Asymptotic spreading of KPP reactive fronts in heterogeneous shifting environments II: Flux-limited solutions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Asymptotic spreading of KPP reactive fronts in heterogeneous shifting environments II: Flux-limited solutions

Résumé

We consider the spreading dynamics of the Fisher-KPP equation in a shifting environment, by analyzing the limit of the rate function of the solutions. For environments with a weak monotone condition, it was demonstrated in a previous paper that the rate function converges to the unique Ishii solution of the underlying Hamilton-Jacobi equations. In case the environment does not satisfy the weak monotone condition, we show that the rate function is then characterized by the Hamilton-Jacobi equation with a dynamic junction condition, which depends additionally on the generalized eigenvalue derived from the environmental function. Our results applies to the case when the environment has multiple shifting speeds, and clarify the connection with previous results on nonlocally pulled fronts and forced traveling waves.

Fichier principal
Vignette du fichier
2410.14007v1.pdf (768.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04799624 , version 1 (23-11-2024)

Identifiants

  • HAL Id : hal-04799624 , version 1

Citer

Grégoire Nadin, King-Yeung Lam, Xiao Yu. Asymptotic spreading of KPP reactive fronts in heterogeneous shifting environments II: Flux-limited solutions. 2024. ⟨hal-04799624⟩
0 Consultations
0 Téléchargements

Partager

More