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Résumé — In this paper, we propose an artificial intelligence (Al) powered data-driven computing
method (DDCM) for shape memory alloy (SMA) behavior modeling. DDCM can directly use material
behavior data to simulate thermomechanical behavior, bypassing complex constitutive modeling. The
recurrent neural network (RNN) model are utilized to expand existing data collected from numerical
simulations with simple loading and unloading conditions. The combination of DDCM and Al provides
an alternative way for material development with less prior knowledge and good problem migration.
Mots clés — Shape memory alloy, data-driven computing, artificial intelligence.

1 Introduction

SMAs are widely used smart materials in recent years because of their unique material behavior. Ho-
wever, this behavior involves strong nonlinearities and the coupling of multiple physical fields, results in
its complicated constitutive modeling [1]. The existed models always include a large number of internal
variables, lead that the computational cost in simulation become unaffordable. This work attempts to by-
pass complex constitutive modeling through model-free data-driven computing, and introduce artificial
intelligence technique to improve simulation efficiency [2, 3].

Data preparation of the SMA was carried out by several simple loading and unloading tests. Then, an
artificial neural network are utilized to expand existing data. Finally, the model-free data-driven compu-
ting of shape memory alloys were driven directly using data rather than constitutive models. Fig. 1 gives
an overview of the DDCM computational framework for SMA behavior modeling.
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FIGURE 1 — A flowchart of the Al powered DDCM for SMAs. (a) Uniaxial tension test; (b) Pure shear
test; (c) Biaxial tension test; (d)Initial sampling data from (a) to (c); (¢) Architecture of recurrent neural
network (RNN) [4]; (f) Computing the hidden state in an LSTM model [4]; (h) Data slicing and subset-
ting for local material data; (g) Fixed-point computing in DDCM.



2 Methods

2.1 SMA thermomechanical model

The 3D SMA constitutive model developed by Chemisky et al. [5], is implemented in Abaqus as a
C++ umat. The model describes microscopic mechanisms of the phase transformation, the martensite
reorientation and the twin accommodation, with an additive decomposition of strain :
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where ¢, e, €'" and € denote strains related to elasticity, thermal expansion, transformation and self-

accommodated twinning of martensite variants, S is the compliance tensor, « is the thermal expansion
tensor, T s is the reference temperature, f and fFA denote the martensitic volume fraction VVM and the
formed self-accommodated martensitic volume Vvﬂ respectively. The strains & and """ represent the
mean strain over the martensite volume and formed self-accommodated martensitic volume, respectively.

Considering the equilibrium temperature 7y = %—LS/ and a linear variation of entropy B = —4&S, the
thermodynamical potential (variation of Gibs free enregy) could be rewritten, neglecting the term related
to specific heat :
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The time derivative of Gibbs free energy gives the definition of the general thermodynamic force Ax

conjugated to the in internal variables Vj (Ay = %ATf). A natural choice is to consider four internal va-

riables, f, fT4, & and ™", As the self-accommodated martensitic behavior depends on the activated
martensite variants, the rate of f/* is dependent on that of f [5]. Thus, there is no driving force associated
to £, and the influence of the terms related to f™ are included in the transformation driving force A -
To obtain the evolution of internal variables, the dissipation is defined as :
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which is decomposed into two parts that the mechanical dissipation consisting of the first three items and
the remaining thermal dissipation. The mechanical dissipation associated with twin accommodation is so
low that it could be neglected, compared with the dissipation coming from transformation and orientation
mechanisms. The yield force of transformation is a function of B, Ty and additional parameters F,,{ax, By
and B,, and a linear function of the equivalent transformation strain is introduced to take into account the
stabilization of martensite. The criteria of forward and reverse transformation could be obtained :
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where H; is the dependence parameter, and | - |¢ corresponds to the Mises equivalent strain. An isotropic
criterion is chosen to describe the orientation surface :

‘AS" ’0 =fF smt (6)

where | - | corresponds to the Mises equivalent stress. Considering the physical limitations, the modified
driving forces expressed with Lagrange multipliers are defined as :
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in which Aer = f-Ag, and Agnin = f - AL,;,. Here, the evolution for phase transformation controlled
by the predefined yield and the driving forces has been formulated. These equations are considered
when all the thermodynamic transformation forces are activated. It is necessary to take into account
special cases when transformation and/or orientation are not activated and the effects of internal loops.
More details could be referred in [5]. These equations, depending on the activation condition for the
different mechanisms, lead to a system of equations to be solved for stress, and all the considered internal
variables. For a given increment of strain and temperature, the set of equations is solved using the return

mapping algorithm (RMA) [6].

2.2 Model-free data-driven computing

The idea of model-free data-driven computing is to directly formulate boundary value problem in
terms of the material data without requiring explicit material modeling [7]. A distance functional of ma-
terial data (&', o) and mechanical state (e, o) are defined to describe the mutual matching of constitutive
relation and system equilibrium. The local functional W in the material point e is formulated as :

Y¢(g,,0,) = min 1 [(se —ei) :C: (se —si) + (o-e —o-é) :C: (ae —o-é)] )
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which is minimized by searching over all data points in the database D. The pseudo-material tensor C
is a given numerical tensor and serves as a weight to ensure that the related strain and stress terms have
the same dimension [8]. The core algorithm of data-driven method is to minimize the global distance
function under compatibility and equilibrium constraints :
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in which w, is the integration weight, B, is the matrix of spatial derivatives of the element shape func-
tions, u and f are the displacement and the body force vectors, respectively.

In the data-driven problem, the compatibility constraints can be satisfied by expressing the strains in
terms of displacements while the equilibrium constraints can be enforced by means of Lagrange multi-
pliers. A system of Euler-Lagrange equations could be obtained by taking the variations of unknowns in
the data-driven problem. This problem could be reformulated as a standard form that was easily solved
with finite element method. Then, a fixed-point iterations algorithm [9] was used to compute the material
datasets, mechanical stresses, and the states mapping as shown in Fig. 1 (h).

A natural extension of the data-driven paradigm just described concerns inelastic materials whose
response is irreversible and history dependent [10]. The instantaneous response of inelastic materials is
characterized by its dependence on the past history of deformation. By virtue of this history dependence,
the set of stress—strain pairs attainable at a material point depends itself on time. As shown in Fig. 1 (g),
the instantaneous local material data set could be defined as :

Dej+1 = {(€ek+1,Tek+1) : past local history} (10)

The challenge now is to formulate practical methods for characterizing the history dependence of local
material datasets, which can be achieved through the LSTM network mentioned in the next section.

2.3 Long Short-Term Memory (LSTM) network

The SMA thermomechanical behavior is a typical load-path dependent problem, the RNN architec-
ture is introduced to handle this load-path dependency or history dependency [11]. RNN captures the
dynamics of sequences via recurrent connections, which can be thought of as cycles in the network of
nodes. As the unfolded view in Fig. 1 (e), it is unrolled across time steps with the same underlying pa-
rameters applied at each step. However, recording the information of too many time steps will cause
the gradient vanish or explode in training. Therefore it is better to turn to Long-Short Term Memory



(LSTM) network that is capable to filter out unimportant information of long time series data. LSTM
network resemble standard recurrent neural networks but here each ordinary recurrent node is replaced
by a memory cell. Each memory cell contains an internal state that a node with a self-connected recurrent
edge of fixed weight 1, ensuring that the gradient can pass across many time steps without vanishing or
exploding.

As shown in Fig. 1 (f), a basic LSTM cell consists of four main gates : an input gate (for updating
and adding new information), a forget gate (for deciding which information is kept or forgotten from the
previous accumulated information), a memory gate (for giving the network a Long term memory of past
events) and an output gate (for predicting the next hidden state). The compact forms of LSTM gates [4]
are given by the following expressions :
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where W, r, W.i, Wy, Wy € RO and W, r, Wi, Wi, Wi € R are weights and by, b;,b,, b, € R
are bias. The operator ® denotes Hadamard (elementwise) product operator, s(-) is the sigmoid function
and tanh(-) is the hyperbolic tangent function. A stacked LSTM architecture has been built to enhance
its capabilities to capture more complex behaviors, which is deep not only in the time direction but also
in the input-to-output direction.

3 Results

3.1 Data preparation

A 3D cube composed of SMA is used to collect stress-strain data sequence. As an example shown
in Fig. 2, several loading-unloading cycles of tension are performed by this model with an hexahedral
linear element with reduced integration (C3D8R). The hourglass stiffness parameter is taken as 134.6
to prevent zero-energy modes. Following the constitutive model introduced in the previous section, the
material parameters of a NiTi alloy are given in Table. 1.

TABLE 1 — Material parameters of SMA
E(MPa) 70000 Bf(MPa°C~') 5  H/MPa) 4

v 0.3 B.(MPa°C~') 6  H,(MPa) 1000
A 0.06  M(°C) 20  Hy,,(MPa) 40000
gir A 0.05  As(°C) 50 Hy(MPa) 50
& up 0.04  F.(MPa) 100

A displacement load is applied on the top face, which gradually increases until it reaches a given
maximum value and is then released. The given maximum takes 100 values evenly in the range of 0.0007
to 0.07, resulting in a stress-strain data sequence of 100 loading paths. Each path length is 400 because
the load is applied or released equally through 200 steps. These 100 samples, the time series of length
400, are used to train the LSTM network and are expanded in the next section.

3.2 Data expansion

The generated data are split into training (80% of total samples), validation (10%) and test data sets
(10%). The LSTM network implementation is performed in matlab with the Deep Learning Toolbox.
Fig. 3 presents a comparison between the predicted stress components by the stacked LSTM network
and the test data. Although the performance of this LSTM network is not completely satisfactory, it can
be further improved when more training data is introduced. The result proves the potential of RNN as
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a surrogate model capable of characterizing the history dependent mechanical behaviors and expanding
existing data.
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FIGURE 2 — An example of data sampling from uniaxial tension loading paths.
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FIGURE 3 — Comparison between the predicted stress components by the stacked LSTM network and
the test data.

3.3 Data-driven computing

In the data-driven computing for history-dependent materials, the instantaneous local data set could
be obtained through the LSTM network trained previously. Fig. 4 shows the comparison of data-driven
computing with the traditional plastic FEM computing. The nonlinear behaviors of SMA, the evolution
of the non-complete and complete transformation, have been described accurately by DDCM. The results
show that data-driven computing can achieve the same level of accuracy as traditional methods. In the
following work, the efficiency of data-driven computing will be further improved by introducing big data
techniques [12].
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FIGURE 4 — Comparison of data-driven computing with traditional plastic FEM computing

4 Discussion

This paper presented a model-free data-driven method to simulate the behavior of SMA. This method
directly relies on material data characterizing the material behavior implicitly, rather than the explicit
constitutive model with various internal variables. Thus, it bypass the complicated extraction the consti-
tutive equation from the data and the time-consuming cost of calculating the internal variables, tangent
stiffness tensor and further additional information. Data density is extremely related to the accuracy of
DDCM. Al techniques perform nicely in expansion from initial sampling data, powered the model-free
data-driven computing efficiently. The combination of Al and DDCM avoids the problems in the directly
taking the ANN model replace the constitutive model in traditional FEM computing, such as lack of
physical explanation, overfitting and extra training cost.

The Al-powered data-driven computational method has demonstrated its potential for mechanical
behavior modeling of SMA. This standardized framework can be transferred to model behaviors of pie-
zoelectric materials, hydrogels, an other advanced smart materials by changing the material database.
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