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SCALING LIMITS OF SOLITONS IN THE BOX-BALL
SYSTEM

STEFANO OLLA', MAKIKO SASADA?, AND HAYATE SUDA?

ABSTRACT. We study the space-time scaling limits of solitons in the
box-ball system with random initial distribution. In particular, we show
that any recentered tagged soliton converges to a Brownian motion in
the diffusive space-time scale, and also prove the large deviation prin-
ciple for the tagged soliton under certain shift-ergodic invariant distri-
butions, including Bernoulli product measures and two-sided Markov
distributions. Furthermore, in the diffusive space-time scaling, we show
that two tagged solitons converge to the same Brownian motion even if
they are macroscopically far apart.

1. INTRODUCTION

An integrable many-body system is a deterministic dynamical system con-
sisting of an infinite type of quasi-local conserved quantities that behave like
particles interacting with each other. These quasi-local conserved quantities
are called quasi-particles. Solitary waves (solitons) in solitonic systems are
examples of quasi-particles. Recently, integrable many-body systems have
attracted much attention from the viewpoint of non-equilibrium statistical
mechanics, and in particular, generalized hydrodynamics, which describes
the macroscopic behavior of quasi-particles, see the reviews [D [Sp] and ref-
erences therein. In the Euler space-time scale, it is expected that the hydro-
dynamics is described by the following generalized hydrodynamic equation
(GHD equation) for y(u,t) = (y4 (u,t)), of the universal form, regardless of
models :

OYa (u,t) + Oy (UZH (¥ (us1)) Ya (u, t)) =0,

where y, (u,t) is the macroscopic density of quasi-particles of type a at
macroscopic coordinate (u,t),u € R,t > 0, and v¢¥ is called the effective
velocity of quasi-particles of type a. The specific form of the effective velocity
depends on the scattering rule between quasi-particles, and this is where the
differences among models arise. Although such studies have been rapidly
developed in the physics literature, and the GHD theory is expected to

! CEREMADE, UNIVERSITE PARIS DAUPHINE - PSL RESEARCH UNIVERSITY AND
INSTITUT UNIVERSITAIRE DE FRANCE, AND GSSI, L’AQUILA
2GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO
SDEPARTMENT OF PHYSICS, INSTITUTE OF SCIENCE TOKYO
2020 Mathematics Subject Classification. 37B15(primary) ; 82C22, 82C23 (secondary).
1



2 SCALING LIMITS OF SOLITONS IN THE BOX-BALL SYSTEM

be applicable for a wide class of integrable systems including classical and
quantum gases, chains and field theory models, very few rigorous results are
obtained till now, which are for the hard rods dynamics and its generalization
[BDS| FFGS], and the box-ball system (BBS) [CS].

While studies at the Euler scale have been progressing, there was no clear
physical prediction on the behavior in a longer time scale. Therefore, it
is important to obtain mathematically rigorous results on specific models
in order to derive the universality for integrable many-body systems in the
diffusive scale. Recently, by [FO], the fluctuations for hard-rods in diffusive
scale has been proved rigorously. The difference from diffusive fluctuations in
chaotic systems is the strong correlations between quasi-particles of the same
type, i.e., quasi-particles of the same type starting at macroscopic distance
converge to the same Brownian motion. However, the scattering rule in
the hard-rods does not depend on the velocity of quasi-particles. This is a
different feature from general integrable models, and no results have been
known for the case where the scattering rule depends on velocities of the
quasi-particles.

In this paper, we consider the BBS, which is a solitonic system with
a scattering rule depending on velocities of quasi-particles (solitons). We
rigorously show that any tagged soliton converges to a Brownian motion in
diffusive space-time scale, and also prove the large deviation principle for the
tagged soliton. This is the first mathematical result for the central limit
theorem and the large deviation principle for quasi-particles in integrable
systems with scattering rules depending on velocities of quasi-particles, un-
like the hard-rods. Furthermore, we rigorously prove that solitons of the
same type converge to the same Brownian motion, i.e., strong correlations
between quasi-particles as observed in the hard-rods. In order to roughly
describe the results, we first introduce the BBS below.

The BBS is a one-dimensional cellular automaton introduced by [TS],
whose integrable structure has been extensively studied in the past, see the
review [IKT] for details. The BBS exhibits solitonic behavior and is un-
derstood as a discrete counterpart of the KdV equation, which is a central
example of an integrable system having solitary wave solutions. The config-
uration space is {0, 1}%, where for 5 € {0,1}% and z € Z, n(z) = 1 means that
there is a ball at x, and n(z) = 0 means that x is empty. When the total num-
ber of 1s in 7 € {0, 1}% is finite, the one-step time evolution 7 — Ty € {0,1}”
is described by the following rules :

An empty carrier enters the system from the left end (i.e. —oco0) and
moves to the right end (i.e. o0);

If there is a ball at site x, then the carrier picks up the ball;

If the site x is empty and the carrier is not empty, then the carrier
puts down a ball;

Otherwise, the carrier just passes through.
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Clearly, the total number of 1s are conserved. If we denote by W(x) the
number of balls on the carrier at z, then W (:) satisfies W(z) = 0 for any
|z| > L with sufficiently large L >0, and

1 if n(x) =1,
W(z)-W(x-1)={-1 ifn(z)=0and W(z-1)>0, (1.1)
0  otherwise.
In addition, T'n can be represented by using W (-) as
Tn(z) =n(x)-W(z)+W(z-1). (1.2)

Figure [[l shows an example how Tn can be obtained from 7.

n: ... 110001 11 00110010110 0 O..
w: o0 1210012 3 212 3 21212 3 2 1 0..
Tn 0oo011o0O0O0OO0OT1T1O0O011010O0111..

FiGUure 1. W and T obtained from
n=...1100011100110010110000..., where ... represents
the consecutive 0Os.

It is known that the above rule can be extended to 7€ Q c {0, 1}Z, where
1 & 1 1 & 1
Q= ne{O,l}Z ;3 lm =Y n(y)<=, Ilim = > n(-y)<=¢,
r—>o0o I y:I 2 T—>00 » y:I 2

see Section [2 for details. We note that by [CKST], more detailed results are
obtained for the configuration space in which the dynamics of the BBS can
be defined via the Pitman transform.

In recent years, the BBS started from random initial configurations, called
the randomized BBS, has been studied in terms of its statistical aspects;
characterizations of classes of invariant measures for the randomized BBS
[CS2, [CKST), [FGI, limit theorems under invariant measures [CKST!, [FNRW,
KL, KLO18, [LLP, LLPS| [S]. Also, the randomized BBS has been studied
from the viewpoint of hydrodynamics for integrable systems [CS|, [KMP)
KMP2, KMP3]. Currently, only the BBS and hard-rods are known to
be mathematically tractable models for deriving hydrodynamics from in-
tegrable systems, and thus the BBS is recognized as an important model in
statistical mechanics.

In this article, we consider the BBS on the state space {0,1}* under
invariant measures, and derive the scaling limits of the tagged soliton. To
give an overview of our results, we introduce the law of large numbers for the
tagged soliton proved in [FNRW]. As mentioned at the beginning, the BBS
is a soliton system and there are infinite types of solitons in the BBS labeled
by positive integers k € N respectively, called k-soliton. A k-soliton consists
of k 1s and k 0s and is identified by a certain algorithm, see Section for
details. If there are only k-solitons in the configuration, then they move to
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right with velocity k£ at each time evolution. When solitons of different sizes
exist and a k-soliton is to the left of an ¢-soliton with ¢ < k, such solitons will
meet at some time and phase shift will occur between them. In particular,
during the interaction, the smaller soliton is stranded and cannot move. For
example, in the following figure showing the time evolution of BBS, red 1s
and Os constitute a 2-soliton and blue 1 and 0O constitute a 1-soliton, and
while the 2-soliton tries to overtake the 1-soliton, the 1-soliton cannot move
from its position.

i 1 10001O0O0O0OO0OO0OO0OO0OGO0OOO
Tn 001 10010O0O0O0O0O0GO0OO0OG®O
T?%n 000O011O01O0O0O0O0O0OGO0OO0OG®O
™n ... 000000101 1000O0O0O0
T ... 00 000 0O0 100110000

After the interaction, 1-soliton is shifted backward 2 sites and 2-soliton is
shifted forward 2 sites from where they should have come without interac-
tion. This is the phase shift. Thus, given a random initial configuration,
even if the time evolution rule of the BBS is deterministic, the position
of the tagged k-soliton at time n is randomized by the random presence
of other solitons of different sizes, which is a random environment for the
tagged soliton. In [FNRW], the authors show that the tagged soliton satis-
fies the law of large numbers (LLN) when the initial distribution v is invari-
ant for T" and shift-ergodic. Bernoulli product measures of uniform density
v(n(x)=1)=v(n(0)=1) <1/2, z € Z, and two-sided space-homogeneous
Markov distributions supported on €2 are important examples of v satisfying
the assumptions below.

Theorem ([FNRW]). Let Xp(n) be the position of the leftmost component
of a tagged k-soliton at time n and v be a probability measure on {0, 1}Z
satisfying the following.

e () =1.

e v is an invariant measure of the BBS, namely Tv = v.

e v is a shift-ergodic measure.
Assume that for some k € N, k-solitons exist with positive probability under
v. Then, there exists some vSt = v (v) > 0 such that

X,
lim —k(n) = szf
n

n—-oo

v-a.s.

The constant vzﬁ is called the effective velocity for k-solitons. A charac-

terization formula for v§T, k € N has been obtained by [FNRW, (1.12)]. We

will present an alternative formula for vzﬁ, see Proposition [£.4] for details.

Also, we give a different proof for [FNRW,, (1.12)], see Remark

Our main results are the central limit theorem (CLT) and the large devi-
ation principle (LDP) corresponding to the LLN. As a by-product, we also
show the LLN in L, p > 1.
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Claim 1 (Limit theorems for a tagged soliton). Assume that the initial
distribution v is a space-homogeneous Bernoulli product measure or two-
sided Markov distribution supported on Q). Then, for any k € N, we have the
following.
(1) Under the diffusive space-time scaling, the step-interpolation of the
discrete-time process n — Xk(n)—vszn converges weakly to a centered

Brownian motion By(t) with variance Dy, = Dy, (v) > 0.
(2) The sequence (Xi (n) /n) satisfies the LDP with a smooth con-

’VLEZZ()
vex rate function.
(8) For any p > 1, we have
e P
lim E,,[ £(1) _ e ] - 0.
n—»oo n

Remark 1.1. For the tagged ball (with a certain rule to identify the posi-
tions of distinguished balls), instead of the tagged soliton, the LLN, the CLT
and the LDP are shown in [CKST] under the Bernoulli product measures.
However, in the case of BBS, balls are local quantities, whereas solitons
are quasi-local quantities, so a more sophisticated mathematical treatment is
needed to show scaling limits for solitons.

Claim [ will be stated precisely as Theorem 2.1l and Theorem 2.1] will
be proved as a corollary of Theorems and B.10L where we consider more
general initial distributions. Actually, when the initial distribution v be-
longs to a family of invariant measures introduced by [FG] and satisfies a
good asymptotic property for existence probability of large solitons, we will
show the CLT and the LDP for solitons with size k > K, where K = K(v)
is a positive integer determined by v. We note that space-homogeneous
Bernoulli product measures and two-sided Markov distributions supported
on € belong to this class, and K(v) = 1. In this paper a family of invariant
measures introduced by [EG] is called g-statistics, see Section F.1] for the
precise definition.

Furthermore, we will show that two k-solitons are strongly correlated in
the diffusive space-time scaling even when they are far apart at the macro-
scopic level.

Claim 2 (Strong correlations between k-solitons). Assume that the ini-
tial distribution v is a q-statistics with a certain second moment condition.
Then, even if two k-solitons are far apart after taking the space scaling,
those fluctuations converge to the same Brownian motion obtained in Claim

[ (@) in the diffusive scaling.

In Section B2, we will restate Claim [2] as Theorem .8 with precise as-
sumptions.

From the above results, it is expected that the macroscopic fluctuations of
the density of k-solitons at diffusive time scale ¢ can be obtained by shifting
the initial fluctuation field by By (t) obtained in Claim [ (). In other
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words, the macroscopic fluctuation field YV (u,t) should follow the following
stochastic partial differential equations for each ke N :

AV (u,t) = %Auyk(u,t)dt + 0,V (u, Y ABL(1), (1.3)

It is noteworthy that the noise driving (3] does not depend on the spatial
variables, which is in contrast to typical diffusive fluctuations for chaotic
systems where an additive space-time white noise drives the macroscopic
equation. We expect that (3] is a universal equation in completely in-
tegrable many-body systems, and was recently derived rigorously for the
first time from hard-rods dynamics [FO]. We also note that diffusive correc-
tions to Euler scale hydrodynamics for integrable many-body systems have
been studied in physics literature [DBD) [DBD2, [DDMP) [Sp]. It would be
an interesting problem to derive (L3]) rigorously from the BBS, to prove
that {Bg(t);t > 0,k € N} is a centered Gaussian field, and to specify the
correlation between By (t) and By(t) with k # £.

Our approach is based on two different linearization methods for the BBS.
One is called the seat number configuration, which is recently introduced by
[MSSS) [S], and it is a generalization of the slot configuration developed by
[ENRW]. We note that the slot configuration has played an important role
in the study of the dynamical aspects of BBS [CS|, [FGlL[ENRW]|. The other is
the k-skip map, which is a generalization of the 10-elimination introduced by
[MIT] to solve the initial value problem for the BBS with periodic boundary
condition. In [S], the k-skip map is considered in terms of the seat number
configuration, and the relation between g-statistics and the k-skip map is
studied. The results and computations in [S] are essential to obtain Lemma
and a decomposition formula (5.19) for the position of the tagged soliton,
see Section [l for details. By using Lemma (.5 (5:19) and the property of
g-statistics, the CLT/LDP for the tagged soliton can be reduced to the
CLT/LDP for M (n), respectively, where M (n) is the number of times that
the tagged soliton interacts with solitons larger than itself until time n. By
the same idea, we can show the LLN for the tagged soliton in L” by that
for M(n). Furthermore, Lemma and (5.19]) are also useful for showing
the strong correlations between solitons of the same size. To the best of our
knowledge, this is the first time that the 10-elimination is applied to the
dynamical problem of the randomized BBS. A version of the 10-elimination
was used in [LLP], but they considered static problems. We note that our
proof strategy can be applied even if the initial distribution v is not a g-
statistics as long as v has some nice property, see Remark [£.7] for details.

The rest of the paper is organized as follows. In Section [2] we briefly
recall the basics of the BBS on Z and introduce some terminologies used
in this paper, then we describe our main results Theorem 2.1, where the
initial distribution v is a Bernoulli product measure or two-sided Markov
distribution. In Section B, we introduce some notions that are essential for
the proof as well as for describing the results under more general invariant
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distributions. In Section ] we present our main results, Theorems .2, [£.5],
438, and T4l where the initial distribution is generalized to g-statistics.
In Section Bl we introduce the notion of the k-skip map, k € N, and we
prepare some lemmas for the proofs of main results. In the subsequent
sections, Section [0, [7l B, @ and [0, we give the proofs of the main results,
Theorems 2] A5, A8 10l and ET4] respectively. Finally, in Section [T
we show Theorem [2Z.1] by using Theorems [4.2], [1.5] and (10

2. Box-BALL SYSTEM

2.1. Dynamics of the Box-Ball system. First we recall the definition
of the one-step time evolution n + T when the total number of 1s in
n € Q) is finite, presented in Introduction. A site z € Z is called a record if
n(x) = Tn(x) = 0. Clearly, T' can be considered as the flipping 1s (resp. 0s)
to Os (resp. 1s) except for records, i.e., we can write 7' as

T 1-n(xz) if z is not a record, 51
n(x) = 0 if ¢ is a record. (2.1)
We note that records can be characterized as follows :
T
 is a record if and only if max ) (2n(y) -1) <-1. (2.2)
z<x y=z

Now we define the BBS on 2. The one-time step evolution T : Q) -
can be also defined via the notion of records as follows. For 7 € ), we define
a record in 7 as a site x € Z that satisfies (2.2]). We note that there are
infinitely many records in 1 because the asymptotic ball density as z — +oo
is strictly smaller than 1/2. Then, we define T': Q — Q by (Z1).

We number records in 7 from left to right as follows. For any n € 2, we
define

xT
Se0 (1,0) := max{:v <0; mgxz 2n(y)-1)< —1},
=

and then we recursively define s (7,7) as

Soo (1,1) = min{x > Se0 (m,0—1) max Y (2n(y)-1)< —1},
S =

xX
Seo (1, 1) := max {x <Seo(m,—i+1) ; max Y (2n(y)-1)< —1},
z<x y=z

for any ¢ € N. Notice that s (n,7) € Z for any i € Z because 7 € Q.

We note that the dynamics of the BBS on () can also be described via
the carrier process W (n,z) : Z — Zyo recursively defined by (L) and
W (1, Soo (n,4)) := 0 for any i € Z. Then, by using W, T : Q — Q is written
as (L2).
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2.2. Solitons in the Box-Ball configuration. In this subsection, we ex-
plain how we can identify solitons in €.
For given 7 € ), we consider the following decomposition :

n=uize, e = (n(2); s (1) <2 < 500(i+1)). (2.3)

The sequence e is called the i-th excursion of 5. Then, for each e() \
{S0 (i)}, we can find solitons via the Takahashi-Satsuma algorithm as fol-
lows :

e Select the leftmost run of consecutive Os or 1s such that
— the run is consecutive Os with finite length, or consecutive 1s.
— the length of the subsequent run is at least as long as the length
of it.

e Let k be the length of the selected run. Group the k element of the
selected run and the first £ elements of the subsequent run. The
grouped 2k elements are identified as a soliton with size k, or k-
soliton.

e Remove the identified k-soliton, and repeat the above procedure until
all 1s are removed.

From the definition of records, if SOAN {800 (1)} is not empty, then all 1s
and 0s in e \ {s (i)} are grouped and become components of solitons.
We note that from the TS-algorithm, we see that solitons of the same size
do not overlap, and a larger soliton can contain a smaller soliton inside,
but not vice versa. An example of applying the above algorithm to n =
...01100011100110010110000. .. is shown in Figure[2l In this example, only
two excursions have solitons, and there are one 3-soliton, three 2-solitons and
one 1-soliton in total.

0110001110071 1007101100 0 O..
0o X X X X pb 11 1 XX XXo0o0101 1000 0D..
o X X X X p 111 XX XXo0oo0XX 11000 0D..
0 X X M K p 11 1 MR X X KK XN X X000 0.
o X X Hp XXX XK XXX HXHXX XXX p.
011001 1 1 1001100101100 0p..

F1GURE 2. Identifying solitons in 1 by the TS Algorithm.
1-soliton is colored by blue, 2-solitons are colored by red,
and 3-soliton is colored by brown.

It was discovered by [T'S] that total number of k-solitons is conserved in
time for each k € N, i.e., for any 7 € Q with the condition ¥ .7 n(zx) < oo, we
have

|{ k-solitons in Tn}| = |{k-solitons in n}|.
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Now we observe the behaviors of solitons in time evolution. If there are only
solitons of the same size, they move to the right by & :

n = ... 1L 1 1 000O0O0T1 1 1000000

™ = ... 000 1 1 1.00O0O0O0T1T 1 1000
If there are two solitons of different sizes and the larger soliton is to the
left of the smaller soliton, an interaction will occur between them at some
time. During the interaction, the solitons overlap each other and the shapes
of the solitons are collapsed, but they return to their original shapes after
the interaction is over. Furthermore, the larger soliton accelerates when
overtaking the smaller soliton, while the smaller soliton stays where it is.
For example, see Figure [3l

n = I 1 100001 000O0UO0O0O0O0O0 0
Tn = 000 1 1 1 00100U0O0U0TO0UO0TO00
Ty = 000O0OOOTI1 1 01 1 0O0UO0OUO0TUO0TO00O0
T3y = 0 0000O0O0OUODTI1TO0O0OT1 1 1 0000

FiGURE 3. The 3-soliton accelerates from time 2 to 3. On
the other hand, the 1-soliton does not move from time 1 to
3.

In the rest of this subsection, we introduce some notions for later use.

2.2.1. Set of all k-soltions. We denote by I'y, = I'y, (1) the set of all k-solitons
in 7. For any 7 € T'y, we define X () := (inf~)-1, and call X () the position
of 7. To obtain our key results, which are Lemma 5.5 and the decomposition
formula (5.19), it is important to define X (vy) as (inf~) — 1 instead of inf ~.

2.2.2. Natural numbering for solitons. In this paper, since we focus on a
single soliton and consider its scaling limit, it is necessary to label each
soliton. For the BBS on Z, it is convenient to use a record as a reference site
for the detailed analysis. In particular, we are interested in the case where
the origin is a record, i.e., So (1,0) = 0. However, for later use, considering
the case where s (17,0) =0 is not 0, we order solitons as follows. For each
ke N, a k-soliton to the left of s (0) is the Oth soliton, and k-solitons are
numbered in order from left to right from there. More precisely, for any
k € N, we denote by ’yg the k-soliton such that

X (~2) = X (7).
() =y, e X )

Then, we recursively define *y,i as the k-soliton such that

X(h)=  min X(y)
(k) vel, X (v)>X (vi1)



10 SCALING LIMITS OF SOLITONS IN THE BOX-BALL SYSTEM
for ¢ > 1, and

X 'y,i = max X (v)
( el X (7)< X (vi)

for i < —1. We call ’y}i, the i-th k-soliton.
In this paper, the above numbering is called the natural numbering for
solitons.

2.2.3. Position of a soliton at time n. We can track each soliton in time
evolution. First, for any « € 'y, we define heads H(~) and tails T () as

H(y)={zev;n(x)=1}={Hi (7)< <Hg (1)},
T(v)={zey;n(@)=0}={T1(y) < <Tp (1)}

From [FNRW, Proposition 1.3], for any 7 € I'y (1), there exists unique v’ €
I (T7) such that T (v) = H (v'), and we write 7" as v(1), i.e., X (y(1))
is the position of v at time 1. By repeating the above, for any n € N, we
can find vy (n) € 'y (T™n) such that T (y(n-1)) = H(y(n)), and we call
X (7v(n)) the position of v at time n. We note that since there may be a
k-soliton passing through the origin in time evolution, 711 (n) is not always
the i-th k-soliton in T".

In the following, the position at time n of i-th k-soliton is denoted by

2.3. Scaling limits for solitons. Now we state our main results on the
fluctuations of k-solitons when the initial distribution v is given by a space-
homogeneous Bernoulli product measure or two-sided Markov distribution
supported on ).

Theorem 2.1. Assume that the initial distribution v is a space-homogeneous
Bernoulli product measure or two-sided Markov distribution supported on ).
Then, for any k € N and i € Z, we have the following.

(1) For any T >0, the following step-interpolation process,
1.
t——X; ([thJ) —ntodt (v), (2.4)
n

converges weakly in D[0,T] to a Brownian motion with variance
Dy, = Dy, (v), defined in [@IH) below.
(2) The sequence (X, (n) /n)nGZ . satisfies the LDP with a smooth con-

vex rate function defined in (E1T) below.
(8) For any p > 1, we have
P
] 0

Xk (n)

i ()

lim E, [
n—oo
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Remark 2.2. Formally, the variance Dy(v) can be obtained via the Green-
Kubo type formula. We consider the following decomposition of X, (n) :

. . . . n_l .
Xj.(n) = X3 (0) ~Ey [ Xy (n) - X3(0)] = 37 Ti(m),
m=0
where Ji(m) is the centered current at time m. Then, Dy(v) is given by

D) =B, [(F0)] +2 3 B [T T 0)].

Later in this paper we will show that when numbering solitons by a rule
different from natural numbering (truncated numbering, see Section[31]), the

centered current of the i-th k-soliton jki)(m) with the truncated numbering
can be decomposed as jk(i)(m) = jk(ll) (m) +jlflg(m), where Jk(ll) (resp. jk(g)
represents the effect from bigger (resp. smaller) solitons than k, see (5.30)

for the precise formulas. In addition, Jk(il),Jk(g are not correlated, i.e.,
E, [jé?j,fg] = 0, see (533). Moreover, since the initial distribution is
homogeneous in space, the macroscopic limit of solitons does not depend on
their numbering. This is the intuitive reason why Dy (v) has the form ([EI5]).

From Theorem 211 (), if we focus on a single soliton, it converges to a
Brownian motion whose variance depends only on the initial distribution
v and the size of the soliton k, and not on the number i. In Section [4.2]
we focus on two solitons of the same size under more general initial condi-
tions and prove their strong correlations in diffusive space time scaling, see
Theorem 4.8 and Corollary

3. SEAT NUMBER CONFIGURATION

In order to prove the results described in Section 2, we need the lineariza-
tion method of BBS. In this section, first we introduce the notion of a soliton
with volume. This is a useful notion when looking at the correspondence
between the linearization method and the position of solitons, which will
be introduced later. and then recall the definition of the seat number con-
figuration. Next, we recall the linearization method called “seat number
configuration” introduced by [MSSS], [S].

3.1. A soliton with volume. This subsection introduces the notion of
volume for solitons. We then introduce a way to number solitons with
volume. Finally, we explain how the increment of a soliton from time 0 to
n is described.

We fix 1 €  and recall that X (v) is the position of v. We denote by
X (7) = sup~y the rightmost site of 7. For any v,7" € I';, with X (v) < X (v'),
we say that v and 7’ are connected if there are no f-solitons with ¢ > k + 1
and records in [)_( (7),X )] In equation form, v and +' are connected if
the followings hold :
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e [X(1). X ()] {sm (i)ii €2} = 2,
o for any 7" € Upspi Lo, [X (7). X (7)) ] 07" = 2.
Then, for any « € I', we define

Con () :={v €Ty ; v and 7' are connected} .

Note that 4" € Con () then Con(vy) = Con(v"). For later use, we denote
by I';, the set of k-solitons such that

o for any v,7 €I'}, Con(y)nCon(v') = 2,

e for any y eI}, X (7) < X (7") for any 7" € Con (7).
In other words, the leftmost one among the connected ones is chosen as the
representative and I'; = I';(n) is the set of such representatives. Clearly,
we have Ty, = uwepoon (7). For any ~ € I'}, we say that the number of
solitons in Con () is the volume of v, and write Vol () := |Con (7)|. Also,
we say that for each k € N, an element v € I'} is a k-soliton with volume.
For example, in the configuration used in Figure 2] there are three 2-solitons
colored by red. The volume of leftmost 2-soliton is 1, and that of the middle
2-soliton is 2.

3.1.1. Truncated numbering of solitons with volume. We consider the trun-
cated numbering for solitons with volume. We denote by %go) the k-soliton

with volume such that

(0)
X = X (7).
(7’“ ) S0, X (3 <see (0) ™)

Then, we recursively define ’y,Ef] as the k-soliton with volume such that
X6 wmm XG)
yelf X (1)>X (V)

for i > 1, and

©)]
X = a X
(Vk ) yerf,X?yl)j{X(y,iﬂ) (7)

for ¢ < —1. We call fy,?) the i-th k-soliton with volume. The difference from
natural numbering is that the order is assigned only to the representatives
in I';. We note that 7,21) = 7% from the rules of numbering.

It is an abuse of notation, but for any k € N, i € Z and n € Z,o, we denote

by X,gi) (n,m) the position of the i-th k-soliton with volume at time n, i.e.,
X () = X (n, 27 ().

3.1.2. Interactions between solitons. Recall that the points (S (7,7));c
separate groups of solitons. For any v € I'y,7" € T'y with k& < £, we say
that v and ' are interacting if s (1) < X (7") < X (7) < $co (i + 1) for some
1 € Z. We say that v € I'y, is free if v does not interact with any ¢-soliton
with £ > k.
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For any v € T'y,7" € Ty with k > ¢, we say that v overtakes ' (‘or 7/ is
overtaken by v) at time n if X (y(n-1)) < X (7' (n-1)) and X (y(n)) >
X (7' (n)). We denote by Ny (,n) the number of ¢-solitons overtaken by ~
at time n. It is shown by [FNRW, Proposition 6.4] that for any v € I'y, the
increment X (y(n)) - X (7(n—1)) can be represented as

X (7(n)) - X (y(n-1))
k-1
- k+2;%(%n) if y(n —1) is free, (3.1)

0 otherwise.

In particular, X (y(n)) - X (v(n-1)) >0 if and only if v(n—1) is free. For
later use, we define

i Ne(Pn) k>
= 0E)

otherwise,

M G {21 0y ]
and

M) (1.n)

_ {Hv eI’y ; v overtakes %gz') at time m, 1 <m< n}‘ k<,

0 otherwise.

Then, from (B1]), we have

X (n,n)
(i) (i) LR )
=X (0,0) 4k (n- M (m)) +2 3 YN (nm). (3.2)
m=1 ¢=1

We now observe the interactions between solitons. When a soliton v is
free and catches up with a smaller soliton 7/, v overtakes all of Con(y")
simultaneously. In addition, when v catches up with Con(y"), Con(v') are
involved in the right half of 7, and if (1) is free, then in the next step
Con(y") are involved in the left half of 4. If (1) is not free, then both ~
and Con(vy) do not move. For example, see Figure [, [ and [6
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i1 100010101 O0O0O0OO0O0OO0OO0OO0OO0O0
00110010101 O0O0O0O0O0O0O0TO0OTFUO0
00001101010 1O0O0O0O0O0O0O0°0O0
00 000010101011 00O0O0O0°O0
0o 0000001010100 1 1 0000

FIGURE 4. One 2-soliton with volume 1 and one 1-soliton
with volume 3 are included in this figure. These solitons are
interacting from the second line to fourth line. The
2-soliton overtakes the group of 1-solitons simultaneously.

TP 1001 1 0001 O0O0OO0OO0OO0OO0OO0OO0OO0OO0
0011001 10O01O0O0O0O0O0O0OO0OTO0OFUO
0oo0o001100110100O0O0O0O0O0°0O0
0oo0o000O0O1 1001011000000
0o 00000001 101001 1 0000
000 00O0O0OO0OO0OO0O1TO0T1T1TO0O0T1T 1T 00

FIGURE 5. One 2-soliton with volume 2 and one 1-soliton
with volume 1 are included in this figure. These solitons are
interacting from the second line to fifth line. Each
2-solitons overtake the 1-soliton step by step.

1101 0 0 0 O O0OOOOOOO
0 0 O 00 1 0 1 1 00 0 0 0 O
0o 0 000OO0OT1 1010 O0 0 0 0
0 0o 000OOOOT11TO0OT1T 1T 000

FIGURE 6. One 3-soliton with volume 1, one 2-soliton with
volume 1 and one 1-soliton with volume 1 are included in
this figure. The 2-soliton overtakes the 1-soliton after being
overtaken by the 3-soliton.

Hence, if the i-th k-soliton is free at time n — 1, then

AICRD
=[{rerem s vm-1 e [H (300 -1). 7 (5 (- D)} 33)

On the other hand, we have the following inequality for Mj (n) :

2 Y MO @) < MP(n)<1+2 Y MOmn).  (34)
2k+1 0>k+1
We note that since the operator T and spatial shift operators are commuta-

tive, the values of N (n) M(l)(n) Mélg(n) are invariant under any spatial
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shift that does not change the numbering of solitons. For later use, we write
this fact as a lemma. We define spatial shift operators 7, : 1 - €,y € Z as

Tyn(x) =0z +y),
for any x € Z.

Lemma 3.1. Suppose that n€ Q. Then, for any k,l e N, i € Z and n € Zsp,
we have

X (Tawmoynnn) = X§7 (n,m) = 500 (n, 0),
and

(1) (@)
Nii (Tom(moymn) = Ny (n,n),

Migi) (Tew(noyni) = M;Ei) (m,n),
Mlg,zg (Tsw(n,o)%n) = M,ﬁ’,? (n,n).

Thanks to Lemma B}, we see that Yk(i) is independent of s« (7,0). In

particular, Yk(i) is a function of 7,_ 0y

3.2. Seat number configuration for the box-ball system. To derive
the limiting behaviors of solitons, it is useful to consider seat number config-
uration space in which the dynamics of the BBS is linearized. In this section,
we briefly recall the linearization method introduced by [MSSS] and seat by
[S]. The main idea of this method is to assign a different parameter to each
0,1 in n € ) based on the fact that n contains many kinds of solitons. Then,
we introduce a class of invariant measures for the BBS that are defined via
the seat number configuration space.

Throughout this subsection, we fix an 7 € ) arbitrarily. First, we intro-
duce the notion of carrier with seat numbers. We consider a situation in
which the seats of the carrier W are indexed by k € N, i.e, W is decomposed
as

W(nvx) :=%Wk(n7$)7 Wi (777'%')6{071}7

where Wy (n,x) = 1 means that the No.k seat is occupied when the carrier
is at the site x € Z. Then, the refined update rule of such a carrier is given
as follows:

o If there is a ball at site x, then the carrier picks up the ball and puts
it at the empty seat with the smallest seat number;

e If the site = is empty, namely n(z) = 0, and if there is at least one
occupied seat, then the carrier puts down the ball at the occupied
seat with the smallest seat number;

e Otherwise, the carrier just passes through.
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In other words, Wy, k € N are defined as W, (1, Soo (17,7)) := 0 for any i € Z
and

Wi (1, 2) = Wi (n, 2 - 1)

1 if kz_:le(n,x—l):1,Wk(n,x—1):0andn(x):1,
i o

-1 if > We(n,z-1)=0, Wi (n,z-1) =1 and n(z) =0,
0 othel;ifise,

and we call Wy, k € N the carrier with seat numbers.
By using the carrier with seat numbers, we define the seat number con-
figuration 7 € Q, o€ {1,1}, ke N and r € {0,1}” as
4 1 Wk(n’x)_wk(n’x_l)zla
my, () =
k 0  otherwise,
! 1 Wk(777$)_Wk(na$_1):_1a
my, () = .
k 0  otherwise,
and
1 =S80 (n,i) for some icZ,

r () = {0 otherwise.

We note that by the seat number configuration, all 1,0 in 5 are distinguished
by the parameter (k, o) in the following sense : for any z € Z,

r(x) + > (nh(z) +mj(x)) = 1.

keN

In the following, if a site x € Z satisfies 7] (x) = 1 for some k£ € N and
o €{1,1}, then we call z a (k,o)-seat.

Remark 3.2. We note that the seat number configuration can be described
in terms of solitons as follows, see [MSSS, IS] for details.

1 xz=Hg(y) for some~ye|JTy,
7]T ([E) = L2k
k

otherwise,

1 z=Ty(y) for some el JTy,
nl' (x) = >k
k

otherwise.

In other words, a k-soliton consists of exactly one ({,0)-seat for each 1 <
(<k and oe{t|}.

Then, by using the above configurations, for each k£ € N, we define a
non-decreasing function & ( - ) : Z — Z and its inverse (for a certain sense)
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sp(+):Z—~7Zas
ék (77,21?) _gk (777'%'_ 1) = 7“(77’33) + Z Z 771?4 (.CE),

N oefr.d}
ék (777 Soo (777 0)) = O)

and

sp(n,z)=min{y eZ; & (n,y) =x}.

Remark 3.3. The intuitive meaning of & is that it is a function that counts
the number of 1s and 0s from the reference point s« (0), ignoring solitons
of size k or less, and ignoring up to the k-th 1s and Os constituting solitons,
see Remark [32. This counting method allows us to measure the effective
distance between solitons, see Remark [3.0.

Finally, for any k € Z, we define (i : Z — Zsq as

sk (n,i+1)
G(mi):= > () -n, ).

y=sg(n,i)+1

We emphasize three important properties about (; as follows. The first
is that the function (i and k-soltions are related via the following formula,

Ce (n,0) = {y €Tk (n) 5 v lsk(n,8), s, (i + 1},

i.e., ( represents the total number of k-solitons satisfying &x(n, X (7)) = i.
In particular, our ¢ coincides with the slot decomposition introduced in
[ENRW], see [MSSS|, Section 2.1, Proposition 2.3] and [S, Section 4.1] for
details. From the same reasons as in the discussion just before Lemma [3.7],
we can see that for any ke N, i € Z,

e (Tswa (o)1) = Ci (1,7) - (3.5)

The second is the bijectivity between ¢ and 7 satisfying s« (0) = 0, namely
the configuration such that the origin is a record. We define the space of

such configurations Qg c €, and also introduce Q c Z§SZ as

Qo = Q21 {500 (0) = 0}

Q::{CEZEIOXZ ;> G (i) < oo for anyi}.
keN

It is known that ¢ : Qp —  is a bijection, see [FNRW), Section 3] for details.

We note that we can not reconstruct the original n from ((x(n, + ))gen

in general, because there is an arbitrariness in the choice of the position of

S60(0) from (B3, see also Figure [l for a summary of these properties, where

for any n € €, we write

f] = TSM(O)T] € Qo. (36)
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- - ¢ .
N < (7,80 (0)) —— 7 <<T> (Ck (1)) keniez

F1GURE 7. The relationship between n and {. The arrows
< represent certain bijections, and the arrow — represents
the first coordinate projection.

The third is that the dynamics of the BBS can be linearized via (; with
a certain offset [FNRW] [S]. Here, we cite the result by [S] for later use.

Theorem (Theorem 4.1 in [S]). Suppose that n € Q. Then, for any k € N
and i € Z, we have

Ck (71777Z +k+ Ok (77)) = Ck (777 7’) ) (37)
where the offset ox (n) is given by
ok (1)
0 k . 0 k A
=500 (1,0) =500 (T, 0)+2 >3 > omp(y)-2 > > Tu(y).
Y=800 (0)+14=1 y=T'500(0)+1 £=1

Remark 3.4. We note that if se (0) =0 and any soliton do not cross the
origin x = 0 in the evolution from n to Tn, then or =0 for any k € N. Hence,
if n(x) =0 for any x <0, then

Ck (Tnnvz + nk) = Ck (7772) )

for any ke N, neN and i € Z. The above equation reproduces the lineariza-

tion result for the BBS on {0,1}" shown in [MSSY].

Later in this paper we will use the following lemma, which can be consid-
ered as a version of ([B.7)). The proof will be given in Section [Al

Lemma 3.5. For any k>/¥, i€ Z and n € N, we have
& (T, X () - & (1710, X (- 1))

k-1 4 .
k+ o4 (T"iln) +2 > (h- K)ngzli (n,n) if ’y]gl)(n - 1) is free,
= h=t+1 ’ (3.8)

{+ oy (T"fln) otherwise.

Remark 3.6. For each k € N, we define the k-th effective distance between
!
v,v €l as

degre (0,7,7) = &6 (0, X () = & (0, X ()] -

Then, we see that

defike (n,’y,’y') =0 if and only if ¥ € Con ().
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In addition, from Lemmal3d, we see that the effective distance is conserved
in time, i.e., for any v,y € Ty and n € Zsy, we have

e (T, 7 (n) 7' () = [& (T, X (v (n))) = & (T, X (7" (n))))|
=degr (0.7,7") s
and thus we get

[T"Con (v (n))] =[Con (v)].

4. GENERAL INITIAL DISTRIBUTIONS

In this section we recall a class of invariant measures for the BBS, intro-
duced by [FG]. Then, we consider scaling limits for solitons starting from
such invariant measures.

4.1. g-statistics. We recall a class of translation-invariant stationary mea-
sures on {0,1} introduced by [FG]. We define a set of infinite number of
parameters as follows :

0 {q (@ [0 5 S kg < oo}.

keN

From [FGl Theorem 4.4, 4.5], for given q € Q, there exists a translation-
invariant stationary measure vq such that (¢ (1)) ey jez ave i.i.d. for each k
and independent over k£ under v, and its distribution is characterized via ¢
as

Vg (Ce (1) =m) = q;* (1 - qx) ,
for any k€N, i € Z and m > 0. In the following, we call v the g-statistics.

For later use, we recall some properties of vq in the following remark.

Remark 4.1. Recall that the i-th excursion €9 (n) in n is defined in (23).
These excursions are elements of the set £ given by

£ = Umgzzog(m),

Y 2m+1
E(m) = {e € {0,131, sup Z (2e(x)-1) < -1, Z e(r) = m}

1<y<2m+1 z=1 z=1

For each i € 7, e (n) can be considered as an E-valued random variable
under vq. Then, from the explicit construction of vq in [EGl Section 4],

(e(i))ieZ are an i.1.d. sequence under the conditional probability measure
Vq (- 50 (0) =0). In particular, the centered configuration 7 € Qo defined in
B6) is record-shift invariant under vq, i.e.,

Vg (1€°) = Vg (Tow(2)-sm ()T € ) »

for any x € Z.
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The Bernoulli product measures and stationary Markov distributions are
two important classes of g-statistics. Let Ber (p) be the Bernoulli product

measure on {0, 1}Z with intensity 0 < p < 1/2. By choosing q as
k
p*(1-p)
TT5 (1 - gp)**0

from [FGl, Theorem 3.1, Corollary 4.6], we have vq = Ber (p). We denote the

class of parameters q = q(p) given by (1] for 0 < p < % by OBer € Q.
Another important class of g-statistic is two-sided Markov distribution

q:=p(1-p), q:= for k > 2, (4.1)

on {0,1}* with transition matrix P = (pij)ij=0, on {0,1} satisfying 0 <
po1 + p11 < 1. In [FG, it is proved that such Markov distribution can be
obtained by choosing q as

abkil

ITE (1 - qo) "

qii=a, qp:= for k > 2, (4.2)

where

a:=po1p1o, b:= poop11-

As shown in [S, Section 5.3], the above map P = (p;;)i j-0,1 = (a,b) induces a
bijection between the set of transition matrix {P = (pi;)i j=0,1; 0 < po1+p11 <
1} and the set of the pair of parameters {(a,b) ; >0, 0<b<1,\/a+Vb < 1}.
We define

Owm = {dq ; vq is a two-sided Markov distribution} .

For each q € Qyp, we denote by a(q),b(q) the pair of parameters giving q
by ([£2). Note that by taking a = b = p(1 - p) we have Qpe ¢ Qn, and by
taking b =0, we have {qe Q; ¢ =0k >2} c Qu1.

In the following, we will introduce another class of g-statistics. To do
so, we define a shift operator 6 : [0,1)N - [0,1)N as fq = (qk+1) gey for any
a = (qk) ey € [0, 1)N. We note that Q = Q. Moreover, in [S, Theorem 5.3],
it is shown that for q € Qu, 0q € Oy with

a b b
O G LIC P LI | (43)
(1-a(a)) (1-a(a))
From this, we have §Qy\ ¢ Oy, but 09y + Oy Actually, Oper ¢ Q) since
a(q)b(q) < 1 for any q € Qy;. We also note that for any q € Qper, 0q ¢ Oper-

We say that q € Q is asymptotically Markov if there exists some K € N
such that 8% ~1q e Qu with convention #q = q. We define

Qam = {q € Q; q is asymptotically Markov} . (4.4)

We note that 09 an = Qanm since for any q € Qam, 09 = q where ¢; =0, g =
qr-1 for k> 2. For q € Qan, we define K(q) as

K (q) := min {6 eN; 07 lqe QM} i (4.5)
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In particular, for q € Qanm, q € Qu if and only if K(q) = 1. In summary, we
have Oper & QM & QaMm & Q and 0Qper ¢ OBers 09M & M, 0Q9am = Qam
and 09 = Q.

For later use, we introduce some notations. For any k € N, we define

Cp:Q—Qas

qy 1<l<k,
(Cra) = 0 £>k+1,

for any q € Q. We note that under v, q, there are no solitons larger than &
a.s. Next, for any k € N and q € Q, we define oy (q), Bk (q),7x (q) as

(@) = Bry [G (0)] = 72—, (4.6)
dk
B (@) = Eug [ (G (0) - a ()] = — -, (4.7)
(1-ax)
T (q) = Egrg [r(0)]. (4.8)
We note that 7 (q), k € N satisfies the following system,
1492 S M7 (4.9)

™ (a) i ()
see Section [B1] for the derivation of (Z.9).

4.2. Scaling limits for solitons under g-statistics. In this subsection
we will describe our main results on the fluctuations of k-solitons under the
g-statistics. Since we are interested in the increment of the position of a
fixed k-soliton from time 0 to n, for any k €N, i € Z and n € Z, we define

Y (g,n) = X (n,n) - XD (5,0).

First we recall that by [FNRW|, Theorem 1.1, 1.5] and [FG, Theorem 4.5],
Yk(l) (- ) satisfies the law of large numbers in the hyperbolic scaling under
Vg, and for later use we describe this fact as follows.

Theorem (Theorem 1.1, 1.5 in [FNRW] + Theorem 4.5 in [FGl). Suppose
that q € Q and q >0 for some k € N. Then, for any i € Z, we have

N S e
lim EY"’( ) (n,n) =i (q), Vq-a.s. (4.10)

n—oo

The constant v¢T (q), k € N is called the effective velocity of k-solitons.
In this paper, we will show the IL” version of the above LLN for any p > 1.

Theorem 4.2. Suppose that q € @ and g > 0 for some k € N. Then for any
1€Z and p>1, we have

) 1 G o P
lim E,, HEY; ) (n) - vl (q)‘ ] - 0.

n—oo
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Remark 4.3. If Xlgi)(O) has the finite p-th moment, then one can show the
L? convergence for X]gl) (n) [n instead of Yk(l) (n)/n. When q € Qp, then
X]gi)(O) has the finite p-th moment for any p > 1, see Section [I1.3.

We will use the following relation between effective velocities. Recall that
ag, 7y, are defined in (£.6) and (4.8).

Proposition 4.4. Suppose that q € Q and g >0 for some k € N. Then, we

have
ff ff ( ph—1 =l ff (ol
o (q) = koS (05 1q) +2 Y Loy (q) vity (0%a) (4.11)
=1
and
vfﬁ (Hk_lq) =7, (q). (4.12)

The proof of Proposition [£.4] will be given in Section [B.2

Our purpose in this paper is to consider the fluctuations of Yk(i) (- ) corre-
sponding to the law of large numbers mentioned above. The following result
implies that the invariance principle(IP)/large dev1at10ns principle(LDP) for

Y(Z) ( - ) can be reduced to the IP/LDP for M ( ).

Theorem 4.5.

(1) Suppose that there exist some q € Q, k € N and i € Z such that g >0
and the following step-interpolation process,

tes %M,f) (. [n%t]) - 1B, [ M) (m)], (4.13)

converges weakly in D ([0, T]), T > 0 to the centered Brownian
motion with variance Gy (q) under vq. Then, the following step-
interpolation process

1 .u o
t ﬁYk( ) (n, [nZtJ) —ntvs (q), (4.14)

also converges weakly in D ([0, T]), T >0 to the centered Brownian
motion with variance Dy (q) under vq, where Dy, (q) is given by

M i v (@)’ v, (6%a) B (@)
Tff (Qk 1 ) -1 ,UTﬂ‘ (95—1(1)2

and B (q) is defined in (7).
(2) Suppose that there exist some q € Q, k€N and i € Z such that g >0
and the following limit

Af\fk (A) == 7}1_)1]& % log (Eyq [exp ()\ (n - M,gi) (n)))]) eR, (4.16)

Dy (q) ==

. (4.15)
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exists for any X € R, and Af\fk ( -) is essentially smooth in the sense

of [DZ}, Definition 2.3.5]. Then, the following limit

Ay (A) = lim Liog (Evq [exp (A, (0))]) e RU (o0},

—00 N

exists for any A € R, and A};k (A) satisfies (O). In addition, we
have supj<s ‘Agk ()\)‘ < oo for sufficiently small § >0, and Agk ()
is also essentially smooth. Consequently, thanks to the Gartner-

(4)
Ellis theorem (cf. [DZ, Theorem 2.3.6]), the sequence (—Y’c n(n))

neZZO

satisfies the LDP with the good rate function Ié/,k; where

Iy (u) = iﬁg{m AL ()} (4.17)

Remark 4.6. We note that vzﬁ (q) can be given by

dAY . (\)

eff _ q7k

v (q) = AN
=7k (@) v (Cra) - (4.18)

In addition, ([A18) gives the same formula for the effective velocity as the

formula by [FNRW], (1.12)], see Section [B-3 for the proof of (£I8)) and the
equivalence between the formulas.

I\=0

Remark 4.7. We note that Theorem[].] can be shown with initial distribu-
tion v, not necessarily q-statics, such that (Ck (¢)) ey sez, are i-i.d. for each
k and independent over k and satisfy exponential moment condition by the
same argument in this paper.

In the next subsection we will give sufficient conditions for q, k such that
the assumptions in Theorem are satisfied.

Next, we consider the correlations between two k-solitons. Our second re-
sult implies that even if two k-solitons are macroscopically far apart, they are
strongly correlated in the diffusive space-time scaling. Recall that e(®) (n)
is defined in (Z3)).

Theorem 4.8. Suppose that q € Q and E,, [‘e(o)ﬂ < oo. Then, for any
keN with g, >0, u,veR and 0<a <1 we have

2

] “0.

By combining Theorems and (L8], we have the following.

mE[

n—oo

Lo nma)) o2y L (n)) ¢, 2
Sy D () = D ()

Corollary 4.9. Suppose that q € Q and k € N satisfy the assumption of
Theorem [{.8 (@) and E, [|e(i)|2] <oo. Then, for any u,v € R and T >0, we
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have the following weak convergence in D ([0, T])2 under vgq.

g (v (o)) = oo (), v (e - ook )

e=>0\n
= (B (t), Bk (1)),
where By ( - ) is the centered Brownian motion with variance Dy (q).

Hence, under the assumption of Theorems (@) and E8, k-solitons with
volume starting at macroscopic distance converge to the same Brownian
motion.

4.3. Scaling limits for M" (- ). By Theorem AT} we have found that for

q € Q and k € N such that IP/LDP for M{" ( - ) hold, IP/LDP for k-solitons
also hold. In this subsection, we give some sufficient conditions of such q, k.
To describe the results, we define p (q) as the ball density under vg, i.e.,

p(a)=vq(n(0)=1). (4.19)

First we consider the case that q is asymptotically Markov. Recall that
Qam, K (q) are defined in ([@4) and ([@35). If £ is sufficiently large, we can
show that M ,51) (- ) satisfies the invariance principle, and the nice regularity

property of (4.10).

Theorem 4.10. If q € Qanm and k > K(q), then for any i € Z, ([EI13)
converges weakly to the Brownian motion with variance Gy (q) under vq,
where G (q) is given by

Gi,(a) =4p(0"a) (1- p(6%q)) (1 -2p(0"a)).

In addition, for any i € Z and X\ € R, the limit Aé\fk (A) exists. In addition,
Ag{k (A) is a smooth monotone convex function, which is explicitly given by

M _ ﬂ A ISP
har (”‘bg(zu-p(ekq)) ( \}A v <1—2p<ekq>>2))'

In particular, the assumptions of Theorem[[.5 (1) and (2) are satisfied with
q€Qam and k> K (q).

Remark 4.11. Recall that if vq is a Bernoulli product measure or two-sided
Markov distribution, then K(q) = 1. Hence, when the initial distribution is
a Bernoulli product measure or two-sided Markov distribution supported on
Q, then the statement of Theorem [[.10] holds for any k € N.

Remark 4.12. If q € Qyy, then the ball density p (q) can be represented via

a(a), b(aq) as
Y . 4a (q)
e 2(1 Jl <1+a<q>—b<q>>2)'
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We note that if q € Qpr, then p(0q) < p(q) holds. To show this, it suffices
to show that

a(bq) < a(q)
(1+a(fa)-b(0a))® (1+a(a)-b(a))”
and by using [A3)), we see that

0<+va(q)++b(q) <1 implies a (6a) < a(q)

(L+a(fq)-b(0q))® (1+a(a)-b(q))*

Remark 4.13. By [@12)) and (Bl), under the assumption of Theorem[].10,
Gr(q) and Af\fk (A) can be represented as

Gy (a) =vi" (0"'a) (1- 5" (9 a)).

and

- 2
i G VI PN (P el Gl
1+ 5T (0+1q) veff (9k-1q)°

Af\fk (A) =log

Next, we consider the case where there are at most a finite number of
nonzero elements in q, i.e., there are at most a finite number of types of
solitons under vq. If we denote by g, the largest nonzero element, then

M g(i) =0 vg-a.s., and thus M e(i) trivially satisfies the assumptions in Theorem
For the second largest solitons in q, we can show the following.

Theorem 4.14. Suppose that q € Q satisfies q¢ > 0, g, =0, h > £+ 1 with
some > 2 and |q| > 2. We denote by k = k(q) the second largest element in

q, i.€e.,

k:=max{l1<h<{-1;q,>0}.

Then, for any i € Z, (A13)) converges weakly to the Brownian motion with
variance Gy, (q) under vq, where G, (q) is given by

4qy 4qy )
Gr(q) = — (1 + - )
(1-qp)*P (1-gqp)*™

In addition, for any i € Z, the limit Aé\fk (\) exists. In addition, Afyk (A) is
a smooth monotone convex function, which is explicitly given by

1— l—k e)\ 1- 2(0-k) €2\

lw

In particular, the assumptions of Theorem[{.3 (1) and (2) are satisfied with
the above q and k,£.
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5. k-SKIP MAP FOR THE BBS

In this section we introduce the notion of k-skip map. The k-skip map is
a natural generalization of the 10-elimination introduced by [MIT] in terms
of the seat number configuration, and the results presented in this section
are crucial for the proofs of main results. For the proofs of some known
results on the k-skip map, we may refer to [I].

For any k € N, we define the k-skip map ¥y : Q2 - Q as

Uy, (n) () :=n(sk(n, 2+ & (1,0))).

First we explain the intuitive meaning of the k-skip map when k£ = 1. Since
s1(n, - ) is the inverse function of &;(n, - ), the subset {s1(n,x) ; z€Z} cZ
does not include the non-increasing points of &1(n, - ), i.e.,

{s1(n,z) ; er}:Z\{er; n{(a:)ﬂﬁ(x):l}.
When 0 € {s1(x) ; x € Z}, then ¥;(n) is obtained by removing all 1,0
with parameter (1,0), o € {1,1} from 7, and numbering the remaining 1

and 0 from left to right with respect to the origin 1(0). For the case 0 ¢
{s1(n,x) ; x €Z}, we first translate n by

inf {s1(n,x) ; s1(n,z) <0} =s1(n,& (n,0)),

so that 0 € {s1(7, (46,000 ) ; © € Z}, and then we perform the same
operation for 7, (, ¢, (n,0))7-

z -5 4 -3 -2-10123456 7389 10 11 12 13 14 15

n(z) ... 0 1 1.0 01110101100 0 1 0 O
n}(x)...0100010001010000100
ni(x)...OOOlOOOOlOOOOlOO010

0 X 1 Hoxt1HXKX1THOOX ¥ o
xr -3 -2 -1 0 1 2 3 4 5 6 7
Ui(n) ... 0 1 0 11 1 0 0 0

FIGURE 8. How WU;(7n) can be obtained from 7 for the case
0€{s1(n,z); x €Z}, where ... represents the consequtive
Os with infinite length.
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r 6 5 -4-3-2-10123456 7389 10 11 12 13 14

mz) ... 01 1.0 0 11101011000 1 0 0

sap(z) ... 0 0 1 1 001110101100 0 1 0

7ami(z) ... 0 0 1 0 001000101000 0 1 0

7ami(z) ... 00 001 0000100O0O0T1TO0 0 0 1

o0 X1 HoxX11HXKX1LH o o X K

x 4 -3 -2 -1 0 12 3. 4 5 6
Ui(n) ... 0 0 1 0 11 1 0 0

FI1GUuRE 9. How ¥;(n) can be obtained from 7 for the case
0¢{si1(n,z); xeZ}.

The above observations can be made for any k € N as well. Now, we
cite some results by [S]. The following means that there is a one-to-one
correspondence between cites in 1 with parameter (k + ¢,0) and cites in
Uy (n) with parameter (¢,0), for any k,f € N and o € {1,]}. This property
implies that Wy has the semi-group property and that ¥y is a shift operator
for ¢ ., see 9] for the details and proofs.

Proposition (Proposition 4.3 in [S]). Suppose that n € Q. Then, for any
k,leN, oe {1} and x € Z, we have

Wi (n)y () = npse (56 (0,2 + & (0,0))) . (5.1)
In addition, we have
U (U () () =Pree(n) (), (5.2)
and
CGe(We(n), ) =Chre(n, - ). (5.3)

In [S], the following result has been proven. We recall that 7) is defined in
B.8).

Theorem (Corollary 5.1 in [S]). Suppose that q € Q. Then, for any k e N
and local function f:{0,1}* > R, we have

[ dva (o) £ (i) = [ dvrg () £ (), (5.4)

and

[ dva () £ (W () = [ dvgeq () £ ) (5.5)
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Remark 5.1. Notice that thanks to (5.4) or (B.3), we have

ap (0°a) = agse (@), B (0°a) = Brse (a), 7 (0°a) = Tree (a)
for any k e N, £ € Zsy. Calculations similar to the above appear frequently

i this paper.

From now on we prepare some lemmas for the proofs of main results.
First we check the relation between Wy and 7,_ (q)-

Lemma 5.2. Assume that n €. Then, for any k € N and x € Z, we have

Ui (1) () = Wi (1) ().
Proof of Lemma[22. First we observe that for any k€ N and x € Z,
sk (71, %) + 500 (0) = s (1, ).
Next, from [S, (4.16)], for any k € N, we get

Soo (Wi (1) ,0) = =& (1,0). (5.6)
By using the above, we have
Wy, () () =1 (s (7, ) + s (0))
=1 (s (n,2))
=W (1) (z - & (1,0))
=V (n) (z + s00 (Y1 (1) ,0))
=W, (n) (2).
O

By combining (5.2), (5.3]), Lemma and the diagram in Figure [0 the
relation between 7, and the k-skip map can be expressed by the diagram,
see Figure [I0l

TSOO(O) ~ C .
n > 1) £ 1 ” (Ck (Z))keN,z‘eZ
2 vy vl
g 500 (U1 (1),0) — ¢ N
W1 (n) - Wy (n) A= — (Chr1 (9)) pemv iez
vy vy 21
v Tsoo(\lf (77)70) ,—1_/ C ,\,
Vs (1) . 12X¢) ﬁ (Ch+2 (1)) keniez
A2 Uy 21

F1GURE 10. The relationships between 7, ( and the k-skip

map.
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Next we claim that for any k > £ and ¢ € N, there is a one-to-one cor-
respondence between the i-th k-soliton in 7 and the i-th (k - ¢)-soliton in

Yy(n).

Lemma 5.3. Assume that ne). For any k,l e N, k> /¢, heZsy and i € Z,
we have

Eoen (0, 814 (0,9)) = & (Y0 (), 85 (P (1) 1 7))
= 8kt (Vs () ,8) = Soo (¥rsn (1) ,0) - (5.7)
In particular, if skwn(n,i) = X,Ei)h(n,O) for some j € Z, then
st-¢ (Tean () 1) = X7, (P (n),0), (5.8)
and thus

&en (1, X0, (0,0)) = & (wn (m), X (@4 () ,0))
= X9, (Wean, (1) ,0) = 500 (P, (17) ,0)
= X9 (Wyn (7) ,0). (5.9)

Proof. First we note that (5.7) is a direct consequence of (5.2)), (5.6) and [S,
(4.16)].
Next we will show (5.8]). From the assumption we get
Sk+h (1,i+1)

(mLh (z) - 7711+h+1 (95)) = i+ (1,7) > 0.

=8k 4n(M,0)+1

Since for any i € Z,

Sovh (10 Eexn (0, Skan (1,1))) = Span (1,9)
we obtain
Storn (1,3+1)

(anc+h (x) - 7711:+h+1 (x))

=8k+n(1,1)+1
Eovn(MSkan (n,i+1))

= Z (77]14.]1 (se+n (0,2)) = 77]1+h+1 (se+n (1, 1’)))
2=+ (0,8k+n (1,9))+1

Eorn (N84 (M,3+1))=Ee4n (1,0) A N
= Z (\I]hh (n)k—e (%) - Woin (77)].;_0.1 (l’))
=€ n (M:5k+n (1:1))~Eern (1,0)+1

st—e(ern(n),i+1) N "
= Z (\I/€+h (n)H () = Vo (n)k,m (55))
x=5k-¢(Yosn(n),i)+1

= Cht (Wein (1) 1) > 0.
Hence there is a (k — ¢)-soliton with volume at site sy (Ypin (n),7) in
Wy,p (), and thus there exists some j € Z such that

sket (Teen (1)) = X9 (Wp, () ,0)
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Now we show j = j. For the case i > 0, from (5.3)),

j={0<i <i; Gee (Wi (n),i") > 0}
={0<i" <i-15 Gue(n,i') >0}

= 5
For the case i <0, from (5.3)),

j-1={i<i’'<-1; Cor(Tern (n),4") > 0}
={0<i’ <i—1; Gue(n.i") >0}
=j-1

Thus we have j = j. Hence we have (5.8).

Thanks to Lemma [5.3] we have the following.
Lemma 5.4. For any k,0,heN, i€ Z and n € N, we have
N, von (1) = N (05 () ),
M, (n.m) = M (W3 (n) ).
In particular, (511)) implies

Y (U (), n) =n- M (,n).

(5.12)

Proof. We use induction for n € N. First we consider the case n = 1. For
(B11) with n =1, from (5.9), we see that the i-th k + h-soliton in 7 is not
free at time 0 if and only if the i-th k-soliton in Wy () is not free at time 0.

Hence we have

MO, (n,1) = M (W, (n) ,1).

Next we show (5.I0) with n=1. We fix i € Z and k, ¢, h € N such that k > /.

Then there exists some j € Z such that

€k+h—1 (77’ X]S;i_)h (7’5 0)) = .]
In other words, we have

X,E?h (17,0) = Sg+n-1(n,5) -
In this case, we also have

Hien (Vern, (n=1)) = spanon (0,5 +1).
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We observe that from (3.3),

(@)
Nk+h,£+h (777 1)

Eoen(M,8k+n-1(m5+1))
Cosn (n,2z)  if the i-th k + ¢-soliton is free,

Z:&m(mx;g?h(’?))ﬂ

0 otherwise.
On the other hand, from Lemma (53] we get
&eon (1. X0, (1,0)) = & (wn (), X (W3 (0),0)),
Eosn (0, Skan—1 (1,7 + 1)) =& (Y (), s6-1 (Yn (n) , 5 +1)),
and
st (U (1) ,5+1) = Hy (47 (0 (1) 1))
Hence if the i-th & + ¢-soliton is free, we obtain

) Eorn(Mskan-1(n,5+1))
Nyihosn (0,1) = Z Covn (0, 2)
Z:&m(mxéi)h(??))ﬂ

&z(‘I’h(??),Hk (’Y;(f)(‘l’h(ﬁ),”)))
= > Ce(¥n(n),2)

&o(Wn(n), X7 (Wn(m)))+1
= N{ (U (), 1).
Now we assume that (5I0) and (5I1) hold up to n € N. Then,
ngi)h,hh (n,n+1)= ngi)h,hh (n,n+1) - ngi)h,hh (n,m) + ng?h,em (n,n+1)
= N{Don (T, 1) + N (01 () 1)
= NY) (0, (1), 1) + NY) (0 () 1)
where j = j(n,n) is uniquely determined via
X0, (T7,0) = X2, ()

i.e., j is the number assigned to the k-soliton at x®

pin(m,m) in T7n. From
[S, Proposition 4.4], we have

U (T™0) = Tsn s (@ s om0y L Yo (1)

and in particular, we get

. R n h
X (W, (1) ,0) = X7 (T () o) = 2 3 7 (T (T59),0).

s=1m=1
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Since the number of /-solitons overtaken by a tagged k-soliton from time 0
to 1 is conserved by constant spatial shift, we have

NI (W (T™9) 1) = N (W, () ,n+1) = N (L3, () ).

and thus (5I0) holds for n + 1. By using the same argument, we can also
show that (B.I1]) holds for n + 1. O

Now we will derive some estimates for Ny, ¢, M}, ¢, M}, by using ¢ and the
k-skip map. A key observation is that from Lemma B3] if we apply the
{-skip map to 7, then k-solitons in 1 with k& > £ become (k — £)-solitons in
U,(n), and ¢-solitons in 1 become certain sites in Wy(n). Thus we see that
a k-soltion overtaking ¢-soltions in 7 corresponds to a (k —£)-soliton passing
a certain site in W,(n). We note that different solitons may correspond to
the same site, and if é—g(XéJ)) =z for some j € Z and z € Z, then the site z
of W,(n) corresponds to (;(x) ¢-solitons. Hence, to find the total number of
f-solitons overtaken by the i-th k-soliton in 7, we only need to calculate the
sum of (y(x) on x € [X,g?e(ﬁfg(n))+1, X,gi)g(\I/g(n), n))]. Conversely, M,gl)(n)
can be calculated by counting the number of solitons passing through the
site in W (n) corresponding to the i-th k-soliton with volume.

Lemma 5.5. Assume that n € ). Then, for any k,£ €N, i € Z and n € Zs,

we have
o X2 (e (@)m)
2 Nyg (nmy= 5] G (1,7) 5 (5.13)
m=l 5=X D, (W, (77),0)+1
and
. n-1
MO (n.n) = Y (L= (T (7). i (71.1))) (5.14)
m=0
where
. ] . .
min JE€ ZZO N Z 1{§k(7]:h)>0} =1 7> 1,
. h=0
Jk (7771) = (515)

-1
—min{jezzo ; Z 1{Ck(77,h)>0} =—i+1} 1<0.
h=—j

In addition,

JZ(nvo’](j;%(nvo))71 ) JZ(WU;(J,Z(WO))
> G <MO s Y Gng), (5.16)
i=Je(n.o)(n.m)) =Je(nol)(nm))-1

where

ol () =it {j ez XE) (W (@), n) 2 I ()} (5.17)
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Proof. First we note that thanks to Lemma [B1] and (5.6]), without loss of
generality we can assume that s.(0) = 0.

First we prove (B.I3]). Observe that i-th k-soliton overtakes the j-th ¢-
soliton up to time n if and only if

& (m X (0,0)) +1<& (0, X7 (1,0)),
and
& (1m0, X7 (n,n)) 2 & (T, X (n,m)).
Hence, from Lemma [B.5] (.3 and [5.4] we get
X2, (e (n),0) +1 =& (n, X (n,0)) +1
<& (m X (n,0))

. n k-1 .
<& (X7 (1,0)) + (k=€) (n = My (n,m)) +2 ) N (n,m)
m=1h=0+1

= X, (W, (n) ,n).

Hence we have (5.13)).
Next we show (5.I4) for k£ < . We observe that the i-th k-soliton is free
at time n if and only if the site,

Sk (Tnn’ gk (T”777 X}£Z) (7]7 n))) ;

is a record in T™7. In addition, the function & (T™n, - ) increases at each
record in T™7. Hence, the i-th k-soliton is free at time n if and only if

& (T, X (n,m)) ¢ [& (170, X (o)) + 1,6 (T70, X (n.m) )],
for any j € Z and ¢ > k, where
Xg(j)(n,n) = max{x €Z; xeCon (%@(n))} .

On the other hand, from Lemmas and 5.3 we have

& (T, X0 (0.m)) - & (0. XO(0,0)) = 3 (k+ 0 (T771)).,

m=1

and

& (10, X7 (n,m)) = & (n, X (n,0))
) -1 .
= (k=0 (n-MP (,m)) +2 Y (h=k)NS) (n,n)

+ 3 (kv o (T 1))

m=1
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By (£9), (510) and (5I1)) we get
& (T, X" (n,m))
= X (@ (0),0)+ (k= £) (n = M) (Wg (1) )

k-1 .
+2 3 AN (U (n) n) + Y (k+ o (T 1))
h=1 2

n

= X (@ (0),n) + Y (k+ o (T ).

m=1
Now we consider an expression of & (T”n,X éj )(17, n)) Observe that there
exists 7' = j'(n) € Z such that
X7 (1m,0) = X7 (,m).

Since from Remark 3.6 the volume of solitons are conserved in time, we have
|Con (yéj ) (T"n,O))| = |Con (vlgj) (n,n)) |. In particular, Xég ) (T"n,0) =
Xéj)(n, n). Since there are no h-solitons with A > ¢ + 1 in the interval
[Xéjl) (T™n,0) ,)_(K(j’) (T"n,0)] at time n, from Remark [3.2] the difference of
& (T”n, Xéjl) (T”n,O)) - & (T”n,Xéj’) (T™n, 0)) is equal to the total num-
ber of h-th head and tail with i > k+ 1 in [(x97 (17,0, X857 (T, 0)],
ie.,

& (1m0, X (n,m)) - & (170, X (n,m))

=& (T, X (17,0)) - & (T, X7 (17, 0))
& (170 x0" (@0.0)
5> 5 (h= k)G (T, 7).

h=k+1 wzéh(Tnn’Xéj’) (T"n,O))+1

Then from (5.3)) and (B.8), we get

. a(rax @)

2 ) 2. (h= k)G (T, x)

=kt gmgy, (T, X 90 (T71,0) ) +1

o mn(T@m ) X0 @ (@) 0)

=2, 2 hén (Wi (T7n) , 2)
M=l amg (W (T X7 (0 (T7),0)) 41

- X0 (e (1) ,0) - XT) (w0, (T7n) ,0)

= X (Ui (n) ,n) - X7 (Wi () ).
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From the above we have

n

& (1m0 X7 (n,m)) = X (U () ,n) + Y (k+ o (T 1))

m=1

By combining the above, we see that i-th k-soliton is free at time n if and
only if

& (n, X (1,0)) € [ X0 (@ () ,n) + 1, X) (@ () )],
for any j € Z and £ > k, and this is equivalent to
r (170 (), & (1, X7 (0,0))) = 1.
Since
& (m X (1,0)) = Je (,5), (5.18)

we have (5.14).

Finally we show (5.16]). By the same computation as above, we see that
i-th k-soliton will be overtaken by the j-th /-soliton up to time n if and only
if

X (U (1),0) +1 < & (0, X7 (1,0)) < X7 (W () )

On the other hand, we see that

o) (n,0)-1 ; a1 (1.0)
X0 (g, (), 0) < 6 (n. x5 (,0)) < X0 ()
and
a(i)( ,n)-1 i U(i)( n)
LB () ) < (5 (,0)) « X (0 () )

Hence, if 01(;;2 (m,m)<j< a,gfz (n,0) — 1, then the j-th f-soliton will overtake
the i-th k-soliton up to time n. Now we observe that

Jo(n,j+1)-1 .
C@ (777j) =0,
Jl(n)j)+1
for any £ € N and j € N. From the above and (5.18)), we have (5.10)). O

The following representation of Yk(i) (n) is a key to show the main results.
As we will see later in Proposition (.9 the representation of Yk(l)(n) in

Lemma is an orthogonal decomposition of Yk(i) (n), unlike the original

formula (B.2)).
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Lemma 5.6. For anyqe Q, keN, 0<{l<k-1,1€Z and n € Zsy, we have
eff 14

(i) _ Yk (¢'a) (1)

V(U tn).m) = S (= M50 ()

k-1 U;EEK (efq) X,ii,)h(\lfh(ﬁ)m)

+2 ) > (Ch(§) —an(a)),

eff (ph-1
wer Vi (07 a) =X, (9 (),0)+1
with convention ¥.9_, = 0. In particular, we have
Ueff )
) (- ()

vt (0%1q)
(i) .
k-1 ,Ueff (q) Xk_h(qlh(n)vn) )
W > (Ch(J) —an(a)).(5.19)
h=1 U1 Y jox®, (w011
Proof of Lemma[5.0. First we note that from Lemma Bl for any k € N,

i € Z and n € Zsy, we have Yk(i)(n,n) = Yk(i)(ﬁ,n). Hence, without loss of
generality, we can assume that s.(0) = 0.

We fix q € Q. From (5.2)), (53)), (5.5]), Lemmas 5.4l and 5.5 for any k € N,
0<l<k,ieZ and n € Zxy, we get

Y (g (n),n)

v (n,n) =

0 ket-1 X (Teen(n),n) '
= (k=0 (n-MO, (T (),m))+2 Y b Y G (T (n),4)
h=1 j:X)(cZ_)g_h(\Ij£+h(77)70)+1

X (W (n),n)

. k-1
=(h=-0(n-MPm)+2 ¥ (h-0 Y (G G)-an(@)

h=t+1 3=X D, (U5 (n),0)+1
k-1 )
+2 Z (h=20)an(q) Yk_h (¥ (n),n).
h=0+1

Hence, if we write

Apppi= Yk(f% (Ye(n),n),
X{0,(2e(n)m)
Bp= > (Ce(4) —a(a)),
=X (We(0),0)+1
C:=n-M" (n),
then for any 0 </ < k-1 we have the following system.

k-1 k-1

Ak—E,Z = (k - K)C +2 Z (h - K)Ozh (q) Ak—h,h +2 Z (h - K)Bh, (5.20)
h=0+1 h=£+1
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with convention Y72+ = 0. By using (5.20) recursively starting from £ = k-1
and then ¢/ = k-2, and so on to £ = 0, we can represent Aj_g, as a linear
combination of C' and By, {+1 < h < k—-1. Hence, for any k£ ¢ N and
0 < ¢ < k-1, there exist some positive constants b ¢ (q), {+1<h<k-1
and cg ¢ (q) such that

k-1
A =cre(@)C+ Y, bren(a)Bn,
h=0+1

with convention Zf;i, =0. In the rest of the proof, we will show that

2077, (0%q)
b = 5.21
forany £>2,0<¢<h-1<k-2 and
eff Y4
Vk—t (9 q)
= 5.22
Ck,f (q) v(fff (eg_lq) ( )
for any ke N and 0 </ <k —1. By using (5.20)), we have
k-1 k-1
Apgp=(k=0C+2 Y (h=0)ap(Q) Ag-nn+2 Y, (h=£)By
h=0+1 h=£+1
k-1 k-1
=(k-0)C+2 . (h-f)an(q) (Ck,h (@C+ Y brnw(a) Bh’)
h=0+1 h'=h+1
k-1
+2 Z (h - f) Bh
h=0+1
k-1
= (k‘—f-ﬁ-? Z (h=20)ap (q)C]%h)C
h=£+1
k-1 h-1
+ 23@,1 +2 z (h -0+ z (h’ - E) Qpr (q) bk,h’,h) Bh.
h=£+2 h'=0+1
Hence we have
h-1
bren (@) =2(h=0)+2 > (B =L)aw (@) bewn(a),  (5:23)
h'=0+1
and
k-1
Cl,0 =k-/0+2 Z (h—g) ap (q) Ck,h, (5.24)

h=0+1
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with convention Y%,_,,, = 0. On the other hand, from @II) and (5.3), we
have
k—t-1

v}fg (Géq) =(k-1) vfﬁ (Hk_lq) +2 Z hagen (q) vzf,fg,h (thq)
h=1

k-1
= (k- 0)v$" (e’f-lq)+2h; (h=0) oy, (q) v, (0"q) (5.25)
={+1

By comparing (5:23)), (5.25]), we see that for fixed k € N, both the sequences
22122 (ng) st (9’“_1q)71 and by, ¢ 1; (q) satisfy the same inductive system for
0< ¢ < k-1, and these two sequence have the same value 2 with £ =k — 1.
Hence we have (5.2]]). By the same argument for (5.24]) and (5.25]), we also
get (5:22). Therefore Lemma is proved.

[l

In the rest of this subsection, we note some consequences from Lemmas
and and some materials in its proof. Before describing those, we
consider the following remark.

Remark 5.7. From (5.3) and the bijectivity of ¢, Vi (n) can be described
as a function of (Co(4))psgs14ez- In particular, for any k € N, Uy (77) and
(Ce(@)) pep. sz, are independent under vq, q € Q.

First we prove the exponential bound for Yk(i) (n). To describe the result,
we prepare some functions. For any q € O, k€ N and A € R, we define

-1
o0 )\ 2 log%?
Ug.k (A) = log (E,, [exp (2X¢(0))]) = 1-qx log q;,"
1 - - —_—.
Og(1—62’\%) S

By using uq i (M), we inductively define Ugq i (A) as Uqg,1 (A) := A, and

k-1
Ugk (\) = kX + ; (k=) uqe (Uqe (V) (5.26)
=1

for any £ > 2. We note that there exists some dq 1 > 0 depending on q, k such
that (—o00dqr) ¢ {A € R ; Ugx (X) < oo} In addition, Uqg (A) is a smooth

monotone convex function on (—co,dq ).

Lemma 5.8. For any q € Q and k € N with q; > 0, there ewists Aq 1 €
(0,00] depending on q,k such that for any X < Aqp, @ € Z and n > 0,
Ey, [exp (/\Yk(l) (n))] < oo. Moreover, if A < min{dqx, Aqk}, then for any
1€Z and n >0, we have

Ey, [exp ()\Yk(i) (n))] =E,, [exp (Uq7k (A) (n - M,gi) (n)))] . (5.27)

Proof. Since Yk(i)(n) is non-negative, it suffices to consider the exponential
moment of Yk(l)(n) with A > 0.
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We use induction on k € N. For the case k = 1, since ’Yl(z)(n)‘ <n, from

(BE12), we have
Evqg [exp ()\Yl(l)(n))] =Ky, [exp (/\n - Ml(l)(n))] < 00,

for any A € R.
Now we assume that the claim of this lemma holds up to k — 1. Suppose

that q € @ and g > 0. By Lemmas B 5.2, (512) and (5.13]), we have

0 0 ko1 XSy n)
Y, (n,n) = kY (Weer (7)) +2 ) 4 > Ce (7, 7) -
1 iax @ (,(7),0)+1

Then from Remark 5.7, Fubini’s theorem and (5.5]), we have
Evqy [exp ()\Yk(l) (n))]

0 ko1 X (We(i)n)
=Eyo| exp | kAY}" (Wgoq (7),n) +2X > 4 > Co (9, 9)
=2 5o x D (4 (7),0)+1

x exp(uqJ WY (0 (7) ,n)) . (5.28)

We observe that from (5.2) and (&.3)),

" k-1 XD (We(@)n)
kY (g (7) ,n) +2 3 ¢ >, e (1,7)
=2 =X 0, (W (7),0)+1

_ k-2 X0 (e (W1 (7)) m)
= kYD (Wyey (7) ,n) +2 3 (£+1) > Co (U1 (7),5)
=1 =X (e (W (7)),0)+1
<2y, (U1 () ,m).
From the assumption of induction, there exists some Agq -1 > 0 such that
Evgqy [exp ()\Yk(l)(n))] < oo for any A < Agq k-1, ¢ € Z and n > 0. Hence if A

satisfies
log ;!
2 bl

0<2X+uqg1 (N) < min{)\gq,k_l,
then for any i € Z and n > 0, we have
E [exp ()\Y(i)(n))]
Vq k
< By [exp (27 +uq1 () ¥ (U1 (7)) |
= By [exp (20 + g1 (0)) 1,0 ()]

< 0.
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Since the function A = 2 + uqg,1 (A) is strictly increasing, we see that there
exists some Aq > 0 such that E,, [exp (x\Y,c(l)(n))] < oo forany 0 < A < Ag,
1€Z and n > 0.

From now on we show (5.27). By Lemmas 3.1} 521 (512)) and (5.13), we

obtain
IO OND
o k-1 X0, (e (i)n)
= (k-1 Y (Ut (7),n) +2 ) (0= 1) > G (7,7)-
=2 3=, (e (i), 0)+1
By substituting the above formula of Yk(f)l (U (77),n) to (5.28), we get
Eyy [exp ()\Yk(l)(n))]

- Elp (O + uga () (k= 1) Y (1 (7) 1))

k-1 Xi—n (¥r(7),m)
xexp |2 (A +uqi (X) (h-1)) > GG
h=2 J=Xb-n(¥r(7),0)+1

By repeating the above computation, we have (5.27]).
From the above, this lemma has been shown. O

Next, for any q € @, k € N, i € Z and n € Zsg, we define AYk(ie)(n,q,n),
1<l<k-1as

» X, (W (77),n)
Aykj (777 q, n) = ' Z (CZ (ﬁa]) -y (q)) : (529)
5=X D, (W, (77),0)+1

Note that from Lemma B2, (5.14]), Lemmas and Remark [5.7] Yk(i) (n)
can be represented as

v (q)

(1) (2) _
Y, (n,n) —Ey [Yk (ﬁan)]——m

(M7 (n) = Boy [M? (n)])

k-1 Ueff (q) .
2% L Y AYY (5. q,n). 5.30
From Lemma B and Remark 5.7, we have the following proposition.

Proposition 5.9. For any qe€ Q, ke N, i€ Z and n € Zsy, we have

E,, [AYY (a,n)] =0, (5.31)
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and

Evq [AYL) (a,7) AV, (a,n)]

(@) _
_ ]Eugg [Y e(n)],ﬁf (q) E_E ) (532)
0 I
In addition, for any 1<¢<k—-1, we have
By, [AY (a,n) M (n)] = 0. (5.33)

By combining the above, we have

Ueﬂ( )2 i
e [ e [0 0]

_q peff 2 (1) n
L5 (a)°E j; [zfl ) ( >]m<q>
=1 (0-1q)”

Proof of Proposition [5.9. Since the case k = 1 is trivial, we consider the case
k> 2. We fix i € Z. Since X", (W, (77) ,n) is 0 (¢ ; h> £+ 1)-m’ble for any
1<¢<k-1and ne€Zsg, from Remark (.7 we have

Yk(z') (n) - El,q [Yk(i) (n)]ﬂ

E, [ Y()(n,q,n)| (Ch,h>€+1)] 0 vg-as.

Hence we obtain (5.31]) and (532)). In addition, from (G.14), M,Si) (n) is
0 (5 h>k)-m’ble for any n € Zso. Hence for any 1 </ < k-1 and n € Zsg
we get

By, [AY) (,0,m) M ()]0 (G s b2 0+ 1)]

= M (n)E,, [AYJ,Z) (n.q,n) \a (Ch; h2l+ 1)]
=0 vg-a.s.

Therefore we have (5.33).
O

Remark 5.10. The decomposition (5.30) might be useful to consider the
long-time correlations between solitons with different sizes. Actually, from
Remark[57, for any qe Q, k,LeN, k<, i,j €N, we have

1 i
lim 8y, [AYS) (a.0) AV (a,)]

n—00

_ Jvs-he (0"'aq)v$" (6" 'q) Bee1 (@) h=F,
0 h+h'
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In addition, for any 0<h<k-2 and 0<h' <l-2, we have

1 i j
lim —E, [AYk(J? (q,n) Yl(J) (U1 (n) ,n)]

n—oo N,
= 7}13)10 ﬁEyq [YI(Z) (Tg_1(n),n) AYZ(}L), (q,n)] =0.
Hence, if the covariance of Yl(i) (Yi-1(n),n) and Yl(j) (Yy_1(n),n) can be
computed explicitly, then one can obtain the explicit correlation between the
i-th k-soliton and j-th £-soliton, but it does not seem to be easy to compute.
6. PROOF OF THEOREM

Since Yk(l)(n)/n converges to v (q) a.s., to show the P convergence, it

; P
is sufficient to prove that (|Yk(l)(n) /n‘ ) N is uniformly integrable, i.e.,
ne

y @
lim supl/q( e () > L) =0,

L—oo eN n

and

; P
. v (n)
lim supE,, | | —
L—oo eN

I{Y,j“(n)/nzL}] =0.

We recall that Ug  (A) is defined in (5.26]) and is smooth on (—o0,dq ) with
some 0q 1 > 0. Thanks to (B.21), we get

i n—MD (n
- lexp (M)] - (nU ) w)

n n
A
< exp (nU(Lk (—)) ,
n

where we use the fact 0 < M,Ei) (n) <n. By the smoothness of Ug (A), we
see that if A\ < dqx, then

A
sup exp (an,k (—)) < 00,
neN n
Hence by the Chebyshev inequality we have
(4)
Y,
supz/q( e (1) > L)

neN n

(%)

Y,

<e M sup E,,q [exp (k—(n)):l
n

neN

A
<e M sup exp (an,k (—))
neN n

-0 as L — oo.
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Moreover, from an elementary inequality =P < (|p|+1)!e*, x > 0, and the
Schwartz inequality, by choosing 0 < A < 04 1/2, we obtain

(1) p
Y, (n)
kN ,
i B 1{Y,§”<n>/n2L}]

[ (1)
(|p] +1)! AY,” (n)
< TSHPEVQ exp T 1{Yk<i)(n)/n2L}

neN |
- . 1 . 1
| 2)\Y(z) 2 Y(z) 2
cllent e [ (2], (0
AP neN n n

M

AP neN

< —(LPJ + 1! (Supexp (an,k (%))1) Snl:II\T)Vq (Y;Z;(n) > L)é

-0 as L — oo.

Therefore Theorem is proved.

7. PROOF OF THEOREM

7.1. Proof of ({]). First we prepare the following simple lemmas.

Lemma 7.1. Let ((i), i € N be i.i.d. random variables define on any proba-
bility space with E[¢(0)] =0 and E[¢(0)?] = 1, and define S(n) = ¥ ¢(i),
n e N. Assume that ac (t),b (t) are non-deacresing function on [0,00) such
that

lim sup |ag (t) —b: (t)| =0, lim sup |ac (t) —at| =0,
e>00<t<r e>00<t<r

with some constant a > 0. Then, for any T >0 and § >0, we have

(=) (2))

Proof. Let B(t),t > 0 be a standard Brownian motion defined on some
probability space. Thanks to the Skorokhod embedding theorem (cf. [Bl
Theorem 37.7]), there exists a sequence of stopping times 7(n), n € Zso,
70 := 0 such that 7(n) -7 (n-1), n e N are i.i.d. and

lim]P’( sup €

e=0  \o«<T

(B(r(n)),neN)2(S(n),neN).
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Hence, we have

()
(el ({1 =2)-= (52 )+)
#5222 ))

Now we claim that

S t be (t
lim sup |e?7 a: (1) -e¥r = (1) =0 as. (7.1)
e=>00<t<r g2 | &2
Actually, for any ¢ >0, we have
[ae(t)a’zj
t
827({%(2)J):52 Z (t(n)-7(n-1))
€ n=1
—at a.s.,
where we use E[7(1)] = 1. Then, for any n € N, we have
_ a. (™ T
lim max |e°7 (l - > )J) A0 as. (7.2)
e—>00<ms<n g n
On the other hand, by the monotonicity of 7, a., we have
t
sup 527([%(2)J)—at
te[m—T,(mH)T] g
ae(—) amT ac (L) a(m+1)T
< |2 n _ + g2 €\ n _
<ler - - e 2 -
2 5( n ) a(m+1)T 9 aE(T) amT| 2aT
< — —
<ler = - + |e*r - - -
ac (2L T| 2aT
<2 max |1 {€<”)J)—am Ml
0<ms<n g2 n n
From (7.2)), we see that
_ t N t
lim sup |e%7 ag_(2) —at| < lim max sup e2r as_() —at
e=>00<¢<T | € e=>00<ms<n te[m—T (m+1)T] €2
2aT
<— as,

n
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2]

and thus from the assumption of this lemma we obtain (). From (7Z.1]),
for any ¢’ > 0 we have

o2 ) D

<P sup |B(t)-B(s)|>0d
0<t,s<a(T+4"),

for any n € N. Hence we get

lim sup

=0 a.s.,
e=00<¢<T

limP| sup
=0 \o<i<T

[t-s|<d’
- ac (t be (t !
] (]

+2limP|( sup
=0 \o<t<T

e (Vzgt) J) —at|> 5’)

=P sup |IB(t)-B(s)|>6]—-0 asd —0.
0<t,s<a(T+4"),
[t s[<6”

From the above, Lemma [Tl is proved.

Recall that AYk(’? (n,q,n) is defined in (5.29]).
Lemma 7.2. For anyqe Q, keN, 1<l<k-1,i€Z, T>0 and § >0, we

have
>5):0.

_— 1

limyg| sup —

a0 4 (Ogth n

Proof. First we observe that since n — X ,gl)(n) is increasing in n, by using
(£10) and the same argument used to derive (Z.I) in Lemma [[T] for any
qeQ,keNieNand 0<t<T, we have

|vi—e(0%a)n?t]

AV alnt)- Y (GG) - (@)

=1

1 .
lim sup —Xlgz) (Int]) vk (@)t =0 vg-a.s. (7.3)
e=>0p<tcT I
Hence, from (B.0) Remark (5.7, Lemma [Tl and (73], the assertion of this
lemma is proved. O

Thanks to Remark 5.7, we see that the following stochastic processes,
1 [vzf_f[(qu)thJ

te Y () -a(a), (7.4)

=1
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for 1</¢<k-1, and

o (M (o, [n]) - By [ M ([24])]). (75)

are independent under v4. Moreover, since vq is translation-invariant, the
distribution of (.5]) does not depend on i € Z. By following the standard way
one can show that (4] converges weakly to the Brownian motion in D[0,T']
with mean 0 and variance v,iffg(eeq)ﬂg(q). Hence, from the assumption of
this theorem, Lemmas [(.4] and the representation (0.30), the process
(£T4) converges weakly to a sum of independent Brownian motions, and its
variance Dy, (q) is given by the sum of their variance. Therefore Theorem
(@) is proved.

7.2. Proof of (2Z)). We recall that Ugj () is defined in (5.26). From Lemma
B8, if A < min{dq x, Aq,k}, then for any i € Z and n > 0, we have

1 i 1 i
- logE,, [exp ()\Yk( ) (n))] = logE,, [exp (quk (\) (n — M,E, ) (n)))] .
Hence from the assumption of Theorem @), we have
Mg (A) = Mgl (Uai (V). (7.6)

We also recall that Uqg (- ) is a smooth monotone convex function, and
supycs Ugk (A) < oo for sufficiently small § > 0. In addition, since 0 <
M,gl)(n) < n, we have ]Ag{k()\)] < |A| for any A. Hence if Aﬁ\fk is essentially
smooth, then so is AqY - Therefore Theorem (2) is proved.

8. PrROOF oF THEOREM [4.§

First we prepare two lemmas. To describe them, we define =g (n,7) :=
é.k (777 Soo (77,@)), and

Ji (@) =By, [Je(1)],

Soo (@) = By [500 (1) = 800 (0)],

Ek (a) = By [Ex (1) - E (0)],
where Ji (7), i € Z is defined in (5.15).

Lemma 8.1. Suppose that q € Q and E, [‘e(o)ﬂ < oo. Then, for any k e N,
u e R, we have

1 nu 700 J .
lim —Xlgl D (0) = S@M, vg-a.s. and in Ly, (8.1)
T = (@

and

[nu]) _ Seo (a) Ji (q)u

L
_X =
nok Ek (q)

> %) = 0. (8.2)

lim lim vq
L—ocon—o0
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Proof of Lemma[81. First we observe that

So0 (1,14 1) = 560 (1,1) = |e(i) ()|
= e ()|
= oo (7,0 + 1) = 500 (71, 7) ,

where e (1) and 7 are defined in (Z3) and (36), respectively. Similarly,
we have

Soo (7,i+1)

Ek: (77’2+1) _Ek‘ (TI7Z) =1+ Z Z (T]]Z;+£ (.I) +77]£;+£ (fL'))
LeN z=500 (1,8)+1

Soo (77,4+1)

=1+ Y (i (@) + i, (@)

LeN z=560 (77,1)+1

=1+ {(k+£,a)—seats in e (7)), o¢ {T,i}}|.

leN

In particular, both se (7,7 + 1) — S0 (7,4) and Zj (7,0 +1) — Zx (7,4) are
functions of e (7). In addition,

=k (nai"'l)_Ek(n?i) < Seo (n7i+1)_50° (7771)

Hence from Remark A Tland the assumption of this lemma, both (S (7,7 + 1)
~ o0 (1,1))iez, and (Zg (0,3 + 1) = Zg (1,1)) ;o7 are i.i.d. L2 sequences under
vq. In addition, since ((x(7,%)),., are ii.d. geometric random variables
under vg, (Jg (1,i+1) = J (0,4)),z is also an iid. L? sequence under vq.
Thus we see that for any u € R,

T}l_{lolo %500 (lnu]) =50 (@) u, vg-a.s. and in Ly, (8.3)
E -

1 _
lim —Ji (|nu]) = Jp (@) u, vg-a.s., (8.5)
n—>oo n,

mmyq(

L—o00 n—>00

> %) -0, (8.4)

L)) - J @)1 > =) <0,

lim lim I/q(
L—o00 n—o00

and

N =
lim —Z (|nu]) = 2k (@) u, vg-as.,

n—>o0o n,

o 1 —
lim lim vq ( —Zk (lnu]) - Zx (@) u
L—>o00 n—>00 n
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Hence we get

lim le([nuJ)—lEk([MJ) ~0, vgas, (8.6)
s S\ E@ )
e =] ) o

First we show (8I]). We fix § > 0 and 7 € 2, such that

I | L) - 233 (| 24D ) <
P M @

Then, since fk(n,X]gi)(n)) = Ji(n,i) for any k € N and i € Z, and &/( - )
increases at each record, we get

bl )

SE’“( Vf’;(&i) J)

<& (n. X" ()
nJy (q) u
= (n L)) v
nJi (q) u
: k( { _Z(q) J )'
Thus we have

o (| "L | ) « 2 G L (| | )

Ex(a) n Er(a)

1]

[1]

Hence, by using ([B3) and (8.6]), we have (81]).
By using (84) and (87) instead of (R3)) and (8.0, we can prove (8.2)

from a similar computation.

U
Recall that o*,(jz (n,n) is defined in (5.I7).

Lemma 8.2. Suppose that q € Q and E,, [‘e(o)f] < oo. Then for any
k,leN with k <f and u,v € R, we have

hm Uk E uh) (0) = fre(a,u), vgq-a.s., (8.8)
ul) L.
Lh_I,Iolor%l_{Ic}o Vq( Ukz (0) = fre (q,u)| > %) =0, (8.9)
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and
1 nu 1 nv L
LIEI.}OT}HEO Vq( gal(ie b (n*) - 501(# b (n?) = fre(qu-v)|> %) =0,
(8.10)

where
Ze (0%q) Ji (@) u
S0 (0%q) J¢ (q)
Proof. We fix q, k < ¢ and u,v. Without loss of generality, we can assume

that u > v. For notational simplicity, we will write @ = fi ¢ (q,u).
First we show (8.8]). We observe that from Lemma [B.1]

fre(q,u) =

lim X<"“><\Ifk<n)> Je(@)u, vga. s,

where we use (5.2) and (5.4) to show barJo_i (0%q) = barJ; (q). We fix § >0
and 7 € Q) such that

Tim X( "D (0, () = Tk (q) @

n—oo

and

T | (Inel) - Tk (a) u <.

n—>o00 | n

Then, we see that
1 nu|—|[n nu|+|n
XD (i () < (L)) < XD (),

where we use the fact that the number of k-solitons contained in an interval
[a,b],a < b is at most (b—a)/(2k). Hence, from Remark (.7 and ([835]), we
obtain

hm |alg o D (0) - 11| <4, vg-as.

Therefore we have (88]).
Next we show (89). We fix L; > 0. Then, on the following event,

,_.

Ap, = {] =x D (wy () - Ji (a) ] <

m{— SLln_%},
n

I ([nu)) = T (@) u

we see that
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Hence we have

1

1
—JH )(O) u‘>L2n 5)

lim lim vq
L2—>00 n—00

1

1
Uke )(0) u‘>L2n §)+1/q(AL1)

< lim lim I/q(]_AL

Lo—o00n—>00

= lim vq (Ar,) >0, Lj - .
n—oo

Therefore we obtain (8.8]).
Finally we show (8I0). We observe that a,il?uj) (n?) —UI(CLZUJ) (n?) is equal

to the number of (¢ - k)-solitons with volume in [Jg (|nv]), Ji (|nu])] at

time n?, i.e.,

oy (1) = ol (n?)

=[{iez; (o)) < X2 (T 0y (0)) < i (L))}

Since vq is an invariant measure, from Remark 5.7 we have

JeZ; Ji(|nv]) < X(j) (Tnz‘l’k (77)) <Ji ([nuJ)}|

Liezs de(mo)) < X2 (0 () < Ji ([nul)}|
= ot (0) - o) (0).

Hence we have (8.10).

Proof of Theorem[{.8 Without loss of generality, we can assume u > v.
From Lemma [5.0, for any 0 </ <k -1, we have

YD (@, (), n?) =D (w, (), n?)
eff Y/
Vp_p (0 q) (In%]) [~ 2 (Inu]) (= 2
=T N M 9 _M 9
fk(q) ( k (nn) k (nn))
+2 kz_:l vty (0°a) X J)gh(") n?) ) x5 (wa (i n?)
pir Th(@) G=x D (@ (7,001 j=x 0D (@), (7),0) 41

x (Cr (1,4) —an (a)) - (8.11)
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By using Remark 5.7 and (811, we get

1 nu 1 nv 2
Euq[— SR CAON B Al L AO R ]
- MEVq [ D) (2 - g n°eD (nz)ﬂ

7 (@) n?

ARG

W (@)’ n?
x By [V D (@ (), 02) - V5D (0 () 0?)|] - (8.12)

where at the last line we use Lemma[3.l For notational simplicity, we define
nu nv 2
JJ“M%MﬁJWM”}

Then, from (RII]) with £ = k-1 and the Schwartz inequality, we get

Mﬁi = E,,q[

Evg [ (Wia () ) =00 (0 () )]
eff k-1

_ (0" a) lnv]) (= 2 (In®ul) (~ 2

- 71, (q) EVq[ k (n’n )_Mk (n’n )H
eff k-1
U1 (0 q) TrU, %

T ()

By using this, (812) with ¢ = k-2 and the Schwartz inequality, we see that
Euq [ 2 [nu] ( —2(n),n ) Y( nvl) (‘I’k—2 (n) ,712)”
a a 2
<Bu |5 (s () %) =1 (s () 02|
1
USH (gk—Qq)2 AU,V 4“?6 (91‘3_2(1)2 Bk—l (q) UTH (ek_lq) AU,V % ’
< _—QMk,n + = 2 (Mk,n)
7 (a) Tr-1 ()" 7% (q)
1
< Ugﬁ (Hk_Qq) (Mu,v)% + QU?H( )ﬁk 1 (q) UEH (ek’ ! )2 (J’“M”'U»,U)i )

7 (q) o Fro1 () 7 ()2

By repeating the above procedure from £ = k—1 to 0, we see that there exists
some constant ¢ = ¢; (q) such that for any 0 < ¢ < k-1,

1
2

“ a k _ 1 h
E,,q [ p [n%u]) (‘I/k—é (17) 7n2) _ Yé([n v]) (\I/k—é (77) ’n2)H <en Z (M]Zi)(Q) ‘
h=0
Hence, it is sufficient to show that
T}Lnolo %E [ kLnGUJ) (n2) _ M]glnavj) (n2)‘2:| _ 0. (813)
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From now on we prove (813]). From ([3.4), (5.16) and the triangle inequal-
ity, we have

1
nu n®v 2]z
B | [0 (2) - 1D ()]
1
" 212
o | £ e (-l )|
l=k+1
) o 1
<2 5 B, [|u ) () - a7 ()|
t=k+1 S ’
1
a a 2 2
. (ol P 0)-1 (o) ’
<2 Y By, Z; Ce(d) - > Ce ()
=k+1 j=de ("D () j=Te (o7 (n2)) 1
1
. #(l D) RO S
+2 Y K, Z Ce(4) - Z; Ce (4)
SR =i n2)) 1 i=Te(oiy P ()
Hence, it is sufficient to show
- a a 2_
. Je(a,ﬂfj “J)(O))—l JZ(UI(H vJ)(O))
Jlim =, > «l)- 2 G| =0,
i=Te(o P (n2)) i=e(o;P (n2))-1
(8.14)
_ " 27
X Je(a,(ij “D(o)) Jg(a,(};? “J)(o))—l
Jim —E,, > G- X« |=0
i=Te(oly P (n2))-1 i=e(o ) (n2))
(8.15)

for any u > v and £ > k+ 1. In the following we will only show (RI4]). We
note that (8I5]) can be proved by the same computation.

First we prepare an estimate for ‘71(;2 (0). Since |X,(Zi)(0)| > 2hli| for any
i1 €Z and h € N, we have

0< ot (0) < Ji (7.7) . (8.16)
for any ¢ > 1, and

Ji (7,17) < a (0) <1, (8.17)
for any ¢ < 0. In addition, for notatlonal simplicity, we define

1) () =0} (0) = o) (n?).
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53
Now we estimate (8.14]). Observe that
Je(";(i;auj)(nvo))—l Jé("k[z J)(’%O))
Z Cf(nvj)_ Z CZ(UJ)
i=Te(oy P (nn2)) i=Te(ofy P (nn2))-1
ol D001 oD m,0)
= Z Cf (777‘]( (777]))_ Z Cf (777‘]€ (%J))
j:O.I(CLnauJ)(mnz) jzol(cl’?avj)(n’n%_l
= Z (Cﬂ(ﬁ,Je(n,j))—q)
j—cr( nvD (,0)+1 ¢
) .
DR CIOR AN EE
_(nol) o 1-q
]:Uk’g (777" )
1 TL u n v
+ (285" ) = 1850 () (8.18)
1 q

For the first term in (8IF]), by using (816) and (8I7), we have

Z (Ce(n,Je(n,j))—%%)

(L" v )( ,0)+1

< sup
Ik (=@ (Jul+[v])) m<m/<Jg (n,n (|ul+[v]))

S (@mrmm- )|

j=m+1

Since (¢ (1, Je (1,7))) jez ave i.i.d. with mean (1 - q0)7!, and (; is indepen-
dent of (., by Doob’s inequality we get

l 2
m' -1 ) 1
B, sup > («on-1)
T (=n (ful+[o])) sm<m!<Jj, (n (lul+v])) |j=m~+1 T

T (n (Jul+[v]))-1

2
S 4Eyq [ ]

_ 1)’
<8n (|ul + [v]) J (q) Ev [(Cz (Je(n,0)) - 1_—%) ] :

Hence we have

(¢ (m))—l_—l%)

J=Jk(=n([ul+[v]))+1

oD (,0)-1

1 1
lim —E Z Ce(n, e (n,5)) = —) =0.
n—ooq . n v]) 1 q
]:cr (n,0)+1
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For the second term in (8I8]), we observe that

or D (nn) .
> (Cz(n,Je(n J))——)

,(Cl?avj)(ﬂanz) qe
UIEL,ZauJ)(n,nQ) 1
= (G () e (W (). )) - =)

=o "D (n.n2)

_ (Ce—k (7w () Jes (T () 5)) - I—Lqe)

where at the second line we use (0.3]), and 5,(;2 (n,m) is defined as

&) (nm) =it {5 e Z 5 XU\ (T™W (7),0) 2 Ji (77,0)}

for any k< l, i€ Z and m € Zso. Slnce a( y ; (n,m) also satisifes (8.16) and
(BI7) by replacing GN (n,0) with ak 7 (17, m), we have

The n2 B n2 . 1
(Cé—k (T Wy (1), Jok (T Wy (1) ,J)) - —)
_~([n%v]) 2 1~ qe
J*U (n,n?)
< sup
T (n,=ns (ful+}ol)) smem’ <Ji (. (ful+}ol))
m'-1 2 2 1
Comi (T Wi (), Jo—p (T Wi (1), 7)) - —) .
;( ( ( -1

By the independence of ¢ and (;, and then using T-invariance of v4 and
Doob’s inequality, we obtain

Ev, su
T (=ne (Jul+|o])) sm<m <y, (n (ful+[o])

m/-1

> (G (T e (). )) - )

j=m+1 1-q

< 8n® (Ju] + |v]) J (q) Eyq [(CE (Je(n,0)) - 1_—%) ] .

Hence we have

|

(ce0 (n,j))—l_%n) _0.

iy (nn2)



SCALING LIMITS OF SOLITONS IN THE BOX-BALL SYSTEM 55

For the third term in (8.18), since (Jx(j) - Jx(j — 1))z are i.i.d. and have
geometric distribution with mean (1 - g) ¢!, by using (8I6) and (8I7) we

have
nu 0 nv 0 4
(Ol(c%é J)( ) CI(cEé J)( ))
I/q

lim E
n—>00 nCL

<4 Iim E,,

n— 00

n4a

[Jk (Ln“ul)* + T (lln“vlJ)4]

A0 =) (jul* + o)
< p .
Therefore, from (89, by setting

AL,n = {

with some L >0, and using the Schwartz inequality, we have

. (O_I(J?auJ) (0) _ Jl(g%?av” (0)

>

1 nu 1 nv
Ea,&g J)(O)—Ea,ge D(0) - fue (q,u-v)

7l

2
- fk,f (q,u—v))

na
[ (Ln®u]) (In®v]) 1
o 0)-o 0
=Epq | 1ac e O - e )—fk,e(%u—v)
’ n
[ (Ln®u]) (In®v]) 1
o 0)-o 0
+Eyq | 1ag, e Dok )—fk,e (q,u-v)
na
[ (Lnu]) (Ln®v]) 2
2 o 0)-o 0
na ’ na

+ 2q (App) | fie (@, u =)

1
nu n%v 92
L2 (a,i%g D (0) - J><o>)

1
< E + 21/q (AL,n)2 Eyq na

2
+ 20 (ALn) | fre (qu-v)|",

and thus we obtain

U}(Jg ul) (0) - U}({Eg v]) (0)
a

n

n—oo

2
lim E,, ( _fk,é(cb_v)) =0.
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By the observation used in the computation for the second term in (8IS)
and using (8.I0), we also have
2

([n%u]) (. 2 (In®v]) ¢, 2
g n n
) ) - fee(a,-v) | |=0.

-0
. ) k.t
lim E,
n—00 a na

Since 0 < a < 1, from the above estimates we obtain

|-o

By combining the above and using the Schwartz inequality, we have (814,
and thus Theorem .8 is proved.

([n*u]) ([n®v])
Ik,Lf : _Ik,Lé :

n—oo N2 Ya

— 1
lim —E [

O

9. PROOF OF THEOREM [ 10|

In this section we show Theorem [£.10l First we note that thanks to (5.4)
and (B.I1)), it is sufficient to consider the case q € Qy and k = 1. We fix
q € Qm. Next, we prepare the following lemmas. Recall that W( - ) is the
carrier process defined in (LT]).

Next, we prepare two lemmas. Before describing the lemmas, we recall
that the inverse of one-step time evoltuion 77 : Q — Q is given by

‘«—

T (x) = (T ) (=),
where 7 (z) = n(-x), x € Z, see [CKST, (2.12)]. By using the carrier W
and (LZ), T~'n can be represented as
T'n(x)=n(x)-W (7,-z)+W (7,-z-1).
We also recall that the ball density p(q) is defined in (£19).
Lemma 9.1. If the initial distribution v is a two-sided Markov distribution

supported in §, then for any x € Z, (T"n(x)),,c; s an irreducible and non-
periodic two-sided Markov chain on {0,1} whose transition matriz is given

by

ROO R01 1- V(W(O):}) V(W(O):})
R= = 1=v(n(0)=1)  1-r(n(0)=1) 9.1
(Rlo Ru) ( 1 0 ’ 5-1)

and invariant measure € [0,1]? for R is the Bernoulli measure with density
v(n(0) =1).

Proof. Since 1 € 2 is a two-sided Markov chain under vg, (1(y)),s, and
(n()),, are independent conditional on n(z). On the other hand, since
the carrier W (n,z) is (1(y)),c,-m’ble, we see that (1" (x)),s, (resp.
(T"n(2)),<0 ) 18 (1 (y))ys,~m’ble (resp. (n(y)),<,-m’ble). Hence, the pro-
cesses (171 (x)),5o and (T"n(x)), <o are independent conditional on n(x),
and this implies the Markov property at n = 0. Since vq4 is T-invariant,
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(T™™n (x)) 50 and (T (x)),,<o are independent conditional on 7' n(x)
for any m € Z, and thus (17" (x)),, is a two-sided Markov chain.

Since the invariant measure for (777 (x)),,; is the Bernoulli measure
with density v (n(0) = 1), we can obtain R by direct computation. O

Lemma 9.2. Suppose that q € Qn. Then, for any x,z < 0, the process
r(T"n,x+2), n>2 and the event {so(0) = 2} are independent conditional
on T?n (x + 2).

Proof of LemmalZ2. Since 7(n,7) = 1{y(2)=rn(x)=0}, the event {s,(0) = 2}
is 7(z), Tn(z)-m’ble. In addition, by taking the action 77!, we see that
both 1(z) and Tn(z) are (T?n(y))ys.-measurable. Hence {sw(0) = z}
is (T%n(y))ys»-measurable. On the other hand, (r (T™n,z+z)), n > 2 is
(T%1(y))y<z+.-measurable. Thus by the Markov property of 7%, the pro-
cess r (T™n,z + z), n > 2 and the event {s4(0) = z} are independent condi-
tional on T2n (x + 2). O

9.1. Convergence of (4.13]). In this subsection, we will show that (413
with & = 1 converges to the Brownian motion with variance G7 (q), and
compute G1 (q).

We recall the formula (5.14) with & = 1.

. n-1
Ml(’) (n,n) = Zo(l = (T™Wy (), J1(7,))) -

From Remark 57 ¥y (77) is independent of J; (7,7). Hence by (B3, to
show the weak convergence of (£I3]), it is sufficient to show that for any
fixed x € Z, the following process,

1 [n?t]-1
t - S (r (T, ) - Eypq [T (T"n,2)]), (9.2)

m=0

converges weakly to a Brownian motion under vgq. First we consider the
case x < 0. Since T' and 7,_(,0) are commutative, we have

n-1
= (r(T752) = By [r (T2 (3), )
n-1

= 2 (r (T2 + 500 (1,0)) = By [r (T, 2 + 550 (7, 0))]).

m=0
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Then, by Lemmal[0.2] the process (r (T"n,x + z)) and the event {se (0) = z},
z > 0 are independent conditional on 727 (z + z). In addition, by the condi-
tional independence and shift-invariance of vyq, if m > 2, then

EVGq [T (Tm777 T+ S (0))]
=2 Euyg [r (T, 2+ 2) 1{Sm(0)=z}]

2<0
B Z Evgq [7“ (T™n,x + z) 1{T217(x+z)=1}] Voq (soo (0)=2,T*n(x+2) = 1)
= Vo (T%n (z +2) =1)
Ly Evpq [r (T™n,x+ 2) 1{T2n(m+z):0}] Voq (800 (0) = 2, 7% (z +2) = 0)
o) Voq (T%n (z +2) = 0)

=E,p, [r (T™n,0) |T217 (0) = 1] z;)ygq (soo (0) = z,T2n (x+2)= 1)

+Eppq [r (T™n,0) ‘TZU (0) = O] > voq (soo (0) =2, Ty (x+2) = 0).
z<0
Since (1T™1(0)),,s5 is a finite ergodic Markov chain under vgq, and is strongly
mixing with exponentially decay rate, we have

1 |n2t|-1
lim |— (Eygq [r(T"'n,x + oo (0))] - 71 (q)) =0.
[l KU
Also, thanks to the strong mixing property, for any (7" n(x + 2)),,5o-m’ble
set A, the difference |vg (A) - vq (Tm/A|T277(x +2) =a)| decays exponen-
tially fast to 0 as m’ — oo for a = 0,1. From the above, it suffices to
show that the following process,

[n2t]-1
t - Z—:o (r(T™n,z+2)-71(q)), (9.3)

converges weakly to a Brownian motion under vpq( - ), and this can be
shown by the invariance principle for strongly mixing stationary sequences
(cf. |[EK, Theorem 3.1]). Hence the convergence of (@.2]) has been shown
for the case x < 0. Next we consider the case z > 1. From Remark E.1], for
any z € Z, the distributions of 7 and 7,_ () »)-s., (5,0)7 are the same under vq.
Hence, we have

n—1
2 (r (T ) =~ Eupy [r (T4 (7))
n—-1

(r (T™, 2 = 500 (1,2)) = By [r (T W1 (7 (nyn) 2)]) 5

m=0

m
d

under vgq. Then, since z < s (7, 2), by the same argument used in Lemma
0.2 we see that the events {se (1,2) = 2z}, < z and {se (1,2) = 2'},
2" <0, and the process (r (T"n,x -z +2")) are independent conditional on
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T?n(x - z + 2'). Thus by repeating the same argument for z < 0, we can
show that (@.2)) converges weakly to a Brownian motion under vpq.

Now we compute the variance G (q). We observe that by Lemma [0.1],
the sum in (@3)) can be viewed as a functional of the ergodic Markov chain
((T™n (x+2), T™ 9 (2 + 2))mez on {(0,0),(0,1),(1,0)}, where its transi-
tion matrix R’ and invariant measure 7’ € [0,1]3 are given by

0 0
- e O
R = 0 0 11,
1 - _~(09) pPa)
I-p(6q) 1-p(fa)

and
7((0,0)) =1-2p(0q), ='((0,1))=7"((1,0))=2p(0q).

Since the explicit solution of the following Poisson equation,

(29

1
f= ( - (1-2p(0q)) )
-2(1-2p(0q))

from [KLO12, Theorem 1.2], G1 (q) can be computed as
Gl (q) =K [|f|2] - K [|R,f|2]
=4p(0aq) (1-p(0a)) (1 -2p(0q)).

We note that thanks to (54), the formula of Gy, (q) for k € N can be obtained
by using G, (q) = G1 (657 1q).

is given by

9.2. Convergence of (4.16]). First we remark that by the same argument
used in Section and using Lemma [9.2] we see that if the following limit,

1 n—1
lim —log (Eyeq [exp ()\ Z r(T™n, 0)) n(0) = w]) ,
n—oo n m:[)

exists and independent of w = 0,1, then it coincides with Aé/{l (A). By using
r(T™n,0) = (1-T™n(0)) (1-T™*p (O)), for any wg € {0,1}, we have

n—1
Evq lexp (/\ > r(T™y, O))

m=0

n(0) = WO]

- Z ﬁRW‘w'+1€>\(1_wi)(l_wi+1)

W yeeyWn, 7=0

- (R()\)”)woo +(R (A)")w01 ,
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where R;; is defined in (@), and R ()) is given by

5 1-2p(6q) A\ _p(bq)
R()\):=| 1-p(ba) 1-p(0q) | .
1 0

Hence, from [DZ, Theorem 3.1.1], we have

1 n—-1
lim —log (IE,,fl |:exp (A Z r (Tmn,O))
m=0

n—>o00 n,

1(0) =w]) =log (PF (1)),

where PF()) is the Perron-Frobenius eigenvalue of R. By a direct compu-
tation, we see that

_ 1-2p(0a) [ x o2\ _ 1
PF(/\)_2(1—P(9(1))( +\J 22 1+(1—2p(9q))2).

In particular, log (PF ())) is a smooth convex function on R. The convex
conjugate of log (PF (\)) can be computed as

Ié\f[l (u) =sup (Au —log (PF (X))
AeR

glog(4p(9q)(1—p(9<1))u2)
2 (1-2p(0q))” (1 - u?)
Ly p(0a) (1+u) "

- 21g(<1—p<eq>><1—u)) ek
2(1-p(faq)) _
log(m) 'LL—].,

00 otherwise.

We note that the minimizer of Ié\{l (u) is 1-2p(0q), and from [EI2), (B,
the value of minimizer coincides with v$T (q).
10. Proor oF THEOREM .14

We fix q € Q satisfying the assumption of Theorem . 14] and define k :=
max{l1<h<l-1; g, >0}.

First we claim that under vgey, (7 (z), W ()) is an ergodic Markov chain
in x € Z on the state space,

Se_r:={(0,0),(0,1),...,(0,6-k-1),(1,1),(1,2),..., (1,6 - k)},

with transition matrix

where P,Ei), i=1,...4 are h x h matrices given by

Pl(l)zl_qfu P1(2)ZQZ7 Pl(g)zla Pl(4):07
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for h =1, and
1- 0 0 0
1(]1Z 0 00 g 0 0
1 _ (2) 0 0 0
Ph = 0 1 0 0 s Ph = )
0 0 10 00 0
. 0 ... 0 b (01
P-4 ol pM=fo o of,
0 1 0 0 . 1

for h > 2. Actually, if we define X, = (x%l),xg)) . is the Markov process
NELi>0

on Sy with the above transition matrix, and recursively define stopping
times as

7 :=inf {meN; X,,_1 =X, =(0,0)},
Tp1 =inf {m>7,+1; Xp1 =X, =(0,0)},

then the distribution of (XTS% )) coincides with vgkq © e, In ad-
T1<m<To—-1
dition, (Xr(nl)) and (X,(Y})) are independent if n # n'.
Tn<m<Tp+1—1 T SMET,—1
Hence, from the construction of g-statistics, (n(z),W (z)), x € Z is the

desired ergodic Markov process under vk
On the other hand, since there are only (¢ — k)-solitons under Vg, from

(514), we have

n-1
M () = & (17 (T8 (), i (7,0)))

n-1
= 3 (- (B () (5.0) (= Fym)).

a.s. under vq. From the above, we see that MIEO) (n,n) is a functional of an
ergodic Markov process. Therefore, by using a similar argument to Section

[ one can show that (£I3) converges weakly to a Brownian motion. Also,

by using the relation r(z) = Ly (5)-0y L{w (2+1)=0}, for any so = (s(()l),s(()2)) €
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Sy_1, we have
e[ (A (= 10m) 160, 0) -]
= >

81,80-ksSl—k+15-8(n-1)(£-k) S(n-1)(£-k)+1
n-2 o) (2
H (Pr_y) 6)‘50( ie- k))éo( Sice- k)+1) (Py )(4 k)-1
0 TNISi(e-k)Si(e-k)+1 Si(L—k)+1S(i+1)(£-k)
1=

Ao (s )0 s
X (Pg_k)s(n S () (et e 0( (n—l)(H)) 0( <n—1><Z—k>+1)

= D () B (P H0LIRLND),

S

where

(1) H(2)
~ Py (N) P (A
Brr ()= ( ) P >)
P
E—k - k:
and P}Ei), i=1,...,4 are given by
PO (1—q), PO g BP-1 BY -0

for h=1, and

A(l-g)" 0 ... 0
POy = | G 00
g 0 .. 0
A1-g)" e .. M-w)a a
PO (2) = (1—C]£:)h72% a ? ’
a 0 0
0o ... 1 0O ... 0
]5}53) = - S), ]3154) :(3 3),
1 ... 0 0 ... 0

for h > 2. From [DZ, Theorem 3.1.1 (e)] and the ergodicity of the Markov
chain defined above, we have

n—1
4,0 = Jim Lo (E [exp(A Z_ﬂr((ﬁ—k>m>)|<n<o>,w<0)> 0])

=log (PF (1)),
where PF()\) is the Perron-Frobenius eigenvalue of Py (). Since
det (pg_k (A) - xlg(g_k)) =det (l’[g_k (l’[g_k - (1) ()\)) (2)P(3))
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where I}, is the h x h identity matrix, by direct computation we see that

. Nk A _N2(6-K) o
2 4

Hence Dy, (p) can be computed as
d2log(fﬁ?(x))|
B A2 A=0

_ 4qe 1+ 4qe .
(1-gp)*h (1-gp)*M

11. PROOF OF THEOREMS [2.1]

Dy, (q)

3
2

We recall that if v is a space-homogeneous Bernoulli product measure or
two-sided Markov distribution supported on €2, then there exists q € Qs
such that v = vq and K(q) = 1. In addition, under such vq4, we have the
exponential bound of [e(?)] as follows.

Lemma 11.1. Suppose that q € Qur. Then, for sufficiently small A > 0, we

0
have E, [eMe( )|] < 00.

The proof of Lemma [[T1]is given in Section
In the following subsections, we will show (1) and (2]) and (B]) under vq,

q€eQuy.
11.1. Proof of ().
Proof of (). First we observe that for any n €, k€ N and n € Z,, we have
X (n.n) < Xi(n,n) < X (n.n) (11.1)
for any ¢ € N, and
Xlgi) (n,m) < X,i (n,m) < Xlgl) (n,n) (11.2)

for any i € Z<y. In the following, we only consider the case i > 1. For the
case i <0, we can use the same argument. From Theorems [.5([]), 4.8, [1.10]
and Lemma [IT.]] the joint distribution of the following step-interpolation
processes,

t > (%X,gl) ([n2tJ) —ntvit (q), %X]gi) ([n2tJ) — ntost (q)) ,

converges weakly to (B (- ),Br(-)). In particular, these processes are
tight and satisfies

X ([7t]) - %37 ([n’s])

n

11£I(1] Vq sup
n 0<t,s<T,|t—s|<6

—n@-sygwq4>e):m

(11.3)
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for any T, 0, >0 and j =1,¢. In addition, we have

X () - X7 (1))

n

lim vg | sup
n—0 0<t<T

>£) =0, (11.4)

for any T,e > 0. On the other hand, from (II.I]) we have

X ([n?t]) - X3 (In*s])

n

X (L)) - X5 ([%s))

—n(t-s)oi" (q)

sup
0<t,s<'T,|t—s|<d

< ~n(t =) (@)
0<¢,s<T,|t—s|<d n
¢9) 2 (i) 9
X -X
0<t,s<T,[t—s|<d n
D (1,2 M) (1.,2
X t])-X
< sup e (l2e]) = X5 (%)) —n(t-s)v (q)
0<t,s<T,|t—s|<d n
(1) 2 (i) 9
X t])-X
+ sup k (l” J) k ([” SJ) Cn(t - s (q)
0<t,s<T,|t—s|<d n

X0 () - X0 ()|

n

+2 sup
0<t<T

for any T,e > 0. Hence from (II.3]) we have

X ([n?t]) = X3 (s )

= —n(t -9 (a)

lim v sup
n—0 0<t,s<T,[t—s|<

>€)=O,

for any T,d,e > 0. In addition, from (ITH]), we get

— Xi(0
limyq( k()>5)=0.

n—0 n

Thus we see that (2.4) is tight. Furthermore, from (1) and (II4), we

have
X0 (Lnte]) - X (1)) | ) .

n
Therefore, ([2.4]) converges to the Brownian motion with variance Dy, (q).
O

X" ([*t]) - X3 ([n*t])

n

lim vq | sup
n—0 0<t<T

<limyg | sup
n—0 0<t<T
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11.2. Proof of (2)).

Proof of (2). First we show that for any k € N and i € Z, X,gi)( - ) satisfies

the LDP with rate function ([@I7). Since X ,gl)( - ) is R-valued process and
I is a smooth convex function, it is sufficient to show that

(X,?’(n)

lim — logvg
n—oo 1

< x) > —inf I(y),
y<z

and

X (n)

— 1
lim —log I/q(

n—>00 N,

< x) < —inf I(y).
y<zx

Observe that for any ¢ > 0, from (L),

>e | =limyy
n—0

=0.

X (0)

n

XD () -v P (n)

n

lim v (
n—0

On the other hand, from Theorems @) and .10, we get

v (n)

n—00 n

li_m—loqu( <:E)2—ir<1fl(y),
y<xz

and

L y (@)
lim lloqu( e () SfL’)S—ian(y).
n

n—>oo n, y<x

Hence we see that X ,gl)( - ) satisfies the LDP with rate function (£I7).
Now we consider the LDP for X!. From Theorem 2] @) and (II.), for
the case ¢ > 1, we have

- X(Z) _Xi _ X(Z) _X(l)
lim I/q( k (n) k(n) > 5) = lim I/q( k (n) k (n) > e
n—0 n n—0 n
w1 (i) &)
STIll_r}(l] EE [Xk (n) - X, (n)]
=0.

Therefore X! ( - ) satisfies the LDP with rate function &IT). The case i < 0
can be shown by the same argument, so we omit it.
O
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11.3. Proof of (3]).

Proof. First We recall the inequalities (IT.1]) and (I1.2)).

In the following we only consider the case ¢ € N, and the case i € Z<g can
be shown by using the same strategy.

First we claim that for any k€N, ¢ ¢ N and p > 1, we have

Ey, |

Before proving this, we recall that Ji (n,7), ¢ € Z is defined in (5I5). From
the definition of J (1,4) and the following inequality s (7, ) < Seo (1, ) for
any x € Zsg, we get

DO ] < oo. (11.5)

) Jk(m) 1
X (0,0) = sk (0, T (1,4)) < 500 (0, T (0,7)) < e
Jj= 0

Since Ji (0,7 +1) = Jx (n,7), j > 1 and Ji (n,1) are i.i.d. geometric random
variables with mean q,;l, we have

S g (Ji (i) = 7)7 < 00,
xeN

Then by using Remark 1] Lemma [IT.0] and the Schwartz inequality, we
obtain
v

Evg [|S00 (Jk (4))]
2 Evq (1500 () 15, ()=} ]

< Y Buy [[500 (@] v (i (3) = )’

sge 5k
<E, Ue@)f”r S wvq (Ji (i) = )7

x>

o 0f]s

] vq (Ji (i) = )

< 0.

Hence we have (IT1.3).
Now we show (). From (I1.1]), we have

‘1Xk(n,n) Vg (q)‘

. P
X“) (n,n) - vf" X,i” (n,n) -5 (q)
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Then from Theorem 2] (ITH]) and the Minkowski inequality, we have
1
' 1 P13
T By |- X0 () - o5 (@) |

<) X0 of

1
. 1.,G) T e 1
im By || -1 (.0) - i @) |+ 1B |
:O’

for any ¢ € N. Therefore Theorem 211 (3] is proved.
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APPENDIX A. PROOF OF LEMMA

For notational simplicity, we only consider the case n = 1. We can use the
same proof presented below for any n € N.
We will quote some formulae and results from [S]. First, we recall that

the carrier with capacity ¢ € N, which is a variant of the carrier process, is
defined as

Wi (500 (i) := 0,
1 ifn(z)=1,Wy(z-1) </t
Wyo(z)-Wy(z-1)=3-1 ifn(x)=0,W,;(z-1)>0,
0 otherwise.

We note that from the construction of Wy, k € N, for any £ € N and = € Z we
have the relation

4
Wy (x) = ];1 W () . (A.1)

Next, from Remark and [S, Lemma 4.2], we see that for any v € I'y ,
k e N, X (v) is either a record or a (¢,0)-seat with £ >k and o € {0,1}. In
particular, for any «y € I'g, there exists some i € Z such that

X (9) = 51 (3). (A.2)
From (A1), (A2) and [S| Lemma 4.2], we see that for any v € I'y, k € N and
1<l<k,
ifn(X (7)) =1,

0
W)= {0 if 7 (X (7)) =0.
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From the proof of [S, Theorem 4.1], for any ¢ € N and x € Z, we get
Eo(Tn, ) =& (n, ) = W (T, z) + W (n,2) + 00 (1) -

If the i-th k-soliton is free, then X( Disa record, and X(z) (1) =Ty (’y( ))
1. We observe that from the TS algorlhtm if a ¢- sohton ~ is contained

in (H1 (’ylgi)),Tk (’ylgi))), we have either v c [H; (7]?)),T1 (fylgl))) or vy c
(T1 (,Y]gi)) , T (fylgl))) From this observation, Remark and [S, Lemma
4.2], for any 1 < /¢ <k we have

. 4 ) {4 )
We (X (1) = X Wi (0,71 (1) 1) = X W (n, B (1)) = £
h=1 h=1
In addition, since T (X,gi) (1)) =0, for any 1 </ <k we have
W (Tn, x {7 (1)) =
On the other hand, if the i-th k-soliton is not free, then X,gi) (1) = X,gi). In
addition, n (X,gi)) =1-Tn (X,gi)) =0. Thus for any 1 </ <k we get
We(n, X0 (1) =0, Wy (Tn.x (1)) =¢
From the above, for any 1< £ < k we have

& (0, X (1) - & (0, X7 (1)) = £+ 0 (A.3)

NOW we assume that the i-th k-soliton is not free at time 0. Then we have
k (1) X,E ). and thus from (A.3) we obtain (38)) for this case. Next we
assume that the i-th k-soliton is free at time 0. In this case we obtain

& (mx” () =& (n x7)
= > > (hn (W) + 15,0, (1)

ye[ XD+ x O (1)] el

k
) 2 S (0 () + 5, ()
ye XD +1,x00 (1) oy BB
k-1
+ > S () )+ (),

yE[Xlgi)JrLXIgi)(1)]m(’yl(:))c hetil

where we use the fact that in the interval [Hl( (i)) Tk( (i))) there are

only (h,o)-seats with h < k, and all (k,o)-seats are elements of 'y( ). For
the first term, we get

k k

Z (n;Jrh (y) + né“’h (y)) = Z Z 77;+h (y) =k-1(.

yG[X,gi)+17X,£i) (1)]m,yl(€7f) h=0+1 ye,yl(:) h=0+1
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For the second term, we observe that if [X]gi) +1, X]gi) (1)] N (fy,gi))c is not
empty, then each element is a component of some h-soliton v with h < k,
and ~y c [Xlii) + 1,Xlgi) (1)] In addition, a h-soliton is composed by one of
each (h',o)-seats for 1 <h' < h and o € {1,]}. Hence for any 1 <h <k -1,
we have

> m (y) = > n (y),
VXD 11, XO ()] (40 VXD 11, X0 ()] (40"
and
ng})z (1) = > (nh ) =nt. ().
Y XD 11X (1)]n(>0)°
Thus we get
k-1
> S () () + 5 ()

XX D] () P

k-1
=2 D > on (v)

X0 X () 1

k-1

-2 > > (h=0) (0}, (v) =1 ()

ye[ X +1,x 0 (1) ]n (7)) h=EH
.S (i)
=2 Z (h—ﬂ)Nk’h(l).
h=£+1
From the above, we have
) ) k-1 )
(mx? ) -&(nxP)=k-t+2 ¥ (h-0N7) (1),
h=0+1

and thus from ([A.3]) we obtain ([3.8)) when the i-th k-soliton is free.

APPENDIX B. COMPUTATIONS OMITTED IN SECTION [4]

In this section we derive (4.9), ([@I1), (AI2) and (4I]), whose proofs

were omitted in Section Ml

B.1. Derivation of (4.9). First we observe that
Evg [r(0)] = vq (n(x) = Tn(x) = 0)

1 ((2) = 1) - v (T (2) = 1)
=1-2vq(n(z)=1). (B.1)
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On the other hand, since vq is shift-ergodic, by the ergodic theorem (cf. [B,
Theorem 6.21]), we have

1 &

Lhm T Yon(z)=vq(n(z)=1) vgas.
e =1

In addition, from Remark 1] seo (7,7 + 1) — Seo (1,7), i € Z are i.i.d. under

Vg, and thus we get

1 500(777[/)

lim n ()
L—co Soo (777 L) — S0 (7]7 0) w:soo(En’O)+1

L-1 : _ N
= lim 1 Z Soo (777Z+1) Soo (7771) 1

L—oo Soo (777 L) ~ Soo (7% O) =0 2
i L
=— - lim
2 Lo 2(Se0 (0 L) = 500 (1,0))
1 1
=——-——— yqas.
2 Sw(q)
where at the second line we use the fact that the number of balls in the i-th
excursion is equal to (Soo (7,7 + 1) = Se0 (1,7) — 1) /2, and the last line we use
the law of large numbers for so (1,7 + 1) — S (1,7), ¢ € Z. Hence we have

1
Soo (07q)
Now we fix an excursion e € £. Note that e can be regarded as an element
of Q, by considering n = n(e) as

n()_{e(erl) O<z<lel-1,

T (q) =

0 otherwise.

Then, we can apply ¥, to e, and we will write ¥, (¢) instead of ¥, (n(e))
Then, we have the following formula for e.

oo |e|-1

lel=1+3 > (n () +m (2))

/=1 z=1
oo [Te(e)l-1

=1+2) > e (j),

=1 j=0
where at the last line we use (5.1I) to derive

o lel-1

Eo(nle)lel-1)=1+ 3 ¥ (n} (2) +y (z))

h=0+1 x=1
=Wy (e)].
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By using the above, (5.4) and Remark [5.7] we have

ﬁ e [lel] _1+226E 5 [1%e ()] ac (%)
—1+22(£ k) ((9:;;1)

Hence we have (£9).

B.2. Proof of Proposition 4.4l First we derive (£I1]) From (5.12]) and
(B13), we have
kel X2 (W) )

Oy =Sy @ mm 2T TS GG,

=1 jox D (Wy(7),0)+1

From (4.I0), by taking n — oo we have

1 .

~Y (n.n) =i (@) vo-as.
and

1 ¢ . ~
Eyl( ) (i1 (n),m) = vf" (Qk 'q) vgas.

In addition, since X,gi_)z (Uy(n),n)is 0 ({p; h>L+1)-m’ble for any 1 </ <
k-1 and n € Zsp, by (£I0) and Remark [5.7] we have

R LAGED)
= > Co(n,4) = ar (@) vi, (0°a)  vg-aus.
=X, (We(7).0)41
From the above, we have (d.11]).
Next, we show (£I2). From (m) and (5.14), we have

—Y“(xpkl(n n)— Z (T™ Wy (7), Ty (71,7)) -

Since Yl(i) (¥4_1(n),n) converges to v$ (Hk_lq), by Remark B.7, we see
that if

Jim — ZO r (T (), 2) =7k (), (B.2)
m

Vg (- |800(0) = 0)-a.s. for any x € Z, then we obtain (£I2). To show (B.2),
we observe that by T-invariance of vq and the ergodic theorem, we see that

Lyl (T™Wy (), x) converges a.s. to E, G (T, () ,x) |Z], where
I is the set of invariant sets of 7. On the other hand, since vq is shift-
ergodic and the limit E, [r (T™Vy, (n), ) |Z] is shift-invariant, we see that
Eyo[r (T™% (n),2)|I] is a.s. constant. Hence we have the limit (B.2)
vg-a.s., and this implies (B2) vq ( - [$e0(0) = 0) -a.s. Thus ([@I2) is proved.
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B.3. Proof of (@18]). From (Z.6)), the derivative of AY qk With A =0 is given
by

dAY | AUy 1 AM
qaQ, (0) — q, (0) q, (0)
d\ d\

where Uq 1, (A) is defined in (5.26]). First we check that the expression (A.I8])

is the same as [FNRWJ, (1.12)]. We observe that < L2 (0) satisfies the fol-
lowing system,

qu’ (0)=Fk+ 2Z(k () —32° qu’ (0). (B.3)

On the other hand, from (£9), (£I2) and (5.12), we have

M Y
Bak () - oar )
dA
=7 ().
Then by combining ([£9) and (B.3)), we see that (dg‘)’\’k e (q)) coincide

with the quantities (sg,wy) in [FNRW] (1.12)], respectively, and that (£.I8])
and [ENRW, (1.12)] are the same.

To show ({.I8]), it is sufficient to prove that d[é‘j\

Méz)( ) =0 a.s. under v¢,q, we have

£ (0) = v$ (Crq). Since

o dUc,q,k
v (Crq) = d—;q (0).

On the other hand, from (B.3)), we get

dUCN’ qu,

(0) =

(0).

£ (0) = v (Crq), and thus we have ([EIS).

dUq
Hence o

APrPENDIX C. PROOF OF LEMMA [T1.1]

From [FCl Lemma 3.7], if we write 77 the distribution of €(*) on & under
Vq, then the probability 7q(e), e € £ is

g(e) = vq (n(1) =0[n(0) =0) [ (a (a)b (q)k_l)Ck(e)

keN
= vq (1(1) = 011(0) = 0) (o (@) ™" b (@) 7

where a’ (q) :=a(q) /b(q) and (i (e) is the total number of k-solitons in e.
We observe that Y.y (€) is equal to the number of 1 < x < |e| such that



SCALING LIMITS OF SOLITONS IN THE BOX-BALL SYSTEM 73

e(r)=1,e(zr+1)=0 and it is known that
Hee&E(m) ; {1<x<2m+1; e(z)=1,e(x+1) =0} ==z}

(M) ()

for any m € N, where the right-hand side is called the Narayana numbers.
Hence, we get

E; [eX°l] vq (1(1) = 0ln(0) = 0)
S EEA) (oo
a(q)
1- e (a(q) +b(a)) +\/(1- e (a(q) +b(a)))’ - 4e2a (q) b(q)

where we use the fact that the generating function of the Narayana numbers
F (a,b) is given by

=1+

1-b(1+a)—\/(1-b(1+a))’ - 4ab?
2b '

From the above, for sufficiently small A > 0, we have E; [e’\“"'] < 00.

F(a,b) :=
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