SCALING LIMITS OF SOLITONS IN THE BOX-BALL SYSTEM
Résumé
We study the space-time scaling limits of solitons in the box-ball system with random initial distribution. In particular, we show that any recentered tagged soliton converges to a Brownian motion in the diffusive space-time scale, and also prove the large deviation principle for the tagged soliton under certain shift-ergodic invariant distributions, including Bernoulli product measures and two-sided Markov distributions. Furthermore, in the diffusive space-time scaling, we show that two tagged solitons converge to the same Brownian motion even if they are macroscopically far apart.
Fichier principal
Rigid_fluctuations_of_the_box_ball_system_in_low_density_regime-28.pdf (730.31 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|