifferential theory are valid. To do these estimates, we will have to understand the number
of derivatives that appear when we repeat the induction formula (70). The spirit of this proof is
the same as in [5] 9section 3.4) when they iterate the WKB expansion K| log ~| times. We define a

vector Aj with entries A
j
(p,m) := dmAjp (where 0 ≤ p ≤ N and 0 ≤ m ≤ 2(N − p+ 1)). Precisely,

we order it by the following way, for 0 ≤ t ≤ η and ρ ∈ T ∗M :

Aj = Aj(t, ρ) :=



















(Aj0, dA
j
0, · · · , d2(N+1)Aj0,

Aj1, dA
j
1, · · · , d2NAj1,

· · · ,
AjN , dA

j
N , d

2AjN ).

Using induction formulas of the previous section, we will rewrite the link between Aj and Aj−1

in the following form:

(I − M1)A
j = (Mj

0,0 + M
j
0,1 + M

j
0,2)A

j−1,

where the operators M are defined in the following of the section. We will then inverse this formula
to get Aj = f(Aj−1). Before giving the precise definition of each matrix, we define the operator,
for each integer l:

Gt(dla)(ρ) := dla(gtρ).

It defines a l-form defined on (TgtρT
∗M)l. We write then:

dm(Gta)(ρ) =
∑

l≤m

Gt(dla)(ρ).θm,l(t, ρ),

where the linear form θm,l(t, ρ) sends (TρT
∗M)m on (TgtρT

∗M)l. We can write the explicit form
of θm,m:

θm,m(t, ρ) :=
(

dρg
t
)⊗m

.

Using these notations, we can rewrite the formulas for the A
j
(p,m) (0 ≤ p ≤ N and m ≤ 2(N + 1−

p)):

A
j
(p,m)(t, ρ) := dm

(

Gt
(

A
j

p

)

(ρ)
)

+

p−1
∑

q=0

∫ t

0

dm
(

Gs
{

H,Aj
q,0(t− s)

}(p,q)

M
(ρ)

)

ds,

where A
j

p depends on Aj−1(η, .). Using this, we can define M1:

(

M1A
j
)

(p,m)
(t, ρ) :=

p−1
∑

q=0

∫ t

0

dm
(

Gs
{

H,Aj
q,0(t− s)

}(p,q)

M
(ρ)

)

ds.

Using our previous decomposition of dm(T ta) and the fact that {H,Ajq(t − s)}(p,q)
M is a linear

combination of the derivatives of order less than p+ 1 − q of Ajq(t− s), we find:

(

M1A
j
)

(p,m)
(t, ρ) =

p−1
∑

q=0

∑

l≤m+p+1−q

∫ t

0

Gs
(

A
j
q,l(t− s)

)

(ρ).θm,q,l(t, s, ρ)ds,

where θm,q,l is a linear form that sends (TρT
∗M)m on (Tgt−sρT

∗M)k. The important fact to
underline about this matrix M1 is that it relates Ap to (Ar)0≤r≤p−1. In particular, it is a nilpotent

operator-valued matrix of order N + 1. We can also give the explicit expression for M
j
0,0:

(

M
j
0,0A

j−1
)

(p,m)
(t, ρ) := Gt

(

Qγj
A
j−1
(p,m)(η)

)

(ρ).θm,m(t, ρ).

In particular, M
j
0,0 is a diagonal matrix. Finally the last matrices are defined as:

(

M
j
0,1A

j−1
)

(p,m)
(t) :=

∑

l<m

Gt
(

dl
(

Qγj
A
j−1
(p,0)(η)

))

.θm,l(t) =
∑

l<m

∑

k≤l

Gt
(

A
j−1
(p,k)(η)

)

.θ
j,1

m,l(t)
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(it corresponds to the term of order 0 in the ’Moyal product’ on a manifold) and using the higher
order term of the Moyal product formula on a manifold:

(

M
j
0,2A

j−1
)

(p,m)
(t) :=

p
∑

q=1

∑

l≤m

∑

k≤l

Gt
(

A
j−1
(p−q,k+q)(η)

)

.θ
j,2

m,l,q(t).

Regarding these formulas, it can first be underlined that M
j
0,1 relates A

j
(p,m) with A

j−1
(p,k) where

k < m. As in the case of M1, it can be underlined that the matrix M
j
0,2 relates Ap to (Ar)0≤r≤p−1

and in particular, it behaves like a ’nilpotent’ operator-valued matrix of order N+1. In both cases,

it results then that we have a nilpotent matrix and that the θ
j,.

are multilinear forms depending
on j. Outline that all the multilinear forms used to define the different matrices are uniformly
bounded with respect to ρ, t ∈ [0, η] and j. We will just have to check that these bounds do not
accumulate too much when we iterate j times the induction formula.

Remark. The crucial point of the previous discussion is not really the exact form of the matrices
M. The important facts are that M1 relates Ap to (Ar)0≤r≤p−1 (it is in fact nilpotent of index

N), M
j
0,0 is a diagonal matrix, M

j
0,1 relates A

j
(p,m) with A

j−1
(p,k) (where k < m) and M

j
0,2 relates

Ap to (Ar)0≤r≤p−1.

Using this remark, we can inverse the induction formula to get an expression of Aj in function
of Aj−1:

Aj :=

(

N
∑

k=0

[M1]
k

)

(

M
j
0,0 + M

j
0,1 + M

j
0,2

)

Aj−1.

Here, we put [.] around the matrix to distinguish the power of a matrix and an index. Iterating
the previous expression, one then has:

Aj :=

N−1
∑

k2,··· ,kj=0

2
∑

α2,··· ,αj=0

[M1]
kj M

j
0,αj

[M1]
kj−1M

j−1
0,αj−1

· · · [M1]
k2M2

0,α2
A1.

From this expression, one can estimate how many terms contributes to the definition of A
j
(p,m).

In fact, using the previous remark, the product of matrices that contributes to the expression of

A
j
(p,m) can only be non zero if

∑

j′

kj′ + |{j′ : αj′ = 2}| ≤ p and |{j′ : αj′ = 1}| ≤ m+ p(
∑

j′

kj′ +

|{j′ : αj′ = 2}|). As a consequence, for large j, to be non zero, a string of matrices need to be

made of at most (N + 1)2 matrices of the form M
j
0,α and M1 (for α ∈ {1, 2}). Moreover, the

number of string that contributes to A
j
(p,m) is of size O(jm+p2 ) when j becomes large.

Then, to estimate the norm of the derivatives of Aj , we should look how the different matrices used
to define the derivatives act. First we study the action of the diagonal matrix. As 0 ≤ Qγj

≤ 1,

one has that, for 0 ≤ t ≤ η and for any ρ ∈ g−t
(

T ∗Ωγj
∩ · · · ∩ g−(j−1)ηT ∗Ωγ1

)

∩Eθ (otherwise the
following quantity is clearly equal to 0):

|Mj
0,0A

j−1
(p,m)(t, ρ)| ≤ |dgt(ρ)|m|Aj−1

(p,m)(η, g
t(ρ))|.

We note that we can iterate this bound without getting an exponentially big term in j. In
particular, for any j and j′ in N, we have for any 0 ≤ t ≤ η:

|Mj+j′

0,0 · · ·Mj
0,0A

j−1
(p,m)(t, ρ)| ≤ |dgt+j′η(ρ)|m|Aj−1

(p,m)(η, g
t+j′η(ρ))|.

Now, using the fact that all the multilinear forms we considered are uniformly bounded, we get
that there exists a constant C(m, p) such that:

sup
0≤t≤η

‖M1A
j
(p,m)(t)‖L∞ ≤ C(m, p) max

m′≤m+2
max
q≤p−1

sup
0≤t≤η

‖Aj
(q,m′)(t)‖L∞

and, for α ∈ {1, 2}:
sup

0≤t≤η
‖Mj

0,αA
j−1
(p,m)(t)‖L∞ ≤ C(m, p) max

m′≤m
max
q≤p

‖Aj−1
(q,m′)‖L∞ .
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The only thing we need to know is that the constant depends only on m, p, the coordinate
maps and the partition. The difference with the action of the diagonal matrix is that we have
constant prefactor that can accumulate and become large. However as was already mentioned,
the number of such matrices that contribute to the estimate is at most of order N2. So the
constant factor C(m, p) does not create a factor which makes the derivatives explodes when we
iterate the induction. Then, proceeding like in [5] (end of section 3.4), we can use all the previous
bounds on the action of the matrices and on the number of matrices who contributes to (p,m)
term of the vector Aj and the multiplicativity property of dgt(ρ). It gives that for any ρ ∈
g−t

(

T ∗Ωγj
∩ · · · ∩ g−(j−1)ηT ∗Ωγ1

)

∩ Eθ:
|Aj

(p,m)(t, ρ)| ≤ C̃(p,m)jm+p2 |dgt+(j−1)η(ρ)|m‖A1(η)‖.�
7.2.2. Class of symbol of each term of the expansion. Using the previous lemma, we want to show

that Ajp(t) is an element of S−∞,pǫ
ν . Let ρ be an element of g−t

(

T ∗Ωγj
∩ · · · ∩ g−(j−1)ηT ∗Ωγ1

)

∩Eθ.
Using the fact that Eu is of dimension 1, we get that for any positive t, |dρgt| ≤ Jut (ρ)−1, where

Jut (ρ) := det
(

dg−t|Eu(gtρ)

)

. Then we can write the multiplicativity of the determinant and get

Jut+(j−1)η(ρ) = Jut (ρ)Juη (gtρ)Juη (gt+ηρ) · · ·Juη (gt+(j−2)ηρ).

Remark. Before continuing the estimate, let us underline some property of the Jacobian. Suppose
S is a positive integer and 1/η also (large enough to be in our setting). We have for all 0 ≤ k ≤
1/η − 1:

Ju(gkηρ)Ju(g1+kηρ) · · · Ju(gS−1+kηρ) = Juη (gkηρ)Juη (g(k+1)ηρ) · · · Juη (gS+(k−1)ηρ),

where Ju(ρ) is the unstable Jacobian in time 1 that appears in the main theorem 1.3. We make
the product over k of all these equalities and we get:

Ju(ρ)ηJu(gηρ)η · · · Ju(gS−ηρ)η ≤ C(η)Juη (gρ)Juη (g1+ηρ) · · · Juη (gS−ηρ),

where C(η) only depends on η and does not depend on S.

Finally, using previous remark and inequality (19), the following estimate holds:

|dρgt+(j−1)η| ≤ C(η)ejǫηa0Juη (γj , γj−1)
−ηJuη (γj−1, γj−2)

−η · · ·Juη (γ2, γ1)
−η

with C(η) independent of j. Then:

|dρgt+(j−1)η| ≤ C(η)el(γ)ǫηa0et(γ),

where t(γ) =
∑l−1

j=0 f(γj+1, γj). As t(γ) ≤ nE(~)/2, this last quantity is bounded by ~
ǫ′−1

2 −ǫ (as

l(γ)a0η ≤ nE(~)/2). Using lemma 7.2, we want to estimate the m derivatives of the symbol Ajp.

To do this, we can fix a large Ñ such that m ≤ 2(Ñ −N) and then we have (p < N, 0 ≤ t ≤ η):

(72) |dmAjp(t, x)| ≤ C̃(m, p)~−pǫ~m( ǫ′−1
2 −2ǫ).

We used the fact that j = O(| log ~|). Here appears the fact that we only apply the backward
quantum evolution for times l. In fact, as we want our symbols to be in the class S−∞,.

ν , we need
derivatives to lose at most a factor ~−1/2 (this would have not been the case if we had considered
times of size nE(~) instead of size nE(~)/2). The previous estimate (72) is uniform for all the γ
in the allowed set of theorem 7.1.
Finally, to summarize this section, we can write the following proposition:

Proposition 7.3. Let p and m be elements of N. There exists C(m, p, (Qi)i, η) (depending on m,
p, η, (Qi)

K
i=1 and the coordinate charts) such that for all γ = (γ0, · · · , γl) such that

l−1
∑

j=0

f(γj+1, γj) ≤
nE(~)

2
,

for all 0 ≤ j ≤ l and for all 0 ≤ t ≤ η:

|dmAγ1,··· ,γj
p (t, x)| ≤ C(m, p, (Qi)i, η)~

−pǫ~m( ǫ′−1
2 −2ǫ).
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Then, as the Ajp are compactly supported, Ajp is in class S−∞,pǫ
ν , where ν = 1−ǫ′+4ǫ

2 .

So, our formal construction allows us to define a family of symbol Ajp and each of them belongs to

S−∞,pǫ
ν . Moreover the constants implied in the bounds of the derivatives are uniform with respect

to the allowed sequences. We underline that the same proof would show that the intermediate

symbols A
j

p (71) are also in the same class of symbols.

7.3. Estimate of the remainder terms. We are now able to conclude the proof of theorem 7.1
starting from the family we have just constructed. We have to verify that the remainder is of

small order in ~. Fix a large integer N and denote Aj(N) :=
N
∑

p=0

~pAjp(η). We want to estimate:

RjN = ‖Op
~
(Qγ1) · · ·Op

~
(Qγj

)(−(j − 1)η) − Op
~
(Aj(N))(−jη)‖L2 .

Using the induction formula (70), we write:

RjN ≤ ‖U−ηOp~(Aj−1
(N))Op~(Qγj

)Uη − Op~(Aj(N))‖L2 +Rj−1
N ,

where Rj−1
N = ‖Op~(Qγ1) · · ·Op~(Qγj−1)(−(j − 2)η) − Op~(Aj−1

(N))‖L2 . Then, we can use sec-

tion B.3.1 and the estimates (81), to write the estimate:

‖U−ηOp
~
(Aj−1

(N))Op
~
(Qγj

)Uη − U−ηOp
~
(A

j

(N))U
η‖L2 ≤ CN~(N+1)(1−ν)−(C+C′)ν .

We also use section B.3.2, to write the exact formula (as A
j

= Aj−1♯MQγj
):

U−ηOp~(A
j

(N))U
η − Op~(Aj(N)) = ~N+1

∫ η

0

U−sOp~

(

R(N)(A
j

(N))(η − s)
)

Usds,

An estimate on the norm of Op~(R(N)(A
j

(N))(s)) will be given in section B.3.2, depending on the

derivatives of the A
j

p’s (for p ≤ N). So, up to a OL2(~∞), one has:

RjN ≤ Rj−1
N + ~N+1η sup

s

∥

∥

∥Op~

(

R(N)(A
j

(N))(s)
)∥

∥

∥

L2
+ CN~(N+1)(1−ν)−(C+C′)ν .

Using estimates (84) from section B.3.2 and the last remark of the previous section, one can check
that:

RjN ≤ Rj−1
N + CN~(N+1)(1−ν)−(C+C′)ν ,

where C + C′ depends only on the dimension of the manifold. By induction on j (which is
O(| log ~|)), we prove that, for large enough N , Op~(Qγ1) · · ·Op~(Qγj

)(−(j − 1)η) is well approx-

imated by Op
~
(Aj(N))(−jη). In fact, Op

~
(Aj(N)) is in Ψ−∞,0

ν . As a consequence for large N ,

~(N+1)(1−ν)−C̃ν is arbitrarily small compared to ‖Op
~
(Aj(N))(−jη)‖ (which is bounded). This

concludes the proof of theorem 7.1.�

Appendix A. The case of surfaces of nonpositive curvature

In this appendix, we consider a surface of nonpositive sectional curvature M and show how we
can adapt the proof of the main inequality (5) in this slightly different case (theorem 1.2). Before
starting the proof, we recall briefly a few facts about surfaces of nonpositive curvature. More
details can be found for example in [29] (chapter 3). We recall that this proof is now specific to
dimension 2 and to nonpositive curvature: on this form, it cannot be extended to any manifold
without conjugate points. We will mention the points of the proof which use the dimension 2 and
the nonpositivity assumptions.
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A.1. Surfaces of nonpositive curvature. We define π : S∗M → M the canonical projection
π(x, ξ) := x. The vertical subspace Vρ at the point ρ = (x, ξ) is the kernel of the application
dρπ. We underline that it is in fact the tangent space in ρ of the 1-dimensional submanifold
S∗
xM . In the case of a surface, it has dimension 1. We can also define the horizontal subspace

in ρ. Precisely, for Z ∈ TρS
∗M , we consider a smooth curve c(t) = (a(t), b(t)), t ∈ (−ǫ, ǫ), in

S∗M such that c(0) = ρ and c′(0) = Z. Then, we define the horizontal space Hρ as the kernel of
the application Kρ(Z) = ∇a′(0)b(0) = ∇dρπ(Z)b(0), where ∇ is the Levi-Civita connection. This
subspace contains XH(ρ) the vector field tangent to the Hamiltonian flow. For a surface, this
subspace is of dimension 2. We know that we can use these two subspaces to split the tangent
space TρS

∗M = Hρ⊕Vρ (it is the usual way to split the tangent space in order to define the Sasaki
metric on S∗M [29]). Using this decomposition, we would like to recall an important link between
the linearization of the geodesic flow and the Jacobi fields on M . To do this, we underline that to
each point ρ in S∗M corresponds a unique unit speed geodesic γρ. Then we define a Jacobi field
in ρ (or along γρ) as a solution of the differential equation:

J”(t) +R(γ′ρ(t), J(t))γ′ρ(t) = 0,

where R(X,Y )Z is the curvature tensor applied to the vector fields X , Y and Z and J′(t) =
∇γ′

ρ(t)J(t). We recall that we can interpret Jacobi fields as geodesic variation vector fields [16].

Precisely, consider a C∞ family of curves cs : [a, b] → M , s in (−ǫ, ǫ). We say that it is a C∞

variation of c = c0. It defines a corresponding variation vector field Y (t) = ∂
∂s (cs(t))|s=0 that gives

the initial velocity of s 7→ cs(t). If we suppose now that c is a geodesic of M , then a C2 vector field
Y (t) on c is a Jacobi vector field if and only if Y (t) is the the variation vector field of a geodesic
variation of c (i.e. ∀s ∈ (−ǫ, ǫ), cs is a geodesic of M). For instance, γ′ρ(t) and tγ′ρ(t) are Jacobi
vector fields along γρ.
Consider now a vector (V,W ) in TρS

∗M given in the coordinates Hρ ⊕ Vρ. Using the canonical
identification given by dρπ and Kρ, there exists a unique Jacobi field JV,W (t) in ρ whose initial
conditions are JV,W (0) = V and J′V,W (0) = W , such that

dρg
t(V,W ) = (JV,W (t), J′V,W (t))

in coordinates Hgtρ ⊕ Vgtρ [29] (lemma 1.4). We define Nρ the subspace of TρS
∗M of vectors

orthogonal to XH(ρ) and Hρ the intersection of this subspace with Hρ. Using the previous
property about Jacobi fields, we know that the subbundle N perpendicular to the Hamiltonian
vector field is invariant by gt and that we have the following splitting [29] (lemma 1.5):

TρS
∗M = RXH(ρ) ⊕Hρ ⊕ Vρ.

Obviously, these properties can be extended to any energy layer E(λ) for any positive λ. Fol-
lowing [29] (lemma 3.1), we can make the following construction of two particular Jacobi fields
along γρ. We denote (γ′ρ(t), e(t)) an orthonormal basis defined along γρ(t). Given a positive T
and because there are no conjugate points on the manifold M , there exists a unique Jacobi field
JT (t) such that JT (0) = e(0) and JT (T ) = 0. Moreover, JT (t) is perpendicular to γρ(t) for all t
in R [29] (page 50). As a consequence, JT (t) can be identified with its coordinate along e(t) (as
Tγρ(t)M is of dimension 2). A result due to Hopf (lemma 3.1 in [29]) tells us that the limits

lim
T→+∞

JT (t) and lim
T→−∞

JT (t)

exist. They are denoted Jsρ(t) and Juρ(t) (respectively the stable and the unstable Jacobi field).
They satisfy the simplified one dimensional Jacobi equation:

J”(t) +K(t)J(t) = 0,

where K(t) = K(γρ(t)) is the sectional curvature at γρ(t). They are never vanishing Jacobi
fields with J∗ρ(0) = e(0) and for all t in R, they are perpendicular to γ′ρ(t). Moreover, we have

‖J∗
′

ρ (t)‖ ≤ √
K0‖J∗ρ(t)‖ for every t in R (where −K0 is some negative lower bound on the curvature).

Using the previous link between geodesic flow and Jacobi fields, we can lift these subspaces to
invariant subspaces Es(ρ) and Eu(ρ) called the Green stable and unstable subspaces. These
subspaces have dimension 1 (in the case of surfaces) and are included in Nρ. A basis of Es(gtρ)
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is given by (Jsρ(t), J
s′

ρ (t)) in coordinates Hgtρ ⊕ Vgtρ. We can underline that both subspaces are
uniformly transverse to Vρ and that it can happen that they are equal to each other (which was
not the case in the Anosov setting). In the case of nonpositive curvature, these subspaces depend
continuously in ρ and are integrable as in the Anosov case [16].
In the case where the Green subspaces attached to ρ are linearly independent, a splitting of Nρ
is given by Eu(ρ) ⊕Es(ρ) and the splitting holds for all the trajectory. For the opposite case, we
know that the Green subspaces attached to ρ (and hence to a geodesic γρ) are linearly dependent
if and only if the sectional curvature is vanishing at every point of the geodesic γρ [29]. As a
consequence, we cannot use the same kind of splitting. However, there exists a splitting of Nρ
that we can use in both cases, precisely Eu(ρ) ⊕ Vρ. We would like to mention that the one
dimensional Jacobi equation defined earlier gives rise to the Riccati equation:

U ′(t) + U2(t) +K(t) = 0,

where U(t) = J′(t)J(t)−1 for non vanishing J. Then we define the corresponding unstable Riccati

solution associated to the unstable Jacobi field as Uuρ (t) := Ju
′

ρ (t)(Juρ(t))
−1. It is a nonnegative

quantity and it describes the growth of the unstable Jacobi field (in dimension 2) as follows:

‖Juρ(t)‖ = ‖Juρ(0)‖e
∫

t

0
Uu

ρ (s)ds.

The same works for the stable Jacobi field. Both quantities are continuous4 with respect to
ρ. We underline that, we can use the previous results to obtain the bound ‖dρgt|Eu(ρ)‖ ≤
√

1 +K0e
∫

t

0
Uu

ρ (s)ds. So the unstable Riccati solution describe the infinitesimal growth of the geo-
desic flow along the unstable direction, whereas Ju(ρ)−1 used in the previous sections described
the growth at time 1. More precisely, as for the unstable Jacobian, Freire and Mañé showed that
the unstable Riccati solutions are related to the Lyapunov exponents. In fact, they proved that
the Ruelle bound for the entropy of a g-invariant measure µ in the case of nonpositive curvature
(precisely for manifolds without conjugate points) [20] is:

hKS(µ, g) ≤
∫

S∗M

Uu(ρ)dµ(ρ).

A last point we would like to recall is a result due to Green [21] and to Eberlein in the general
case [15]. It asserts that for any positive c there exists a positive T = T (c) such that for any ρ in
S∗M and for any nontrivial Jacobi field J(t) along γρ such that J(0) = 0 and ‖J′(0)‖ ≥ 1, for all t
larger than T , we have ‖J(t)‖ ≥ c (proposition 3.1 [29]). This property of uniform divergence only
holds in dimension 2 and as it is crucially used in the following, our proof only works for surfaces
of nonpositive curvature. In larger dimensions, the same result holds but without any uniformity
in ρ. Finally, all these properties allow to prove the following lemma:

Lemma A.1. Let v = (0, V ) be a unit vertical vector at ρ. Then for any c > 0, there exists
T = T (c) > 0 (independent of ρ and of v) such that for any t ≥ T , ‖dρgtv‖ ≥ c.

We underline that, for t ≥ T , the angle between Eu(gtρ) and dρg
tv is bounded by some κ(c)

with κ(c) arbitrarly small as c tends to infinity.

A.2. Modifications of the technical assumptions. Now that our new classical setting is well
defined, we explain which modifications should be performed to prove the main inequality 2 for
surfaces of nonpositive curvature. We define:

(73) f(ρ) := Uu(ρ).

Recall that this quantity is nonnegative and continuous with respect to ρ (as M is of nonpositive
curvature [29]). We also fix ǫ0 a small positive number and define:

f0(ρ) := sup {ǫ0, f(ρ)} .
The function f0 will be used to ensure that the stopping time is finite. The main difference with
the case of an Anosov flow is that the function that will appear in the main estimate (75) will be

4The continuity in ρ is a crucial property that we will use in our proof. We underline that it is not true if we
only suppose the surface to be without conjugate points [6].
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slightly different and will be played by the function f defined by equation (73). We define f(γ)
and f0(γ) as in section 3 i.e.

f0(γ) := η inf{f0(ρ) : ρ ∈ Uγ} and f(γ) := η inf{f(ρ) : ρ ∈ Uγ}.

The role of a0 will be played by ǫ0. In particular, we can rewrite the continuity of f (inequality (19))
under the following slightly diferent form using again the small parameter ǫ:

(74) ∀ρ ∈ Uγ ,

∣

∣

∣

∣

∫ η

0

Uuρ (s)ds− f(γ)

∣

∣

∣

∣

≤ ηǫ0ǫ.

We make the extra assumption that the small parameter ǫ used for the continuity is smaller than
ǫ0.

A.3. How do we modify the proof? First we underline that we can extend theorem 5.6 to
surfaces of nonpositive curvature in the following way:

Theorem A.2. Let M be a surface of nonpositive sectional curvature. For every K > 0 (K ≤
Cδ), there exists ~K and CK such that uniformly for all ~ ≤ ~K, for all k ≤ K| log ~|, for all
α = (α0, · · · , αk),

(75) ‖Pαk
UηPαk−1

· · ·UηPα0Op(χ(k))‖L2(M) ≤ CK~− 1
2 e2kηǫ0ǫ exp



−1

2

k−1
∑

j=0

f(σjα)



 ,

using the previous notations from section A.2.

We underline that the parameter ǫ0ǫ is a small parameter that we choose to be proportional
to ǫ0 for simplicity (as kηǫ0 will be bounded by nE(~) in the following). In [5], the proof of
this theorem was based on a WKB expansion. The same proof works: we just mention certain
points that need attention. We refer the reader to [5] for the detailed proof. The first point
we underline is that they used the fact that an Anosov manifold has no conjugate points. This
property remains true in the case of manifolds of nonpositive curvature [16]. The second point is
that they used that under the flow a vector V in the vertical space Vρ tends exponentially fast to
the unstable direction. In fact, one only needs the fact that dρg

tVρ converges uniformly to Eu(ρ).
This modification requires a multiplicative correction factor of order Cekηδ (with δ arbitrarly small
that we will choose equal to ǫ0ǫ) that depends on the length of the word α (with C independent
of ρ and α). This property holds as was mentioned by lemma A.1 and works only in dimension 2
for nonpositively curved manifolds. A last point that should be adapted is that the contraction of
g−1 along Eu(ρ) can be understood in term of the unstable Riccati solution. Using section A.1,
we know that for positive t:

|dρg−t|Eu(ρ)| ≤
√

1 +K0‖Juρ(−t)‖,

and that this quantity behaves like e
∫

−t

0
Uu

ρ (s)ds where Uuρ (s) is the unstable Riccati solution in ρ.
As the manifold M is compact and of nonpositive curvature, we can use inequality (74) to replace
∫ −kη

0 Uuρ (s)ds by −∑j f(σjα). This modification also introduces a multiplicative correction factor

ekηǫ0ǫ that depends on the length of the word α.
In theorem 5.6, the functions f and f0 coincide as they are both bounded from below by the same
constant. The fact that f0(γ) is positive (bounded from below by ηǫ0) allows to define a stopping
time by using the sets, for any real number t (f0 ≥ ǫ0 ensures that we consider finite sequences):

Iη(t) :=

{

α = (α0, · · · , αk) : k ≥ 3,

k−2
∑

i=1

f0
(

σiα
)

≤ t <

k−1
∑

i=1

f0
(

σiα
)

}

,

As the upper bound in previous theorem can be of order ~− 1
2 (if f is equal to 0 for all the sequence),

the lower bound in the uncertainty principle can be empty if we proceed as in the case of an Anosov
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surface (see section 5.3). To solve this complication, we introduce a quantum pressure as in [5]
and [3]:

(76) pcτ,t(ψ~) := hcπ(ψ~) − 2
∑

α∈Iη(t)

cα‖ταψ‖2 logWα

(see section 5.3 for definition of hc). In the previous expression, we defined the weights

Wα := exp





1

2

k−1
∑

j=1

f(σjα)



 .

We underline that this quantity is larger than 1 and that the function that appears is f and
not f0 (see theorem A.2). In the Anosov, this complication was not necessary as all Wα were of

order ~− 1
2 and the introduction of this correction term was not useful. According to corollary 2.5

from [5], we can rewrite corollary 5.5 as an uncertainty principle for quantum pressures associated
to quantum partitions of identity:

Proposition A.3. With obvious adaptation of notations from section 5.3, we have:

pcτ,TE(~)(ψ~) + pcπ,TE(~)(ψ~) ≥ −2 log
(

c̃χ(U−η) + ~L−K0
)

− log

(

max
γ

cγ

)

,

where

c̃χ(U
−η) := max

γ∈{1,··· ,K}2
max

α∈I~(γ),β∈K~(γ)

(

WαW
β‖τ̃αU−ηπ̃∗

βOp(χ(k′))‖
)

.

Thanks to theorem A.2 and as (k + k′)ǫ0η ≤ 2| log ~|, we know that the lower bound is of
order − logCK − 1

2 (1 + ǫ′ + 4ǫ)nE(~). Then, as in section 4.2 and 5.2, we can make a symbolic
interpretation of this quantum pressure. To do this, we introduce for each atom A of the partition

∨nE(~)−1
j=0 σ−jC (which corresponds to a family (γ0, · · · , γnE(~)−1)) the weights:

WA :=

nE(~)−1
∏

j=0

Wγj
.

We also define the refined pressure at time nE(~):

pnE(~)

(

µΣ
~ , σ, C

)

:= HnE(~)

(

µΣ
~ , σ, C

)

− 2
∑

A∈∨
nE(~)−1

j=0 σ−jC

µΣ
~ (A) logWA.

Then, following proposition 5.3 and with obvious adaptation of the notations for the backward
side, we can rewrite the result of proposition 4.3 as follows:

−2
logCK

nE(~)
− 2ǫ− (1 + ǫ′ + 4ǫ) ≤ 1

nE(~)

(

pnE(~)

(

µΣ
~ , σ, C

)

+ pnE(~)

(

µ
Σ−

~
, T , C−

))

.

The aditional ǫ that appears is due to the fact that to each atom A corresponds an unique α′

(see proposition 5.3) and WA is not exactly equal to its corresponding weight Wα′ . Mimicking the
proof for Anosov surfaces, we need to prove the following subadditivity property:

Theorem A.4. Let C be the partition of lemma 4.2. There exists a function R(n0, ~) on N×(0, 1]
and R independent of n0 such that

∀n0 ∈ N, lim sup
~→0

|R(n0, ~)| = R.

Moreover, for any ~ ∈ (0, 1] and any n0,m ∈ N such that n0 +m ≤ nE(~), one has:

pn0+m

(

µΣ
~ , σ, C

)

≤ pn0

(

µΣ
~ , σ, C

)

+ pm

(

µΣ
~ , σ, C

)

+R(n0, ~).
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As in theorem 4.4, this result came from the almost invariance of the measure µΣ
~

under σ
(proposition 6.2). In fact, compared to the Anosov case, the corection term in the pressure also
follows a subadditivity property: we can mimick the proof from [5] (section 4.2) based on the
invariance of the measure for logarithmic times. So, as in section 6, we only have to verify the
almost invariance of the measure for logarithmic times. It requires to verify that the proof of
theorem 7.1 still works in the case of surfaces of nonpositive curvature. The key point of the
proof of theorem 7.1 is that in the allowed range of times |dρgt| is bounded by some ~−ν (with
ν < 1/2). We know that to each ρ we can associate a word α of length k (see section 7.2.2
for notations). The range of times we will consider will be 0 ≤ t ≤ kη. To prove previous
property in the case of surfaces of nonpositive curvature, we use the splitting of TρS

∗M given by
RXH(ρ)⊕Eu(ρ)⊕Vρ. These three subspaces are uniformly transverse so we only have to give an
estimate of ‖dρgtE→T∗

gtρ
M‖ when E is one of them. In the case where E = RXH(ρ), it is bounded

by 1 and in the case where E = Eu(ρ), it is bounded by
√

1 +K0e
∫

t

0
Uu

ρ (s)ds. In the last case,
lemma A.1 tells us that the spaces dρg

tVρ and Eu(gtρ) become uniformly close (in direction) to
each other. Then, we consider e0 a unit vector in Vρ and for 0 ≤ p ≤ k − 1, we define the epη as

the unit vector
dρg

pηe0
‖dρgpηe0‖

. We can write:

‖dρgkηe0‖ = |〈dρgkηe0, ekη〉| = |〈dg(k−1)ηρg
ηe(k−1)η, ekη〉 · · · 〈dρgηe0, eη〉|.

We also define the corresponding sequence eupη :=
dρg

pηeu
0

‖dρgpηeu
0 ‖

of unit unstable vectors, where eu0 :=

(Ju
ρ (0),Ju′

ρ (0))

‖(Ju
ρ (0),Ju′

ρ (0))‖
. From lemma A.1, we know that epη becomes uniformly close (in ρ) to eupη. So, up

to an error term of order Cekηδ (with C uniform in ρ and δ arbitrarly small), we have:

‖dρgkηe0‖ ≤ Cekηǫ0ǫ|〈dg(k−1)ηρg
ηeu(k−1)η, e

u
kη〉 · · · 〈dρgηeu0 , euη〉| = Cekηδ‖dρgkη|Eu(ρ)‖.

Finally, taking δ = ǫ0ǫ, we have that ‖dρgkη‖ is bounded by Cekηǫ0ǫe
∫

kη

0
Uu

ρ (s)ds (with C uniform
in ρ). For the allowed words, ekηǫ0ǫ is of order ~−ǫ (as kηǫ0 ≤ 1/2nE(~)). To conclude, we can
estimate:

∣

∣

∣

∣

∣

∣

∫ kη

0

Uuρ (s)ds−
k−1
∑

j=0

f(σjα)

∣

∣

∣

∣

∣

∣

≤
k−1
∑

j=0

∣

∣

∣

∣

∣

∫ (j+1)η

jη

Uuρ (s)ds− f(σjα)

∣

∣

∣

∣

∣

.

To bound this sum, we can use the continuity of Uu (see inequality (74)) to show that this quantity

is bounded by ǫ| log ~|. By definition of the allowed words α, we know that
∑k−1

j=0 f(σjα) ≤
1/2nE(~). This allows to conclude that |dρgt| is bounded by some C~−ν (with C independent of
ρ and ν < 1/2).
Now, we can reproduce the subadditivity argument from the outline of the proof, let ~ tends to
0 and substitute the smooth partitions by true partitions (see section 4.4 for details). We have
finally:

−3ǫ− 1 − ǫ′ − R

n0
≤ 1

n0

(

pn0

(

µΣ, σ, C
)

+ pn0

(

µΣ− , T , C−

))

.

We can use the multiplicative property of WA to write:

∑

A∈∨
n0−1

j=0 σ−jC

µΣ(A) logWA =
∑

A0,··· ,An0−1∈C

µΣ(A0 ∩ · · · ∩ σ−(n0−1)An0−1)

n0−1
∑

j=0

logWAj
.

After simplification and using the fact that C is a partition, we can let n0 tends to ∞ and apply
the Abramov theorem as in the outline of the proof (see section 4.4). We find (as hKS(µ, g) =
hKS(µ, g−1)):

∑

γ∈{1,··· ,K}2

f0 (γ)µΣ ([γ])



−3ǫ− 1

2
(1 + ǫ′) + 2

∑

A∈C

µΣ(A) logWA



 ≤ ηhKS(µ, g).
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After simplification, we find that:

−
∑

γ∈{1,··· ,K}2

f0 (γ)µΣ ([γ])

(

3ǫ+
1

2
(1 + ǫ′)

)

+
∑

γ∈Iη(1)

f0(γ)µ
Σ([γ]) logWγ ≤ ηhKS(µ, g).

At this point of the discussion, we would like to underline that our choice of Iη(1) (and of the
associated partition C) was quite arbitrary in the setting of nonpositive curvature. In fact, as was
discussed earlier, the unstable Riccati solution measures the growth along the unstable direction at
an infinitesimal level whereas the unstable jacobian were describing it in time 1 (see section A.1).
So the choice of time 1 was justified for the unstable jacobian while for the Riccati solution, a
more appropriate choice would be 1/N0 for a large integer N0 (such that ǫ′ << 1/N0 << ǫ0). We
can consider the family Iη(1/N0) (and the corresponding partition CN0). The previous inequality
would have been:

−
∑

γ∈{1,··· ,K}2

f0 (γ)µΣ ([γ])

(

3ǫ+
1

2N0
(1 + ǫ′)

)

+
∑

γ∈Iη(1/N0)

f0(γ)µ
Σ([γ]) logWγ ≤ η

N0
hKS(µ, g).

With the notations of the outline of the proof (see section 4.4), we define for ρ ∈ Eθ:

F0(ρ) :=
∑

γ∈Iη(1/N0)

f0(γ) logWγ1Oγ0
(ρ) · · ·1Oγk

◦ gkη(ρ).

We underline that for each ρ in Eθ, there exists an unique γ in Iη(1/N0) such that 1Oγ0
(ρ) · · ·1Oγk

◦
gkη(ρ) is non zero (it is then equal to 1). We define

X0 :=

{

ρ ∈ Eθ : ∀0 ≤ t ≤ 1

N0ǫ0
, Uu(gtρ) > 2ǫ0

}

.

We can verify that F0(ρ) ≥ (1/N0)
∑

γ0,γ1
f0(γ)1X0(ρ)1Oγ0

(ρ)1Oγ1
◦ gη(ρ) for all ρ in Eθ (we

underline that we used the fact that ǫ < ǫ0, inequality (19) and that kη ≤ 1/(N0ǫ0)). We can
substitute this inequality on the previous bound on the entropy, let the diameter of the partition
(and θ) tend to 0 and simplify by η. We find then:

−
(

1

2N0
(1 + ǫ′) + 3ǫ

)∫

S∗M

f0(ρ)dµ(ρ) +
1

N0

∫

S∗M

f0(ρ)1X0(ρ)dµ(ρ) ≤ 1

N0
hKS(µ, g).

Finally, we let η, ǫ, ǫ′ tend to 0 (in this order) and simplify by 1/N0. We find the following bound
on the entropy:

−1

2

∫

S∗M

f0(ρ)dµ(ρ) +

∫

S∗M

f0(ρ)1X0 (ρ)dµ(ρ) ≤ hKS(µ, g).

We let now N0 tend to infinity and then ǫ0 tend to 0 (in this order). We find finally the expected
lower bound:

1

2

∫

S∗M

Uu(ρ)dµ(ρ) ≤ hKS(µ, g).�

Appendix B. Pseudodifferential calculus on a manifold

In this appendix, a few facts about pseudodifferential calculus on a manifold and the sharp
energy cutoff used in this paper are recalled. Even if most of this setting can be found in [5], it is
recalled because it is extensively used in section 6.2 and 7. The results from the two first sections
of this appendix can be found in more details in [31] or [5]. The results of the last section of this
appendix are the extension to the case of a manifold of standard results from semiclassical analysis
that can be found either in [9], [13] or [17].
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B.1. Pseudodifferential calculus on a manifold. In this section, some facts of pseudodiffer-
ential calculus that can be found in [13] or in [17] are recalled. Recall that we define on R2d the
following class of symbols:

Sk(〈ξ〉m) :=
{

a ∈ C∞(R2d) : |∂αx ∂βξ a| ≤ Cα,β~−k〈ξ〉m−|β|
}

.

Let M be a smooth Riemannian d-manifold without boundary. Consider a smooth atlas (fl, Vl)
of M , where each fl is a smooth diffeomorphism from Vl ⊂ M to a bounded open set Wl ⊂ Rd.
To each fl correspond a pull back f∗

l : C∞(Wl) → C∞(Vl) and a canonical map f̃l from T ∗Vl to
T ∗Wl:

f̃l : (x, ξ) 7→
(

fl(x), (Dfl(x)
−1)T ξ

)

.

Consider now a smooth locally finite partition of identity (φl) adapted to the previous atlas (fl, Vl).
That means

∑

l φl = 1 and φl ∈ C∞(Vl). Then, any observable a in C∞(T ∗M) can be decomposed
as follows: a =

∑

l al, where al = aφl. Each al belongs to C∞(T ∗Vl) and can be pushed to a

function ãl = (f̃−1
l )∗al ∈ C∞(T ∗Wl). As in [17], define the class of symbols of order m and index

k:

(77) Sm,k(T ∗M) :=
{

a ∈ C∞(T ∗M) : |∂αx ∂βξ a| ≤ Cα,β~−k〈ξ〉m−|β|
}

.

Then, for a ∈ Sm,k(T ∗M) and for each l, one can associate to the symbol ãl ∈ Sk(〈ξ〉m) the
standard Weyl quantization:

Opw
~
(ãl)u(x) :=

1

(2π~)d

∫

R2d

e
ı
~
〈x−y,ξ〉ãl

(

x+ y

2
, ξ; ~

)

u(y)dydξ,

where u ∈ S(Rd), the Schwartz class. Consider now a smooth cutoff ψl ∈ C∞
c (Vl) such that ψl = 1

close to the support of φl. A quantization of a ∈ Sm,k is then defined in the following way:

(78) Op
~
(a)(u) :=

∑

l

ψl ×
(

f∗
l Opw

~
(ãl)(f

−1
l )∗

)

(ψl × u) ,

where u ∈ C∞(M). According to the appendix of [17], the quantization procedure Op~ sends
Sm,k(T ∗M) onto the space of pseudodifferential operators of order m and of index k, denoted
Ψm,k(M). It can be shown that the dependence in the cutoffs φl and ψl only appears at order
2 in ~ and the principal symbol map σ0 : Ψm,k(M) → Sm,k/Sm,k−1(T ∗M) is then intrinsically
defined. All the rules (for example the composition of operators, the Egorov theorem) that holds
in the case of R2d still holds in the case of Ψm,k(M). Because our study concerns behavior of
quantum evolution for logarithmic times in ~, a larger class of symbols should be introduced as
in [13] or [17], for 0 ≤ ν < 1/2:

(79) Sm,kν (T ∗M) :=
{

a ∈ C∞(T ∗M) : |∂αx ∂βξ a| ≤ Cα,β~−k−ν|α+β|〈ξ〉m−|β|
}

.

Results of [13] can be applied to this new class of symbols. For example, a symbol of S0,0
ν gives a

bounded operator on L2(M) (with norm independent of ~).
As was explained, one needs to quantize the sharp energy cutoff χ(.) (see section 5.3.1) to get sharp
bounds in 5.6. As χ(0) localize in a strip of size ~1−δ with delta close to 0, the m-th derivatives
transversally to E grows like ~m(δ−1). As δ is close to 0, χ(0) does not belongs to the previous
class of symbols that allows ν < 1/2. However, as the variations only appears in one direction,
it is possible to define a new pseudodifferential calculus for these symbols. The procedure taken
from [31] is briefly recalled in [5] (section 5) and introduces a class of anisotropic symbols S−∞,0

E,ν′

(where E := S∗M and ν′ < 1) for which a quantization procedure OpE,ν′ can be defined. In the

next section, we recall briefly a few results about the quantization OpE,ν′(χ(n)) of the symbol χ(.).

B.2. Energy cutoff. Let χ(.) be as in section 5.3.1. Consider δ > 0 and Kδ associated to it (see
section 5.3.1). Taking ν′ = 1−δ, it can be checked that the cutoffs defined in section 5.3.1 belongs

to the class S−∞,0
E,ν′ defined in [5]. A pseudodifferential operator corresponding to it can be defined

following the nonstandard procedure mentioned above. Using results from [5] (section 5), one has
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‖OpE,ν′(χ(n))‖ = 1 + O(~ν
′/2) for all n ≤ Kδ| log ~|. For simplicity of notations, in the paper

Op(χ(n)) := OpE,ν′(χ(n)). In [5], it is also proved that:

Proposition B.1. [5] For ~ small enough and any n ∈ N such that 0 ≤ n ≤ Kδ| log ~| and for
any ψ~ = −~2∆ψ~ eigenstate, one has:

‖ψ~ − Op(χ(n))ψ~‖ = O(~∞)‖ψ~‖.
Moreover for any sequence α and β of length n less than Kδ| log ~|, one has:

∥

∥

∥

(

1 − Op
(

χ(n)
))

ταOp
(

χ(0)
)∥

∥

∥ = O(~∞)
∥

∥

∥

(

1 − Op
(

χ(n)
))

πβOp
(

χ(0)
)∥

∥

∥ = O(~∞)

where τ and π are given by (23) and (24).

This proposition tells that the quantization of this energy cutoff exactly have the expected
property, meaning that it preserves the eigenfunction of the Laplacian. So, in the paper, introduc-
ing the energy cutoff Op(χ(n)) does not change the semiclassical limit. Moreover this proposition
implies the following corollary that allows to apply theorem 2.1 in section 5.3.2:

Corollary B.2. [5] For any fixed L > 0, there exists ~L such that for any ~ ≤ ~L, any n ≤
Kδ| log ~| and any sequence of length n, the Laplacian eigenstate verify

∥

∥

∥

(

1 − Op
(

χ(n)
))

πβψ~

∥

∥

∥ ≤ ~L‖ψ~‖.

A last property of the quantization of this cutoff that we can quote from [5] is that we can
restrict ourselves to study observables carried in a thin neighborhood around S∗M = H−1(1/2):

Proposition B.3. [5] For ~ small enough and any n ∈ N such that 0 ≤ n ≤ Kδ| log ~|/2, one
has:

∀|γ| = n, ‖τγOp(χ) − τfγOp(χ)‖ = O(~∞),

where P fγj
= Op

~
(Pγj

f), f is a smooth compactly supported function in a thin neighborhood of E
and τfγ = P fγn−1

((n− 1)η) · · ·P fγ0 .

B.3. ~-expansion for pseudodifferential operators on a manifold. The goal of this last
section is to explain how the usual ~-expansion of order N for composition of pseudodifferential
operators and Egorov theorem can be extended in the case of pseudodifferential calculus on a
manifold. Except for terms of order 0, the ~-expansion will depend on the partition of identity
in section B.1. In fact, on a manifold, the formulas for the terms of order larger than 1 on the
~-expansion will depend on the local coordinates. For simplicity and as it is the case of all the
symbols we consider (thanks to the energy cutoff: for example, see proposition B.3), we now
restrict ourselves to symbols supported in Eθ = H−1([1/2 − θ, 1/2 + θ]). The symbols are now
elements of S−∞,0

ν (T ∗M).

B.3.1. Composition of pseudodifferential operators on a manifold. First, recall that the usual
semiclassical theory on Rd (see [13] or [17]) tells that the composition of two elements Opw~ (a)
and Opw~ (b) in Ψ−∞,k

ν (Rd) is still in Ψ−∞,k
ν (Rd) and that its symbol is of support equal to

supp(a) ∩ supp(b). More precisely, it says that Opw
~
(a) ◦ Opw

~
(b) = Opw

~
(a♯b), where a♯b is in

S−∞,k
ν and its asymptotic expansion in power of ~ is given by the Moyal product:

(80) a♯b(x, ξ) ∼
∑

k

1

k!

(

ı~

2
ω(Dx, Dξ, Dy, Dη)

)k

a(x, ξ)b(y, η)|x=y,ξ=η,

where ω is the standard symplectic form. Outline that it is clear that each element of the sum is
supported in supp(a)∩supp(b). As quantization on a manifold is constructed from quantization on
R2d (see definition (78)), one can prove an analogue of this asymptotic expansion in the case of a
manifold M (except that it will not be intrinsically defined). Precisely, let a and b be two symbols
in S−∞,0

ν (T ∗M). For a choice of quantization Op~ (that depends on the coordinates maps), one
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has Op~(a) ◦ Op~(b) is a pseudodifferential operator in Ψ−∞,0
ν (M). Its symbol is denoted a♯Mb

and its asymptotic expansion is of the following form:

a♯M b ∼
∑

p≥0

~p(a♯M b)
p.

In the previous asymptotic expansion, (a♯M b)
p is a linear combination (that depends on the

cutoffs and the local coordinates) of elements of the form ∂γa∂γ
′

b with |γ| ≤ p and |γ′| ≤ p. As a
consequence, (a♯M b)

p is an element of Sm,2pνν (T ∗M).

Remark. We know that we have an asymptotic expansion so by definition and using Calderon-
Vaillancourt theorem, we know that each remainder is bounded in norm by a constant which is
a small power of ~ (in fact C~(N+1)(1−2ν) for the remainder of order N). In our analysis, we
need to know precisely how these bounds depend on a and b as we have to make large product
of pseudodifferential operators (see section 7) and to use the composition formula to get Egorov
theorem (see next section). The following lines explain how the remainder in the asymptotic
expansion in powers of ~ is bounded by the derivatives of a and b.

In the appendix of [9], they defined the remainder of the order N expansion, in the case of R2d:

~N+1RN+1(a, b, ~) := a♯b−
N
∑

p=0

~p(a♯b)p

and, using a stationary phase argument, they get the following estimates on the remainder, for all
γ and all N :

|∂γzRN+1(a, b, z, ~)| ≤ ρdK
N+|γ|
d (N !)−1 sup

(∗)

|∂(α,β)+µ
u a(u+ z)||∂(β,α)+ν

v b(v + z)|,

where (∗) means:

u, v ∈ R2d × R2d, |µ| + |ν| ≤ 4d+ |γ|, |(α, β)| = N + 1, α, β ∈ Nd.

Applying Calderon-Vailancourt theorem (see [13] or [17]), one knows that there exist a constant
C and a constant M (depending only on d), such that for a symbol a in S0

ν(1):

‖Opw~ (a)‖L2 ≤ C sup
|α|≤M

~
|α|
2 ‖∂αa‖∞.

Combining this result with the previous estimates on the R(N+1), one finds that:

(81) ‖Opw
~
(RN+1(a, b, z, ~))‖L2 ≤ C(d,N) sup

(∗)

~
|α|
2 ‖∂β+β′

a‖∞‖∂γ+γ′

b‖∞,

where (∗) means:

|α| ≤ C′, |β| ≤ N + 1, |γ| ≤ N + 1 and |β′| + |γ′| ≤ C + |α|.
The constants C and C′ depend only on the dimension d. The same kind of estimates holds on the
remainder in the asymptotic expansion for change of variables. As the asymptotic expansion for
composition of pseudodifferential operators is obtained from the composition and variable change
rules on Rd [17], the previous estimates (81) hold for semiclassical analysis on a manifold.

B.3.2. Egorov expansion on a manifold. In this section, we want to recall how we prove an Egorov
property with an expansion of any order. We follow the proof from [9]. First, for the order 0 term,
we write the following exact expression for a symbol a:

(82) U−tOp~(a)U t − Op~(a(t)) = ~

∫ t

0

U−s(Diffat−s)Usds,

where a(t) := a ◦ gt, H(ρ) =
‖ξ‖2

x

2 is the Hamiltonian and

Diffat :=
1

~

( ı

~
[−~2∆,Op~(a(t))] − Op~({H, a(t)})

)

.
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It can be also written with the notations of the previous section:

Diffat := ı(R2(H, a(t), ~) −R2(a(t), H, ~)),

where Ri is now the remainder of the order i expansion in the composition of two pseudodifferential
operators on a manifold. We proceed then by induction to recover the terms of higher order. For
these higher order terms, we will see terms depending on the local coordinates appear in the
expansion and we will obtain expressions as in [9] for the higher order terms of the expansion that
will be different from the case of Rd [9]. However, we do not need to have an exact expression
for each term of the expansion: we only need to know on how many derivatives the order p term
depends and how the remainder can be bounded at each step. To obtain, the ~ formal term of the
Egorov expansion, we first outline that Diffat is a pseudodifferential operator whose asymptotic
expansion is given by the composition rules on a manifold (see previous section). Then, we can
apply the same procedure as in equation (82) to get the exact expression:

Op
~
(a)(t) = Op

~
(a(1)(t)) + ~2

∫ t

0

U−sOp
~

(

R(2)(t− s)
)

Usds.

In this equation, we have, according to the composition rules on a manifold:

a(1)(t) := a ◦ gt + ı~

∫ t

0

((H♯Ma(t− s))2 − (a(t− s)♯MH)2) ◦ gsds.

According to the rules for composition of pseudodifferential operators, (H♯Ma(t− s))2 is a linear
combination of derivatives of H(x, ξ)a(t− s)(y, η) of order less than 4 with at most 2 derivatives
of a in each term. We denote the previous formula in a more compact way:

a(1)(t) := a0(t) + ~a1(t),

where a1(t, ρ) :=

∫ t

0

{H, a0(t− s)}(1,0)
M (gs(ρ)) ds. As was mentioned, this generalized ’bracket’ is

a differential operator of order less than 4 applied to the product H(x, ξ)a(t − s)(y, η) (with at
most 2 derivatives for at−s). The remainder R(2) is a linear combination of terms of the form
R3(H, a0(t), ~) and R2(H, a1(t), ~) (where Ri was defined in the previous section as the remainder
in the composition of two pseudodifferential operators). Proceeding by induction and using the
same procedure as for the term of order 1, we can show that for any order N :

Op
~
(a)(t) = Op

~
(a(N)(t)) + ~N+1

∫ t

0

U−sOp
~

(

R(N+1)(t− s)
)

Usds.

In the previous formula, a(N)(t) is defined as follows:

a(N)(t) :=

N
∑

p=0

~pap(t) where a0(t) := a ◦ gt

and for 1 ≤ p ≤ N :

ap(t, ρ) :=

p−1
∑

j=0

∫ t

0

{H, aj(t− s)}(p,j)
M (gs(ρ)) ds,

where {., .}(p,j)
M is a generalized ’bracket’ of order (p, j) depending on the local coordinates on the

manifold (it is the analogue of formula given by theorem 1.2 in [9]). We do not need to have an
exact expression for these brackets: we only need to know on how many derivatives it depends.
From the previous section, we know how the order p term in the expansion of a♯M b depends
linearly on products of the p derivatives of a and b. The term {H, a0(t− s)}(p,0) comes from the
order p + 1 term of the asymptotic expansion of Diffat. According to the rules of composition
of pseudodifferential operators on a manifold, it is a linear combination of product of derivatives
of a of order less than p + 1 and of derivatives of H of order less than p + 1. More generally,

{H, aj(t − s)}(p,j)
M is a linear combination of product of derivatives of aj(t) of order less than

p− j+1 and of derivatives of H of order less than p− j+1. For the remainder term R(N+1)(s) of
order N , using the formulas for the composition of pseudodifferential operators, it can be shown
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that it is a linear combination of terms of the form RN+2−j(H, aj(t), ~) for 0 ≤ j ≤ N (where Ri
was defined in the previous section as the remainder in the composition of two pseudodifferential
operators). Recall that the estimates for the norms of the Op~(Ri) still hold on a manifold
with slight modifications: it depends on estimates on the derivatives of H and aj. The previous
discussion can be summarized in the following proposition:

Proposition B.4 (Egorov expansion on a manifold). Let a be a symbol in S−∞,0
ν . One has the

exact expression for every N ≥ 0:

(83) Op~(a)(t) = Op~(a(N)(t)) + ~N+1

∫ t

0

U−sOp~

(

R(N+1)(a)(t− s)
)

Usds.

In the previous formula, one has:

a(N)(t) :=

N
∑

p=0

~pap(t) where a0(t) := a ◦ gt

and for 1 ≤ p ≤ N :

ap(t, ρ) :=

p−1
∑

j=0

∫ t

0

{H, aj(t− s)}(p,j)
M (gs(ρ)) ds.

For each 0 ≤ j ≤ p − 1, {H, aj(t − s)}(p,j)
M is a linear combination of the p + 1 − j derivatives

of aj(t − s) that depends on the choice of coordinates on the manifold. Finally, the norm of

Op~(R(N+1)(a)(t)) satisfies the following bound:

(84) ‖Op~(R(N+1)(a)(t))‖L2 ≤ C(d,N) sup
(∗)

~
|α|
2 ‖∂β+β′

(aj(s)) ‖∞,

where (∗) means:

j ≤ N + 1, 0 ≤ s ≤ η, |α| ≤ C′, |β| ≤ N + 2 − j and |β′| ≤ C + |α|.
The constants C and C′ depend only on the dimension of the manifold.

Remark. Theorem 1.2 in [9] gives an exact expression of each term of this exact expansion in the
case of R2d. In our analysis, we do not need an exact expression but only to know the dependence
on the derivatives of a. In fact, an exact expression would be very hard to explicit as it would
depend on the choice of the atlas on the manifold. Finally, outline that equation (83) is an exact
expression.
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[20] A. Freire, R. Mañé On the entropy of the geodesic flow for manifolds without conjugate points, Inv. Math. 69,
375-392 (1982)

[21] L. Green Geodesic instability, Proc. of Amer. Math. Soc. 7, 438-448 (1956)
[22] B. Gutkin Entropic bounds on semiclassical measures for quantized one-dimensional maps, arXiv:0802.3400

(2008)
[23] D. Kelmer Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus, to

appear in Ann. of Math.
[24] F. Ledrappier, L.-S. Young The metric entropy of diffeomorphisms I. Characterization of measures satisfying

Pesin’s entropy formula, Ann. of Math. 122, 509-539 (1985)
[25] E. Lindenstrauss Invariant measures and quantum unique ergodicity, Ann. of Math. 163, 165-219 (2006)
[26] H. Maassen, J.B. Uffink Generalized entropic uncertainty relations, Phys. Rev. Lett. 60, 1103-1106 (1988)
[27] Z. Rudnick, P. Sarnak The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. in Math. Phys.

161, 195-213 (1994)
[28] D. Ruelle An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat. 9, 83-87 (1978)
[29] R. O. Ruggiero Dynamics and global geometry of manifolds without conjugate points, Ensaios Mate. 12, Soc.

Bras. Mate. (2007)
[30] A. Shnirelman Ergodic properties of eigenfunctions, Usp. Math. Nauk. 29, 181-182 (1974)
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