Artificial intelligence powered data-driven method for Shape Memory Alloy behavior modeling - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Artificial intelligence powered data-driven method for Shape Memory Alloy behavior modeling

Wei Yan
  • Fonction : Auteur
  • PersonId : 1474640
Heng Hu
  • Fonction : Auteur
  • PersonId : 1113929

Résumé

In this paper, we propose an artificial intelligence (AI) powered data-driven computing method (DDCM) for shape memory alloy (SMA) behavior modeling. DDCM can directly use material behavior data to simulate thermomechanical behavior, bypassing complex constitutive modeling. The recurrent neural network (RNN) model are utilized to expand existing data collected from numerical simulations with simple loading and unloading conditions. The combination of DDCM and AI provides an alternative way for material development with less prior knowledge and good problem migration.
Fichier principal
Vignette du fichier
hal-04822949.pdf (1.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04822949 , version 1 (06-12-2024)

Identifiants

  • HAL Id : hal-04822949 , version 1

Citer

Wei Yan, Tarak Ben Zineb, Hamid Zahrouni, Heng Hu. Artificial intelligence powered data-driven method for Shape Memory Alloy behavior modeling. CSMA 2024, CNRS, CSMA, ENS Paris-Saclay, Centrale Supélec, May 2024, Giens, France. ⟨hal-04822949⟩
0 Consultations
0 Téléchargements

Partager

More