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Abstract

We consider the spreading dynamics of the Fisher-KPP equation in a shifting environ-
ment, by analyzing the limit of the rate function of the solutions. For environments with
a weak monotone condition, it was demonstrated in a previous paper that the rate func-
tion converges to the unique Ishii solution of the underlying Hamilton-Jacobi equations. In
case the environment does not satisfy the weak monotone condition, we show that the rate
function is then characterized by the Hamilton-Jacobi equation with a dynamic junction
condition, which depends additionally on the generalized eigenvalue derived from the en-
vironmental function. Our results applies to the case when the environment has multiple
shifting speeds, and clarify the connection with previous results on nonlocally pulled fronts
and forced traveling waves.
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1 Introduction

Consider the KPP equation with heterogeneous coefficients
Ut — Uz = u(g(x — c1t) —u)  for (x,t) € R x (0,00), (11)
u(z,0) = up(z) for z € R, '

where ¢; € R, g is a continuous and positive function on R with g(+o00) > 0, and ug € L*(R) is
nonneagative and compactly supported. This type of equations models the population growth
in a shifting habitat. They may arise from the ecological question whether the species can
survive in the midst of climate change [48] [7, [41]. In a previous work [40], we considered (I.TI)
as a special case of a class of integro-differential equations with a distributed time-delay in
heterogeneous shifting environments. Under the assumption sup g < max{g(+o0)}, we utilized
the theory of viscosity solutions of Hamilton-Jacobi equations, specifically the uniqueness of
viscosity solutions in the sense of Ishii [38], to obtain the complete explicit formulas of rightward
spreading speeds for (L) in terms of ¢; as well as leftward spreading speeds. However, the
assumption sup g < max{g(d00)} was crucial in [40], as uniqueness of viscosity solutions in the
sense of Ishii can no longer be expected if it was relaxed [3] 2§].

To recover uniqueness and further develop the Hamilton-Jacobi approach, we will utilize the
notion of flux-limited solution, which was recently introduced by Imbert and Monneau [36, [37]
to study Hamilton-Jacobi equations on networks. Throughout our paper, we are mainly working
on (LJ)) which has one shifting speed ¢;, and we are able to determine the spreading properties
of (LLT)) for any g for which g(+00) exist. Furthermore, our treatment naturally extends to the
case of multiple shifting speeds; see Section 2.4 for the precise statements. Before stating our
main results, we provide a brief review on some related works.

The asymptotic speed of spread, or spreading speed in short, is a crucial quantity in spatial
ecology that determines the expansion boundary of a population under the joint influence of
the diffusion rate and environmental conditions. For simplicity, the diffusion rate has been
normalized to 1 in (ILJ). In a homogeneous environment, i.e. g(-) = go for a positive constant
go, model (L.T) reduces to the classical Fisher-KPP equation. A well known result of Kologorov
et al. [39] states that there is a number ¢, = 2,/go > 0 such that

lim sup u(t,z) =0 for ¢ € (¢x,+00), and liminf inf w(t,z) >0 for c € (0,cs).
t—o00 z>ct t—oo 0<z<ct

Moreover, the same value also coincides with the minimal wave speed of traveling wave solutions
U(x — ct) of (). This result was later extended to more general nonlinearity and in higher
dimensions in [I]. It is also remarkable that in homogeneous environment, the spreading speed
can be obtained via local information, where ¢, = 2,/q0 is the smallest value of ¢ > 0 such that

—CQp + Gpz + gop = A

admits a zero eigenvalue.
Since then, spreading speed for various reaction-diffusion models including Fisher-KPP equa-
tions are intensively investigated [511 [42} (9] 49| 10, 23, 11]. Among those, an elaborate method



was proposed by Weinberger [51] to establish the existence of spreading speeds for discrete-time
order-preserving recursions with a monostable structure and its characterization as the minimal
speed of traveling wave solutions. These results were subsequently generalized to monotone
semiflows [42] 23]. By combining the Hamilton-Jacobi approach [2I] and homogenization ideas
[43] 20], Berestycki and Nadin [10} [I1] showed the existence of spreading speed for spatially
almost periodic, random stationary ergodic, and other general environments, whose speed was
characterized as a min-max formula in terms of suitable notions of generalized principal eigen-
values in unbounded domains.

The heterogeneous shifting environment, which is the focus of this article, was introduced
by Potapov and Lewis [48] and Berestycki et al. [7] to investigate the impact of shifting climate
on the persistence of one or several focal species. As a simple formulation, the temporal-spatial
heterogeneity x — c¢1t was incorporated into various diffusion models including (1)) for the
single species, where ¢; is regarded as the shift velocity of climate. For (II]), the propagation
dynamics have been rigorously explored in [48, [7, 12} [13] for the case of a moving patch of a
finite length, and in Li et al. [41] for a retreating semi-infinite patch. The latter problem is a
special case of (ILT]) in case g is increasing and g(—o0) < 0 < g(4+00), where it is proved that the
species persists if and only if it can spread faster than the environment with the spreading speed
being given by the KPP formula ¢, = 2,/g(+00). Hu et al. [35] provided further investigation
without assuming g(—oo) < 0, and proved that the rightward spreading speed ¢, = 24/g(+00)
if 1 < 2¢/g(+00) and ¢, = 24/g(—00) if ¢; > 1. A shifting environment can also arise in
other ways. Holzer and Scheel [34] considered a partially decoupled reaction-diffusion system
of two equations, where a wave solution for the first equation induces a shifting environment
for the second one. See also [19] [16] 30} 46] for further results on competition or prey-predator
systems. Similar modeling idea was also adapted in Fang et al. [22], where (LI) was also
retrieved from an SIS disease model to study whether pathogen can keep pace with its host.
If g is non-increasing, then (LI} becomes a special case of the cylinder problem studied by
Hamel [32]. Du et al.[I8] proposed a free boundary version of (L.1]), see also [17]. Yi and Zhao
[52, 53] established a general theory on the propagation dynamics without spatial translational
invariance. See also [24] for a model with shifting diffusivity. We refer to Wang et al. [50] for a
survey on reaction-diffusion models in shifting environments.

Indeed, the shifting habitat does bring about new spreading phenomena in case that the
intrinsic growth rate function g is strictly positive everywhere. When 0 < infg < supg <
max{g(£o0)}, the results of [34], [40] clarified that, for a certain range of shift speed ¢;, the
initially compactly supported population spreads at a supercritical speed ¢, > 24/g(—00) in
a phenomenon called non-local pulling [34, 30]. This falls into the biological scenario when
the species fails to keep up with the climate shifting, but is still influenced by the presence
of a favorable habitat which is at a distance of order ¢ ahead of the front. When supg >
max{g(£00)}, then Holzer and Scheel [34] proved the existence of forced traveling wave solution,
which moves in the same speed as the environment. Subsequently, Berestycki and Fang [§]
classified such forced traveling wave solutions and proved global attractivity results.

Our main contribution, in the case of (I.II), where the environment has a single speed ¢y, is
to completely determine the existence of rightward spreading speed ¢, and its dependence on
the environmental speed ¢;, whenever g(4+o00) exist and infg > 0. Moreover, our framework
provides the context in which the spreading results in [34] [40] (where ¢, < ¢; with nonlocal
pulling) connects with those in [8] (where ¢, = ¢1). Furthermore, our method readily generalizes
to the case when the environment has more than one shifting speed (Subsection 2.4)).

Organization of the paper

Our approach is to study the spreading speed via the asymptotic limit of the rate function,
following [21] (see also [3, Chapter 29] and [40]). However, the consideration of a shifting habitat
leads to a discontinuous Hamiltonian. Also, the rate function has unbounded and discontinuous



initial data since the initial population was compactly supported. In our previous work [40], the
solution concept of Ishii was used and the corresponding comparison principle was established.
This is discussed in Subsection 2.6l However, the previous results in [40] is not applicable in case
sup g > max{g(£o0)}, because then the invasion is enhanced by the specific profile of g, and
the solutions in the sense of Ishii are non-unique. To overcome the non-uniqueness of viscosity
solution and connect with the results regarding forced waves, we need to incorporate further
information of (L)) in deriving the limiting Hamilton-Jacobi equation. To this end, we recall
some results of an eigenvalue problem depending on the coefficient g(-). Then in Subsection 2]
we introduce the concept of a flux-limited solution and prove the comparison principle needed
in our context. In Subsection 2.2] we state our main theorems and extensions of our results.
We also discuss the viscosity solutions in sense of Ishii and recall some earlier results from [40]
in Subsection

Section Bl presents the application of Theorem [l and we place it immediately after stating
our main theorem. In this section, we take Theorem [I] for granted and apply it to obtain several
explicit formulas for the spreading speed in terms of g(+00), g(—o0) and Ay, where A; is the
principal eigenvalue given in (Z3]). This provides a general context connecting previous results
of [8, B4] concerning forced wave (where ¢, = ¢1) and of [40] concerning nonlocal pulling (where
¢« < c1 but is influenced by the presence of the shifting environment).

In Section Ml we present preliminary results. In particular, we recall the properties of A1 in
Proposition [£.2] (Subsection[d.T]), as well as a few technical results for Hamilton-Jacobi equations.

Section [Blis devoted to the proof of the main results, namely, Proposition 2.3] Corollary 2.4],
and Theorem [II This section only logically depends on Proposition (proved in Appendix
[A), Lemma 4] concerning continuity of subsolutions (proved in Subsection 2], the critical
slope lemmas inspired by Imbert and Monneau [36] (Lemmas and B7], proved in Appendix
B)), as well as the comparison principle (proved in Appendix [C)).

Finally, the appendices presents the proofs of the technical results mentioned above.

2 Preliminaries and Statements of Results

The concepts of maximal and minimal spreading speeds are introduced in [33], Definition 1.2]
for a single species; see also [27, [46]. In our setting, we define

¢, = inf {c > 0| limsup sup u(t,z) = 0},
t—o0 x>ct

¢, =sup{c>0 |hg£f0<1£1£ctu(t,x) > 0},

(2.1)

where ¢, and ¢, are the maximal and minimal (rightward) spreading speeds of species u, re-
spectively. If ¢, = ¢, > 0, we say that the population has the (rightward) spreading speed given
by the common value c,.

Motivated by the large deviations technique [21, 25], we introduce, for fixed solution u of
(LI, the scaling u(t, ) = u(t,2) with ¢ > 0. The resulting function u(t,z) satisfies the
following equation:

{u§ —eul, = e tuc (g (=) — ) for (t,z) € (0,00) X R,
= ug(

u¢(0, ) = ug(x/e) for z € R. 22)

Observe that the spreading speed of the population is given by ¢, > 0 if and only if

lim uf(t,z) =0 in Cjpe({z > cit}), lim iélf u(t,z) >0 in Cie({0 <z < et}).  (2.3)
e—

e—0

To fully characterize these limits, we introduce the following eigenvalue problem:

"+ g(y)® =A® for y € R. (2.4)



In this paper, we define the principal eigenvalue A; of (2.4)) as follows:
A1 :=Ay(g) = inf {A eR: o CE.(R), ¢ >0, ¢" +g(y)o < A¢in R} } (2.5)

This and several other notions of principal eigenvalues are analyzed in [14]. We will recall some
basic properties of A; and the associated positive eigenfunction in Proposition

As we shall see in Section [, the four quantities ¢;, Ay, g(+00) and g(—o0) completely
determine the spreading speed.

2.1 Flux-limited solution due to Imbert and Monneau

To determine the exact spreading speed in Theorem B.2] we will study the rate function
we(t,x) := —eloguc(t,x). More precisely, we will show that we(¢t,z) — tp(z/t) in Cjye, where
the limit p is to be interpreted using the notion of flux-limited solutions introduced by Imbert
and Monneau [36]. This notion is well-adapted to catch the influence of the coefficients along a
discontinuity at x = c1.

We begin with a few notations regarding the effective Hamiltonian and effective junction
condition.

Definition 2.1. For each A € R, define the flux-limited junction condition to be
FA(ﬁ+7ﬁ—) = maX{A7 H™ (Cl+7ﬁ+)7 H+(Cl_7ﬁ—)}7 (26)

where HT (c14,+) and H™ (c1=, ) are

2
H+(C1:l: p) — - ‘Clll‘ + g(:tOO), fOI' p S 01/27 (27)
’ —c1p+p? 4 g(oo)  for p>c1/2,
_ —c1p+p? 4 g(oo)  for p < e1/2,
H (14, p) = 2.8
(e£,) {—%Q—i-g(ioo) for p > ¢1/2. 28)

Note that they are, respectively, the increasing and decreasing parts (in the variable p) of

H(37p) = —sp+ p2 + X{s>cl}g(+oo) + X{sﬁcl}g(_oo)'

The information of the profile of g can be incorporated into the Hamilton-Jacobi equation
by an additional junction condition as follows:

{min{p,p+H(s,p’)}:O for s > 0,s # ¢y, (2.9)

min{p(c1), p(c1) + Fa(p'(c1+), p'(c1=))} = 0,

where A and Fy(p4,p—) are given in ([Z.I3]) and (2.6]) respectively. The above equations are to
be considered using piecewise C' test functions whose left and right derivative at c¢; are well
defined but maybe unequal:

C;w = {¢ € C((0,0)) : C*(0,¢1]) N CY([er,00)). (2.10)
Definition 2.2. Let A € R be given.

(a) We say that p: (0,00) — R is a FL-subsolution of (2:9]) provided (i) p is upper semicon-
tinuous, and (i) if p — ¢ (with ¢ € C},,) attains a local maximum point at some so > 0
such that p(sp) > 0, then

(s0) + H(s0,%'(s0)) <0 in case s # ci,

5
pler) + Fa(y' (e1+),¢'(c1—)) <0 in case so = c1.



(b) We say that p: (0,00) — R is a FL-supersolution of (2Z9]) provided (i) p is lower semicon-
tinuous, (i) p > 0 for all s > 0, and (iii) if p — ¢ (with ¢ € C},,) attains a local minimum
point at some sg > 0, then

so#c1 = p(so) + H(so, ' (s0)) > 0;
so=c1 = pla)+ Fa(@' (c1+),¢' (e1—)) > 0.

(c) We say that p is a FL-solution of (2.9) if it is both FL-subsolution and FL-supersolution

of (2.9]).

Next, we discuss the uniqueness of FL-solution of (2.9]) by first showing the following com-
parison principle.

Proposition 2.3. Let A € R be given. If p and p are, respectively, the FL-subsolution and
FL-supersolution of ([2.9), and such that
p(0) <p(0) and lim Pls) = 400, (2.11)

then p(s) < p(s) in [0, +00).

Corollary 2.4. For each A € R, [29) has a unique FL-solution ps which satisfies the following
boundary conditions (in a strong sense)

p(0) =0 and lim ps) = 400. (2.12)

s—+oo 8§

These two results will be proved in Subsection (.41

We apply the half-relaxed limit method, due to Barles and Perthame [4, 5], to pass to the
(upper and lower) limits of w*(t,z). Moreover, we can show that w(t,z) — tpa(z/t) in Ciye,
where the flux limiter A is identified by

|c1]?

The spreading speed ¢* will then be fully characterized by p4 with the specific flux-limiter A.
12

Remark 2.5. Note that A = Ay — |CT could be treated as the principal eigenvalue of of " —
¥V + g(y)¥ = AV in the sense that:

A=inf{AeR: Ipe CL(R), >0, ¢" —c1¢' +g(y)p < Ap in R}, (2.14)
which quantifies the influence of the coefficient g(x — ¢1t) in the moving coordinate y = x — ¢;t.

2.2 Main results

We are now in position to state our main result.
Theorem 1. Let u be a solution of (LI)). Then the following statements hold.
(a) The spreading speed c. of u exists, and is given by
¢y = 84 =sup{s € [0,00) : pa(s) = 0}, (2.15)

2
where p4 is the unique FL-solution of [29)with A = Al—c4—1 that also satisfies the boundary

conditions (2.12)).



(b) Furthermore, if Ay = max{g(£o00)}, then cx = Spase = SUP{S : Prase(s) = 0}, where pPpase
is the unique viscosity solution of (2.20)~(2I12)) in the sense of Ishii (see Definition D).

Remark 2.6. In Section [3 we will give explicit formulas of ¢, in terms of of g(£00), ¢; and A;.

Remark 2.7. After the research of this work has finished, the preprint of Giletti et al. [29] was
brought to our attention. In this work, the authors treated the case when

9(t,T) = "X{z<A@W)} T T2X{AW) <e<A®)+L} T TIX{2>A()+L}> (2.16)

where t — A(t) is either linear or slowly oscillating between two shifting speeds. Interestingly,
they obtained the formula of Theorem B.9] assuming that g is given by (216 with A(t) = ¢;t.

Furthermore, it was remarked that their construction can be generalized to treat (LTI
provided that ¢g(y) is constant near y = +00. They also conjectured that the last condition may
not be necessary. Their proof is based on the direct construction of super/subsolution for the
parabolic problem.

Incidentally, our main result can be considered as an affirmative answer of their conjecture,
by passing to the limiting Hamilton-Jacobi problem with junction condition. It is worth men-
tioning that (i) we need only A(t) = c1t + o(t) and (ii) we merely require g(400) exist (but not
necessarily constant for |z| > 1). In particular, the spreading speed can be determined by the
value of the eigenvalue A1 and the exact shape of g is not important.

2.3 Monotonicity of the flux-limited solutions

Since F4(p+,p—) is monotone increasing in the variable A, the effect of the flux limiter A is as
follows.

Corollary 2.8. Let A € R and pa be the unique FL-solution of (2.9)-(212).

(a) If A > A, then pa(s) < par(s) for all s > 0. In particular, the free boundary point §4 is
monotone increasing with respect to A, i.e. §4 > §4/, where

S4 :=sup{s: pa(s) = 0}. (2.17)

2
“

(b) If Ag := max{g(foo)} —  and A < Ag, then py coincides with the unique viscosity
solution of (2.26)-(2.12) in the sense of Ishii. In case A > Ay, it is a viscosity subsolution
(might not be a supersolution) in the sense of Ishii.

Proof. This is a direct consequence of Proposition 23] since p4(0) = pa(0) = 0, pa is a
FL-supersolution of (2.9]) and satisfies (2.12]). O

2.4 Generalizations

Our arguments can also be applied in the following setting where f = f(¢, z,u) possesses
multiple junction points P = {¢;}I; for some 0 < ¢; < ¢3 < ... < ¢p.

{ut — Ugg = f(taxvu) for (.%',t) eRx (O’OO)’ (2 18)

u(z,0) = up(x) for z € R.

(H1") f(t,z,0) =0 for all z € R and ¢t > 0.

(H2') There exists g; € L°(R) with g;(+00) >0, i = 1,...,n, and for some ¢, > 0,

i ess Supy, syt [fu (1 2,0) — il — cit)| = 0.



(H3') There exist R, R : [0,00) — [0,00) such that inf R > 0, R(s) = R(s) a.e. and

t
R(S) = limsup fu <—, E,O> and E(S) = liminf fu <_’ _,O> .
e—0t € ¢ € €
(t,x)—(1,s) (t,x)—(1,s)

Moreover, R is locally monotone in R\ {¢;}" 4, i.e. for each sp € R\ {¢;}l 4,

either liminf inf R(s)—R(s')>0 or limsup sup R(s) — R(s') <0.
0—0 s9—0<s<s'<sg+d 0—0 sp0—0<s<s'<s9+0

(H4") For each (t,z) € Ry X R, f(t,z,u)/u is non-increasing in u > 0.
(H5') There exists M > 0 such that f(¢,z,u) < 0 for (t,z,u) € Ry x R x [M,00).
(H6') For each i =1,...,n, let Agi) be the principal eigenvalue given by
AV =inf{AeR: 3p € CL(R), 6 >0, ¢ +gi(y)p < Ap}. (2.19)

Theorem 2.9. Given {¢;}1, and f(t,x,u) satisfying (H1") — (H6"). If uo is compactly sup-
ported and nontrivial, then the population spreads to the right at speed c,, where

Cx = sup{s >0: pT(S) = 0}’

where p' is the unique FL-solution of

min{p, p+ H(s,p')} =0 for s € (0,00) \ {ci},
min{p(c;), p(c;) + FO(p'(ci+), p'(ci—)) =0  for each i, (2.20)
p(0)=0 and ngoo p(s)/s = +o0.

where
H(s,p) = —sp+p* + R(s),
2

F(l)(ﬁJﬂﬁ*) = max {Agw - Zi? H_(Ci+aﬁ+)a H+(Ci_’ﬁ)}’

such that H¥(¢;£,-) are the decreasing/increasing parts of H(c;+,+) given by
H™ (ci+,p) = H(ci+,min{p,¢i/2}), H(¢;—,p) = H(ci—, max{p, ci/2}),

and Agi) is the principal eigenvalue given by (2.19]).

2.5 Related optimal control formulations

It is well known that the viscosity solutions of Hamilton-Jacobi equations correspond naturally
to the value functions of certain optimal control problems, whereas the viscosity solutions of
variational inequalities correspond to the value functions of two-player, zero-sum determinis-
tic differential games with stopping time [2I]. In fact, following the control formulation for
Hamilton-Jacobi equations stated in [36], we conjecture that the following formulation should
hold:
T
p(s) = inf [ sup / e 0(2(s"), 2(s') — () ds |, (2.21)
1J0

ex
zfo):s Te[0,00

where X = H'(]0,00);[0,00)), T € [0,00] is any constant and the cost function ¢ is given by

Ck2 . n (X2 O
l(s,a) == z = R(s)if s e R\ {ci}in,, L(s,a):= z = AWM if s = ¢.



By a change of variables 7 = t(1 — e~*'), one can show that w(t,z) = tp(z/t) satisfies

w(t,z) = inf lsup /0 me<ﬂ,_7(7)> dT]. (2.22)

7(0)=x t—T
Th=o €0

By applying the arguments in [26, Lemma 2.4], one can check that the above is consistent with
the known max-min formulas involving stopping times when the running cost ¢ is a continuous
function [21], 11]. When the minimum with p is not taken in the problem (2.20]), then the unique
viscosity solution can be characterized via the optimal control formulation (with 7" and 6 taken
to be +o0 in (2.2I) and (222]) respectively); See [36] 3].

2.6 An earlier result: Viscosity solution in the sense of Ishii

First, let H be the truncated version of the Hamiltonian H, given by

H(s,p) = —sp+p? +g(—o0) fors<ecy, H(s,p)=—sp+p*+g(+o0) fors>c; (2.23)
and H(c1,p) = —c1p + p? + g(—00) V g(4+00). Note that H uses only the information g(4oc0)
but does not depend on the specific form of the profile of g. The following left and right limits
of H(s,p) at s = c1, as functions of p, will be used later.

H(er=,p) = —c1p+p° +g(-=00) and  H(er+,p) = —c1p +p” + g(+00). (2:24)
In a previous paper [40], we studied equation (1)) in the case

sup g(y) < max{g(+00),g(—00)}, (2.25)
yeR

which is connected to the unique ppse such that (2I2]) holds and satisfies, in viscosity sense,
min{p,p+ H(s,p))} =0 for s > 0. (2.26)

Since the Hamiltonian function H is discontinuous at ¢;, the viscosity solution needs to be
interpreted in a relaxed sense introduced by Ishii [38]. As this definition is well known, we skip
it here and refer the reader to Definition [D.Ilin the appendix.

We will show in Section that p is an Ishii solution to the equation (2.26]) if and only if
it is a FL-solution of ([2.9]) with A = Ay := max{ijn H(ei+,4), mﬂ%n H(c1—,-)}. See Proposition
b8

In [40], we showed that the rate function of problem (LLII) selects ppese provided that (2.25])
holds. This means that the spreading speed spqse is as predicted by the the equations (2.20])-
[2I2) (with solution in the sense of Ishii).

Theorem 2.10. For each ¢; > 0, there exists a unique ppgse which satisfies (2.20) in the sense
of Ishii and the boundary conditions 212l). Furthermore, if ([2.25) is valid, then ¢, = ¢, = Spase,
where Spase = SUP{s > 0 Ppase(s) = 0}.

Proof. See [40, Proposition 1.7, Theorem 1 and Remark 1.6]. O

For the case when g(y) does not satisfy (2.25]), we may compare the solution w of (L]) with
the solution @ of the same problem with g replaced by the truncation min{g, max{g(£o0)}}, to
deduce that the spreading speed is always bounded from below by spqs.. However, we will show
in Corollary 3] below that if A; > max{g(£00)}, then this lower bound is not optimal.

Corollary 2.11. Suppose sup g > max{g(+oo)}. For each ¢; > 0,
Ci 2 Sbases

where ¢, is the minimal spreading speed and Spqse be given in Theorem [2.10.



Remark 2.12. In case (2.25) holds, the spreading speed can then be determined as soon as
explicit solution pPpgse of ([Z26)-(ZI2) (in the sense of Ishii) can be constructed. This gives an
alternative verification of the formula ([BJ]) (in case g(—o0) > g(+0o0)) and formula (3.2) (in
case g(+00) > g(—o0)) based on the viscosity solution in sense of Ishii [40].

3 Applications and Explicit Formulas

As applications, we apply Theorem [I] to treat (ILI]), which concerns the case when there is a
single environmental shifting speed ¢;. We will derive explicit formulas for the spreading speed
in terms of ¢1, g(4+00), g(—o0) and Ay, where A; is the principal eigenvalue of (24]) defined by
[23). To simplify the notations, we denote for the remainder of this section

r=g(-o0), and 1y =g(+oo).
Thanks to standard properties of the principal eigenvalue Ay (see Proposition [£.2)(a)) we have
Ay € [max{r_,r;},00).

Remark 3.1. For g(y) = 7—X{y<0} T TmX{o<y<L} T T+X{y>L} With 1, > max{r_,r,} that there
exists L > 0 such that

Ay > max{r_,r;} ifandonlyif L>L

where L = 0 when r_ = ry and

1 — _
= arccot <\/Tm max{r 77"+}> >0 whenr_ #ry.

Vrm —max({r_.r} -]

|~

See [29, Theorem 2.1] for the precise statement.

The following theorem says that the spreading speed c, is enhanced according to the specific
profile of g(-).

Theorem 3.2. Let u be a solution of (L) with compactly supported, nonnegative, nontrivial
wnatial data, then the rightward spreading speed

2T+ if c1 < 2\/ry,
_ Cc1 Z'f2,/’l“+ <c < 2\/A1,
Cxy = Cx = C, — %—‘/AI_T*_FLI,\;ﬁ ifQ\/Al<61§2(W/T,—|—\/A1—T,),

2

2,1 ifer > 2(yr— + VA —ro).

In particular, the mapping c1 — ¢4 is in general non-monotone, see panels (b), (d) and (f) of
Figure [ for illustration.

Remark 3.3. The case ¢; € (2,/71,2v/A;) is contained in [8]. In fact, under this assumption,
they proved the existence of a family of forced waves. Moreover, it is proved that solutions with
sufficiently fast decaying initial data (including those that are compactly supported) converge
locally uniformly to the unique minimal forced wave.

Remark 3.4. In case that Ay = r_ > r, then case (iii) in Theorem is eliminated. In case
that Ay = ry > r_, then case (ii) in Theorem is eliminated. In case that Ay = r_ = ry,
then cases (ii) and (iii) in Theorem are eliminated. In our former paper [40], we showed
that ¢, = Spase when sup g < max{ry} with three cases: vy >r_, r; <r_ and ry = r_. Next
corollaries extend the validity of ¢, = spgse to all g such that A; = max{ry}. See Figure[ll
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Figure 1: The dependence of spreading speed ¢, on ¢;. Here r4 = g(+00). The case ¢, = ¢; is
also indicated in [§]. Nonlocal pulling is illustrated by the curved part of the blue lines in panels
(a), (b), (d) and (f). The part where ¢, coincides either with the KPP speed of the limiting
system at +oo is indicated by the horizontal part of the blue lines in (a)-(f).
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Corollary 3.5. Suppose A; = ry > r_ and let u be a solution of (LI) with compactly supported,
nonnegative, nontrivial initial data, then

2/r+ if e < 2./r7,
Cx =Cx =C, = %—\/7"4-—7’—4‘%1_\;% if2\/7’+<01 gz(\/T’_—i-\/?q_—T_) (3.1)

2\/r_ if cp >2(/T— +/ry — 1)
See Figure[l(a) for the dependence of c. on the shifting speed c;.

Corollary 3.6. Suppose Ay =r_ > r, and u be a solution of (LLI]) with compactly supported,
nonnegative, nontrivial initial data, then

277 if o1 < 277,
G =Ci=C, =401 if 20/ < c1 < 2./r—, (3.2)
2= ifer > 2r”.

See Figure[dl(c) for the dependence of c. on the shifting speed c;.

Corollary 3.7. Suppose Ay =r_ =ry and u be a solution of (LII) with compactly supported,
nonnegative, nontrivial initial data, then

Co = Cx =, = 2/ A1 (3.3)
See Figure[dl(e) for the dependence of c. on the shifting speed c;.
Remark 3.8. If ¢; <0, then ¢, = 2,/r5 (as R(s) = ry for s > 0), see also [35].

Finally, it is easy to obtain the following result on the leftward spreading speed by considering
the rightward spreading speed of v(t, z) := u(t, —x) and apply Theorem [3.21and Corollaries B.5l-
B.7

Theorem 3.9. Let u be a solution of (L) with compactly supported, nonnegative, nontrivial
initial data, then the leftward spreading speed

2\/7,—_ ’l.f01 Z _2\/r—7
* —k * C1 Z'f_Q"T7>CIZ_2 Al’
= =c"= %_m_}_% if —2VA1 > >=2(/rr +VA —ry),

3 A17T+

27t if o1 < =2(/Fr + VAL — 7).

where
¢ =inf{c >0 | limsup sup u(t,x) =0},
¢

t—oo xz<—c (3 4)
¢ =sup{c>0 |hgl£f 7ct<;réfict+1 u(t,z) > 0}.

Proof of Theorem[3.2. We will give an explicit formula for the unique FL-solution of (2.9l
satisfying (2.12]).
Case (i): 0 < ¢; <2,/ry. Define

p1(s) := max{s?/4 —r,,0}.

It is easy to see that p;(s) is nonnegative and satisfies the first equation of (29 in a classical
2
sense. Clearly, p; is automatically a FL-subsolution as p;(¢;) = 0. Note that A = A; — % >
2
ry — 3 > 0. Therefore, for any ¢ € C},, we have Fy(¢/, (c1+),¢/ (c1—)) > A > 0. This

12



implies that p; is also a FL-supersolution, and hence, p;(s) is a FL-solution of (2.9). Since p;
also satisfies (Z12), pa = p1 by uniqueness, It then follows from the definition of ¢, in (ZI5])

that c, = 2,/ry.
Case (ii): 2,/ < c1 < 2y/A4.

Define
(s 824 —ry, s>c1+\/cF —4ry,
pa(s) = o
max{%(s—cl)ﬂ} 0<s<cp+/c?—dry.

One could directly check that py € C((0,¢1)) N CY((e1, +00)) and satisfies the first equation of
[29). Since pa(c1) = 0 and A > 0, we infer that ps is a FL-solution of (2.9]) due to the same
reason as in Case (i). Therefore, by locating the free boundary point in (B3], we get ¢, = ¢;.

Case (iii): 2¢/A1 <1 <2(/r= + VA1 —7r_). Set

C1

5+ VAT ,u_:c—21—\/A1—r_>0. (3.6)

(3.5)

fi =

Define

s2/4 —ry, s> 2uy,

pis — (u3 +ry), o <s <2y,
pos—(u2 +r.), c<s<eci,
0, 0 < s <g.

p3(s) =

where p and p— are as in ([3.6]). Noting that

62

pg(Cl) =-A= Zl — Ay > 0.
It is easy to check that ps satisfies (2.9]) in the classical sense when s # ¢j or ¢, = p— +7r_/u_.
The FL-subsolution property at s = ¢, holds since p3(c.) = 0. To show it is indeed a FL-
subsolution, it suffices to consider the case that ps — 1) attains a global maximum at sy = ¢; for
some test function ¢ € C’;w. It then follows from p(s) — ¢(s) < p(c1) — ¥ (c1) for any s close to

c1 that o' (c1+) > ph(ci+) = pg > %, and ¢/ (c1—) < ph(e1—) = p— < S This implies

_ c c c
ps(c1) + H (e1+,¢'(e1+)) = ps(er) + H(er+, 51) =7 M- =A<,
and
n / €1 ot Gi
ps(cr) + HT (erm ¢(er-)) = psler) + Hler— o) = p — M — - =r- = A <0,
where we used p3(c;) = —A = % — Ay. Also, we obtain that

p3(c1) + Fa(¥'(e14),v¢'(e1—)) < 0.

This yields ps is a FL-subsolution of (2Z.9)).
Next, we verify that ps is a FL-supersolution. Note that ps is a classical solution (including
at the point s = 2u) except for two non-differentiable points s; = ¢ and sy = ¢, = ;—: + p_.

Also, observe from ¢; < 2(,/r— + /Ay —r_) that u_ < ,/r—, and hence

r_
S = p_ + . > 2u_. (3.7)

Suppose first that a test function ¢ € C’;w touches p3 from below at ¢;, then
p3(c1) + Fa(y'(e1+),9 (c1—)) > pa(cr) + A= 0.

13



Suppose next that a test function ¢ € C;w touches p3 from below at so = ;—: + p—, it then
follows that 0 < v/(s2) < p_ (note that ¢ € C! near ss).

pa(s2) + H(s2,9'(s2)) = —so¢(s2) + [V (s2)]” + 7= > —cope +p2 +7- =0,

where the first inequality is due to ¢/(s2) € [0, _], and that p — —sap + p? + 7 is monotone
decreasing in [0, ] (thanks to ([B.7])). We can then conclude that p3(s) is a FL-solution of (2.9])

in (0,00), and hence, ¢, = s9 = ;_i .

Case (iv): ¢ > 2(\/r— 4+ /A1 —r_). Define

§2/4—ry, 5224,

pis — (03 +ry), o <s <2y,
pos—(p2 +ro), 2p <s<ec,
max{% —r_,0}, 0<s<2u_.

pa(s) =

Noting that p4 is a classical solution except at two points ¢; and s3 = 2,/r—. For s = ¢1, we
could argue similarly to that in the case (iii) to obtain that the junction condition for super-
and subsolution hold true. For s3 = 2,/7—, p4(s3) = 0 implies that the junction condition for
subsolution hold at s = s3. Now suppose that py — ¢ attains a global minimum at sz for some
test function ¢ € C},,, then we infer that 0 < ¢/(s3) < u_ and

w)
/ / / 2 5%
pa(s3) + H(s3,9'(s3)) = —s3¢'(s3) + [¢'(s3)]" +7r— =1 — 2 =0
where we used minp(—33p+p2) = —s§/4 and s3 = 2,/7_. As a consequence, py4 is a FL-solution
and ¢, = s3 = 2,/T_. O
Proof of Corollaries 3.4-3.6. By part (b) of Theorem [l implies that ¢, = Spgse. Then it is a
direct consequence of [40), Theorem 6 (iv) and Theorem 7]. O

4 Preliminary Results

We will give some preliminary results in this section in preparation of the proof of the main
result (Theorem [I]) in the next section.
To study the behavior of u at the leading edge, we consider the rate function

w(t,z) = —elogu®(t, x). (4.1)
We first observe that w(t, z) := lim,_,o+ w(t, z), if exists, is 1-homogeneous.

Lemma 4.1. Suppose w® — w0 in Cjoe((0,00) x [0,00)), as € — 0T, then w(t,x) = tp(z/t) for
some function p.

Proof. Fix a constant A > 0, then

w(At, Az) = eli%i —elogu <%, %) = A(e/l‘i)rg0+ —(e/A)logu (i, e/iA> = Aw(t, z).
And the lemma follows if we take p(s) := w(1,s). O
Suppose the limit function (¢, z) = tp(x/t) exists, and define
s=sup{s >0: p(s) =0}, (4.2)

14



then we immediately have

w(ta) = exp () = oxp (AT ) o (L) g

€ € €

whenever z/t > §. This gives the first part of ([2.3]).

Furthermore, it can be shown (e.g. [47, Lemma 3.1] or [21, Sect. 4]) that u¢(¢, x) is bounded
away from zero in the interior of {(¢,z) : w(¢,xz) = 0}, i.e. the second part of (2.3]) holds. Hence,
the study of the spreading speed c¢, reduces to the determination of the free boundary point §
of p, given in (£2). Next, we collect the properties of the eigenvalue problem (2.4]) as well as a
few technical results for Hamilton-Jacobi equations with general Hamiltonians H (s, p).

4.1 The eigenvalue problem associated with ¢(y)

Note that spase depends only on the values of g(£o00). The next questions are if and when the
invasion is enhanced by the specific profile of g. The answer is completely determined by the
eigenvalue A given by (2.5]). This and several other notions of principal eigenvalues are analyzed
n [14]. Here, we recall some basic properties of A; and the associated positive eigenfunction.

Proposition 4.2. Let Ay be given by (2.5)).

(a) Then Ay > max{g(—0c0),g(+00)} and the eigenvalue problem 2:4) has a postive solution
in C2 (R) if and only if A € [Ay,00).

loc

(b) If, in addition, A1 > max{g(—00),g(+00)}, then A1 is a simple eigenvalue of ([24]) and
the following statements hold.

(i) Let Ay := /A1 — g(£00) and ®1(y) be the positive eigenfunction corresponding to

A=A, then
®y(y) = exp(=Ary +o(y)) asy — £oo,

i.e. for any sufficiently small n > 0, there exist positive numbers Un,Qn, such that

{Qne‘(*”")y < Pi(y) < Cue BV if y >0, (43)

Qne(’\—+’7)y < Py(y) < C’ne(’\—*”)y if y<0.

(ii) Suppose (2.4) has a positive eigenfunction ® € C2 (R) for some A € R such that

loc

® — 0 as |y| — oo, then A = Ay and ® € span {®;}.
(c) If Ay = max{g(—00),g(+00)}. Then for any n >0, there exists g, : R — R, such that
(x) ) forall x| > 1,

n(z) = g(z
(x) < gylz) < gla)+n  foral zeR,
717 = AMAi(gy) satisfies A? > max{g(+o0)}.

9
9

-

For the convenience of the reader, we provide the proof of the above result in Appendix [Al
The following result describes the effect of A in enhancing the spreading speed c.

Corollary 4.3. Let Ay be given by (2.3) and let spase be given by Section [2.6.
(a) If Ay = max{g(d+o0)}, then for each c; > 0, we have ¢y = Spase-
(b) If Ay > max{g(£o0)}, then for some c; > 0, we have ¢y > Spgse-

Proof. Statement (a) follows from Theorem[Il Statement (b) is a direct consequence of Theorem

O
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4.2 The continuity of subsolutions

We discuss the weak continuity condition for sub-solutions, which are half-relaxed limits of
solutions to reaction-diffusion equations. This property first appeared in [6].

Lemma 4.4. Suppose p is nonnegative and satisfies p(0) = 0, and satisfies
min{p, p+ H(s,p )} <0 in [0, 00)
in viscosity sense (of Ishii).
(a) If H(s,0) >0 for each s > 0, then p is nondecreasing.

(b) If lim inf H(s,p) — oo for each compact set K C [0,00), then p € Lip;,.([0,00)). In
|p|—o0 s€EK -

particular, it satisfies the weak continuity condition:

p(c1) =limsup p(s) and p(c1) = limsup p(s). (4.4)

s—ci1+ s—c1—

Proof. Part (a) is due to [40, Lemma 2.9]. For Part (b), fix a bounded interval K = [0, 5] with
5> 0, and let M > 0 be given such that

H(s,p) >0 forallsel0,5+1], [p| > M.

Fix any point sy € [0, §], we claim that

p(s) — p(so) < M|s —so| for all s € [0, 5]. (4.5)
For this purpose, define
v a+ M|s — sg for s € [0, 5],
"ot M [|,§—so| + 5= - 1] for s € [3,5+ 1),

for any a > 0, then ¥ is continuously differentiable except at sg, such that
|[W'(s)] > M forse[0,5+1)\ {so} (4.6)

Next, take the minimal « such that ¥ touches p from above at some point s; € [0, 5+ 1), which
is possible since p is upper semicontinuous, and thus bounded on 0,5+ 1].

If 51 = 50, then @ = p(s¢) and we obtain (EH). Suppose to the contrary that s; # so. We
first observe that p(s1) > 0, which follows from W(sg) < ¥(s) for s € [0,5 + 1) and

p(s1) = W(s1) > ¥(so) > p(s0) > 0.
Now p(s1) > 0, so the definition of viscosity subsolution implies that
0> 2(81) + H(Sl, \I/I(Sl)).

But the right hand side is strictly positive thanks to (4.6) and the choice of M. This is a
contradiction. Therefore, (4.5]) is proved.

Since M depends only on K = [0, 5] but not on s, we can reverse the role of s and sp in
(£3)) to conclude that

lp(s) — p(s0)| < Mls —so| for all 5,50 € [0, 3].

This proves the Lipschitz continuity of p in any compact subset of [0, c0). ]
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4.3 Critical slope lemmas

Let U be an open interval in R containing c1, and recall that
Cp(U) =C(U)NCHU N (—00,e1]) NCH(U N [ey,00)).
(HH) Assume p — H(s,p) is convex and coercive, and H(ci+,p) and H(c;—,p) exist.

Lemma 4.5. Assume that (HH) holds. Let p: U — [0,00) satisfy the following:

(i) p is a viscosity subsolution of

min{p,p+ H(s,p)} =0 in{se€U: s>c}.

(ii) p satisfies the weak continuity condition (&.4]).
(iii) p(c1) > 0.
Suppose there is a test function ¢ € C;w(U) that touches p from above only at c1. Let py =
o' (e1+), and
pyo=inf{peR: Ir>0, o(s)+P(s—c1) = p(s) for0<s—ci <r}. (4.7

Then —oo < py <0 and
pler) + H(ei+,py +p4) <0.

The proof is a modification of that in [36], Lemmas 2.9 and 2.10], where we use the weak
continuity condition. For the convenience of the reader, we provide the proof in Section Bl

Remark 4.6. Suppose, in addition, that p is a viscosity subsolution of min{p,p + H(s,p')} =0
in{seU: s<c}. Then
pler) + Hei—,—p- ) <0,

where —p_ = ¢/(¢1—) and p_ € (—00,0] is given by
p_:=inf{peR: Ir>0, o(s) —p(s—c1) > p(s) for —r <s—c; <0}. (4.8)
Lemma 4.7. Assume that (HH) is valid. Suppose p is a viscosity supersolution of
p+H(s,p)=0 in{seU: s>c}.

and there is a test function ¢ € C;w(U) that touches p from below only at c1. Let p1 = ¢ (e1+),
and
P, =sup{peR: Ir>0, o(s)+p(s—c1) <p(s) for0<s—c; <r}. (4.9)
IfBJr < o0, then
p(01)+H(Cl+aP+ +2_9+) > 0’ with BJr > 0.
Note that no weak continuity condition is needed as we do not claim the finiteness of p e
The proof of Lemma A7 is also included in Appendix [Bl
Remark 4.8. Suppose, in addition, 7 is a viscosity supersolution of min{p, p+ H_(s,p’)} =0 in
{seU: s<ci}. Let —p_ = ¢'(¢1—) and
p =sup{peR: Ir>0, ¢(s) —p(s—c1) <p(s) for —r <s—c; <0}. (4.10)

If p < +oo, then
pler) + H(ei—,—p——p ) >0 and p >0.
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5 Proof of Main Results

Lemma 5.1. Let u be a nonnegative, nontrivial solution of (LIl) and assume infg > o9 > 0.
Then for any n € (0,2+/dg)
lim inf inf u(t, z) > do. (5.1)
1200 Ja|<(2vBo—n)t
Proof. Choose 61 € (d,inf g), then u is a subsolution to

fiy — lige = G(6y — @) in (0,00) x R

with compactly supported initial data ug. It is a classical result that (5.1) holds for @. It follows
by comparison principle that (5.]) holds also for w. O

Fix a solution (¢, x) of (L)), and let

t
u(t,x) = u (—, E) , and w(t,z) = —elogu(t,x),
€ €
then w* satisfies
wf — ews, + [wE|? + g (E4L) —emw /e =0 for (t,z) € (0,00) x R,
—elogug(z/e) if x/e € Int(suppup), (5.2)
w(0,x) = .
+00 otherwise.

Consider the half-relaxed limits [6]:

w*(t,x) = limsup w(t,z) and w(t,x) = lim inf we(t, x) (5.3)
(t/,xsf_(,)(t,x) (t',z")—(t,z)

Lemma 5.2. Let w* and w. be given as above. Then w*(t,x) = tp*(x/t) and w(t,z) =
tp«(x/t), for some upper semicontinuous function p* and lower semicontinuous function p..

Proof. The existence of p* and p, is similar to Lemma [4.] and is omitted. The semicontinuity
are due to the half-relaxed limits in the definition of w*, w. U

Lemma 5.3. p*(s) > p.(s) > 0 for all s > 0 and p*(0) = 0. Moreover, p.(s)/s — +oc as
s — +o0.

Proof. By maximum principle, one can establish uniform upper bound of u, i.e. wu(t,x) <
My := max{sup |ug|,sup g}, so that we(t,x) > —elog My. This implies w* > w, > 0 and hence
p* = pe>0.

To show p*(0) = 0, it suffices to prove w*(¢,0) = 0 for all ¢ > 0. By Lemma [5.1], we have

tl /
w*(t,0) = limsup w(¢,2’) < limsup —elogu (?%) < —li_r}(l)elog dp = 0.

e—0 e—0
(t/,2")—(t,0) (t',2")—(t,0)

Finally, by similar argument to that in [40, Lemma B.3], we have w,(0,z) = +o0 for all z > 0.
It then follows from lower semicontinuity of w, that

1
lim inf p+(s) = lim inf w, <—, 1> > w,(0,1) = 4o00.
s——+00 S s——400 S
This completes the proof. O
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5.1 Verification of flux-limited solutions property

The main result of this subection is the following.

Proposition 5.4. Let p* and p. be given in Lemmal52. Then p* (resp. ps) is a FL-subsolution
2
(resp. FL-supersolution) of [29) with fluz limiter given by [2I3), that is, A = A1 — %.

We divide the proof of Proposition [5.4] into the verification of FL-subsolution and superso-
lution.

Lemma 5.5. Let p* be given by Lemmal[22. Then
(a) p* € Lipy([0,00));
(b) p* satisfies the weak continuity condition (L4);
(c) p* is a FL-subsolution of ([29) with A = A; — %.
Proof. By construction p* : [0,00) — [0,00) is upper semicontinuous. It is standard to show

that w*(t,z) = tp*(x/t) is a viscosity subsolution to

min{w*, w} + |w|? + g(—o0)} = 0 in {(t,z):0 <z < cyt},
min{w*, w; + |wk|? + g(+00)} =0 in {(t,x) : x> c1t > 0}, (5.4)
min{w*, wj + |wi> + inf,er g(y)} =0 in (0,400) x (0, +00).

From the third equation, we deduce as in [46, Lemma 2.3] that, in viscosity sense,
min{p*, p* — s(p*) +|(p*)'|> + i%fg} <0 in (0,00). (5.5)

Since also p*(0) = 0 (thanks to Lemma [5.3)), we infer from Lemma 4] that p* € Lip;,.(]0, 00)).
This proves assertion (a). Assertion (a) implies (b).

The proof of (c) is inspired by [3I]. From the first two equations of (5.4]), we deduce that,
in viscosity sense,

min{p*, p* + H(s, (o))} <0 for s € (0,00) \ 1,

with H (s, p) given in (2.23]). It remains to show that p* is a subsolution to the second equation
of (Z3). For this purpose, let ¢ € C;w and suppose p* — 1 has a strict global maximum poin
at ¢1, and that ¢ (c1) = p*(c1) > 0. Denote
C% * / /
A=Mh-—  A=—pla)=—yla) pr=Ylat), p-=-¢(a-)

(Note the negative sign in the definition of p_.) We want to show
—A+max{A H (c1+,p4),H (c1—,—p-)} <0. (5.6)

(Observe that if A > 0, then any nonnegative (sub)solution p*(s) satisfying the junction condi-
tion min{p, p + Fa(p'(c1+), p'(c1—)) < 0 must vanish at the point ¢, i.e. the case p*(c1) > 0 is
null.) We first claim that

H (c1+,p:) <A, and HT(c;—,—p_) <\ (5.7)

By Lemma (4.5,
H(ci+,p+ +p+) <A for some p; € (—o0,0]. (5.8)

!See |2 Proposition 3.1] for several equivalent definitions of viscosity solution.
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Hence, using the fact that H~ is decreasing in p and H~ < H,
H™(crt+,py) < H (ert,py +D4) < H(ert,py +P4) S A

Arguing similarly, we also have H" (¢;—, —p_) < A. This proves (5.1).
It remains to show A < A, where A = A; — %.
Suppose for contradiction A > \. Then by (5.7]), we have

2
A> max{ngn H(cit, p)} = max{g(+o0)} — Zl’ (5.9)

In particular, A; > max{g(+00)}. Define
¢o(x) = py max{z,0} — pu_ min{z, 0}, (5.10)

where . e
e =5+ VA —g(tec),  and  po=—+ 4+ VA —g(~o0). (5.11)

Note that py are also determined uniquely (thanks to (59)) by

. (5.12)
H(ei—,—p—)=A and —p_ <argminH(c;—,).

{H(cl+,u+) =A and  p4 > argmin H(c;+,-),
By (58) and that A < A = H(c1+,pu4), we have H(c1+,p+ + p+) < H(ci+, p4) and thus
p+ + P+ < w4 (here we have used the fact that py is the larger root of H(c;+,p) = A). By
definition of py in ([£7), we deduce that there exists a small neighborhood (¢; —7,¢1 +7) of ¢1
(with 0 < 7 < min{1, ¢; }) such that (by Lipschitz continuity of p*)

p*(c1)

5 <p(s) <A+ do(s—c1) foreg <s<ep+r,

with the second inequality being an equality iff s = ¢;. By arguing similarly, along with the
definition of p_ in (48], we have

p(c1)
2

<p(s) < =A+ddo(s—c1) foreg—r<s<e,

with the second equality holds iff s = ¢;. In other words, —A+ ¢o(s — ¢1) is also a test function
touching p* from above at ¢; in (¢; — r,c; + 7). Hence, letting

Qr ={(t,x):zft€fcr —rye1+7], t—1| <7}, (5.13)
we get
W' (ta) = b0 (/1) < (b2 == A1) 4t (—A T éo ( ‘f”)) in Q,
with equality iff (¢,2) = (1,¢1). We can then choose 6 € (0, (1 —r)p*(c1)) small such that
w*(t,z) +0 < °(t,z)  on IQ,. (5.14)
Next, define
o (t,x) == %(t —1)2 —tA—€log ¥ <x _eclt> for (t,z) € Qy,
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where U(y) = e~ £ ®4(y) and P is the positive eigenfunction given in Proposition [£21 Thanks
to Proposition E2(b)(i), one has ¢ — ¢ in Cj,, since

—elog [e_%x_:th)l <x — clt)] — ¢o(z — c1t) = top <x _tclt> locally uniformly.
€

Hence, we deduce from (5.14]) that
we(t,z) +0/2 < ¢(t,x) on IQy, (5.15)
for sufficiently small e. Next, we observe that ¢ — §/2 satisfies

- Clt) 2 = —A;)\(t “1) A+ A+o(l) >0,

of — epSy 105 + g (

where we used

| >

>t (—A+¢o(% - Cl)) - g +o(1)

> (1—r)p* (%) —g+0(1)2%

QOE(L .%') -

+0(1) > 0 for (¢t,z) € Q,

€5
to deduce e~z = o(1) in the last equality, and |t — 1] < r < 1 in the strict inequality. Hence
©€—0/2 is a supersolution to the equation (5.2)) of w®. In view of the boundary condition (G.15]),
the comparison principle yields

we(t,z) +0/2 < o (t,z) = @ (t,z) + o(1)  in Q,. (5.16)

By definition of w*(1,¢1) = p*(c1) = —A (recall that 1) touches p* from above), there exists
(t°,x2°) — (1, ¢1) such that we(t€, 2€) — —A. Substituting (¢,z) = (¢, z) into (B.16) and letting
€ — 0, we have

“A+6/2<¢°1,¢1) ==X for some § > 0,

which leads to a contradiction. Therefore, A < A\. This concludes the proof. U
Next, we show the FL-supersolution property of p..

. . . . . C2
Lemma 5.6. The lower limit p, is a FL-supersolution of [29) with A=Ay — .

Proof. Again, it is standard to check that w, is a viscosity supersolution to the first two equa-
tions of (5.4 in the viscosity sense. This implies again, by [46, Lemma 2.3] that p, is the
viscosity supersolution of the first equation of (2.9).

It remains to verify the remaining junction condition of (29)). Suppose there is a test
function ¢ € C’;w that touches p, from below only at s = ¢, and denote

A=—pila) =—Y(c1), pr=¢(at), p-=-Y(a-).
By way of contradiction, we further assume that
max{A, H (e1+,p+), H (c1—, —p_)} < \. (5.17)

Let Ag = max{g(+00)} — |c1|?/4, pu+ be given in terms of A € [Ag, 00) as in (512)), and ¢g be
defined as in (5.I0). By Proposition d.2(c), for any n > 0, there exists g, € C(R,R) such that
A7 > max{g(+o0)} and ||g — gyllcc < 1. In particular, if A > Ay (or say Aq > max{g(£o0)}),
we could set n = 0 and gop = g. Let U (y) = ef%yQ)?(y) where ®7(y) is a positive and bounded
eigenfuction associated with A]. For any n > 0, we could also define 4 and p” with A; replace
by A in (5II). Accordingly, ¢{ would be defined in a similar manner. We first prove the
following claim.
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Claim 5.7. There exists ng > 0, such that —X + ¢{(s — ¢1) touches ps from below strictly at ¢
for any n € 0,m).

Let p, be given in (49) and ([.I0). In the case that 0 < p, <+oc, we have
H™ (er+, py) <A< H(ert, pr+p ),
which implies p; + p, = argmin H (c1+, ). Together with
A<X, H(at+,pg)=A

with 4 being the larger root of p — H(c1+,p) — A, we deduce that py TP, > Note that
p — py as n — 0F. Therefore, py +p L > p!l for any sufficiently small n > 0. This yields
p«(8) > =X+ @{(s — ¢1) in a right neighborhood of ¢; (which depends on ). Moreover, this
last statement is obviously valid if p , = too.

In the case that p_ < 400, we could argue similarly to get for any sufficiently small n > 0,
p«(8) > =X+ ¢l(s — ¢1) in a left neighborhood of ¢;, which is clearly true in the case that
p_ = +00. As a consequence, the Claim 5.7]is proved.

Now for fixed n € (0,min{ny, 232}), there exists r € (0,1), such that —X + ¢g(s — c1)
touching p, from below strictly at 01 in (¢; —r,c1 + 7). Letting @, be given in (5.13]), we get

wa(t7) = tpu(a/t) > P(tx) = T 1) (—A+ o (“”” ‘f”)) in Q,

with equality holds iff (¢,2) = (1,¢1). Then there exists d(n) > 0 such that
wy(t, ) > (¢, 2) +§ on 9Q,.

Define

A— A c] xz—c — t
O (t,x) = T(t —1)2 —tA —elog [6_71' eltfb"(x a

€

)} , for (t,x) € Q.
Clearly, ¢ — %7 in O}, since
S clt

—elog [e™ 2 @"(%ﬁ)] = dp(x — ert) = t(

x —cit

) locally uniformly.

Therefore,
w(t,z) > ¢t x) +6/2 on Q.

for sufficiently small e. Now we verify ¢°" + §/2 is a subsolution of (5.:2)). Indeed,

xr —ct _ (205149)
o —ewmﬁ+!wx’"\2+g< - > —e =

< A;)\(t—l)—>\+A717—§+H9—917Hoo,
< A;)\(t—l)—)\+A+A117—A1+||g—gn”oo
< ?(f—l)—)\+z‘1+2n
< _)\; A +2n < 0.
It then follows from the maximum principle that, for all small e,
- A

w(t2) — /2> ¢t 2) =

Choose (t¢,z€) — (1,¢1) such that we(t¢, 2¢) — w.(1,c1) = p«(c1) = —A. Evaluating (5.I8)) at
(e, x°) and then letting € — 0, we again deduce that —\ — §/2 > ¢%7(1,¢;) = —\, which is a
contradiction. This concludes the proof. U

(t—1)2 —tA+dp(z —cit) +o(1)  for (t,z) € Q. (5.18)
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Proof of Proposition [5.4]. It is a direct consequence of Lemmas and O

5.2 Equivalence between Ishii solution and FL solution with A = A

This section is a special case of [36, Section 7] with the general Hamilton H (s, p) being discon-
tinuous at c¢;.

Proposition 5.8. Let H(s,p) : [(0,00) \ {c1}] X R be convez in p and such that H(c1+,p) are
well-defined and coercive, and argmin H(c1+,-) = argmin H(¢;—, -).
Define

FI(S,p) = H(S,p) ifS 7£ C1, and I:[(Cl,p) = maX{H(Cl_ap)’H(Cl+ap)}'

Then for any given nonnegative function p, it is a FL-supersolution (resp. FL-subsolution) to

{min{p, p+H(s,p)} =0  in(0,00)\ {1}, (5.19)

min{p(c1), p(c1) +max{Ag, H (c1+, p'(c1+)), H (c1—, p'(e1—))} = 0,

with Ag := max{mﬂ%n H(er+, ), mRén H(ci—,-)}, if and only if it is a viscosity supersolution (resp.

subsolution) in the sense of Ishii to
min{p, p+ H(s,p')} =0 in (0,00), (5.20)

where the definition of viscosity sub/supersolutions of ([5.20)) in sense of Ishii is given in Defi-
nition [D.1

Note also that FL-supersolution (resp. subsolution) with A < A is equivalent to the case
A = Ag. For the particular Hamiltonians satisfying

H(er—,p) = —cip+p* +g(=00) and  H(er+,p) = —c1p + p* + g(+00). (5.21)
that we consider in this paper, one has Ay = max{g(—o0), g(+00)} — c2 /4.

Proof of Proposition [5.8. Denote p be the common value of argmin H(c1+,+). First, we show
sufficiency, i.e. super/subsolution in sense of Ishii implies FL-super/subsolution.

Let p be a viscosity supersolution of (.20]) in the sense of Ishii. Then p > 0 for all s.

Let 1(s) be a vertex test function touching p from below at s = ¢;. Denote

A=—plc1), pr=v(c1+), p_=—(c1—). (5.22)
We need to show Fy,(p+,—p—_) > A, where
Fa,(p+, —p_) = max{Ag, H (c1+,ps), H (c1—, —p_)}.
By the critical slope results (Lemma B7) and Remark A.8]), there exist p . = 0 such that
H(eai+,py+p )2 and H(ci— —p-—p )= A (5.23)

(These p_ are given in (L9)-(.I0). If any of them is infinite, then simply take a large enough

positive number satisfying (5.23]).)
If Ay > A, then Fa,(ps+,—p—) > Ap > A, and we are done.
If p. + p <P (resp. —p— —p_ > p), then we are done, since

H™ (cit,p+) 2 H (art,ps +p ) = H(eat,pr +p, ) 2 A (resp. H*(c1—,—p-) = \).
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Henceforth, we assume

{AO < )‘ S min{H(Cl+7p+ +£+)7H(Cl_7 —pP-— _E_)}a (5 24)

—oo<—p_—g_<ﬁ<p++]3+<+oo.

By the definition of the critical slopes, the second line in (5.24)) means that p— ¥(s) has a strict
local minimum at s = ¢;, where 1) € C'! is the special smooth test function

¥(s) = v(er) +B(s — 1)
By solution property in the Ishii sense (see Definition [D.I[b)), we have
Ap = max{min H(c1+, )} = max{H (c1£,p)} > .

This is a contradiction with (5.24]), and shows that p is FL-supersolution with flux limiter Ay.
Next, we show subsolution in sense of Ishii implies FL-subsolution.
Let p(c1) > 0 and let ¢ € C’;w be a vertex test function touching p from above at s = ¢;.
We need to show
max{Ag, H (c1+, py), H (c1—, —p_)} < A, (5.25)

where \, py, p_ are as in (5.22)), and H (s, -) and H" (s, -) denotes the decreasing and increasing
part of H(s, ), respectively.

By critical slope results in Lemma and Remark (p enjoys weak continuity property
thanks to Lemma [£.4]), there exist finite real numbers py < 0 (given by (£7)-(48])) such that

H(ci+,p+ +p4+) <A and H(ci—,—p- —p-) < A\ (5.26)

In particular, we deduce that
Ag < A\ (5.27)

Moreover, (0.26]) also implies that at (o, 0),

H™ (c1+,p+) < H (c1+,p+ + py) since H (¢1+,-) is nonincreasing,
< H(e1+,py +p4+) < A (5.28)
Similarly, we also obtain H*(c;—,—p_) < A. Combining with (5.27) and (5.28), we obtain
(525). This proves that w is a FL-subsolution with A = Aj.
Next, we show the converse statement, i.e. FL-super/subsolution implies super/subsolution
in sense of Ishii.

Let p be a FL-supersolution of (5.19), and let ¢ be a C'! test function touching p from below
at s = ¢;. Then we have p > 0 for all s, and

max{H (c1+,¢/'(c1)), H(er—,¥'(e1))} = max{H ™ (er+,9'(c1), H (1=, ¢ (e1)} = —(ex).

This proves that p is viscosity supersolution of (5.20) in the Ishii sense.
Finally, let p be a FL-subsolution of (5.I9) with A = Ap, and ¢ be a C! test function
touching p from below at s = ¢;. Then we have

H(ey, ¥/ (c1)) = max{H (c1+, ¢ (c1), H (c1—, %' (c1)} < —p(ca).

Now, since p = argmin H(c1+,-) = argmin H(c;—, ), we either have ¢/(¢1) > p or ¢¥/(¢1) < p.
In the former case, we have H(c1—,v'(c1)) = H (c1—,9'(c1)) < —p(c1). In the latter case, we
have H(c1+,v'(¢1)) = H (e14, 9 (e1) < —p(eq). This implies that

Hy(c1,9/(e1)) = min{H (c1—, ¢/ (1)), H(er+,¢/ (1))} < —pler).

i.e. pis a viscosity subsolution of (5.20) in the sense of Ishii. O
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Next, we specialize to the class of Hamiltonian defined in (2.23]), and prove the first part of
Theorem [11

Proof of Theorem[dl, first part. We establish Theorem [ in case A; < max{g(+o0)}. Then
Ay = max{g(£o0)} (thanks to Proposition f2(a)). By Proposition 54 p* (resp. pi) is a
FL-subsolution (resp. FL-supersolution) of (2.9]) with

2
A=Ay :=max{g(+o0)} — %

Thanks to Proposition 5.8 p* and p, are viscosity sub- and supersolution of (2.26)) in the Ishii
sense. Moreover, it follows from Lemma [5.3] that

P (0) =0<p.(0), and p.(s)/s— 400 ass— +oo. (5.29)

Hence, we may apply the comparison principle [40), Proposition 2.11] for viscosity solutions in
the Ishii sense to deduce that

p*(s) < p«(s) forall s >0.

Since also p* > p, by construction (see (B.3])), we conclude that p* = p.. We define p4, to be
the the common value. This proves the existence and uniqueness of 4, stated in Proposition
23l (Note that this also settles the case A < Ay, as they yield the same equation ([2.9]).)

Furthermore, w(t,z) — tpa,(x/t) in Cjoe((0,00) X (0,00)). Let spase = sup{s > 0: p4,(s) =
0}, then pa,(s) > 0 for s > spgse. This gives

wE (t,x)

u(t,z) =e ¢  — 0 locally uniformly for {(¢,x): ¢ >0, = > spaset},

i.e. € < Spase, where ¢* is the maximal spreading speed given in (2.1]).
Next, we observe that pa, is monotone increasing (Lemma [d4(a)), so that p4,(s) = 0 for
s € [0, Spase] and hence

w(t,x) =0 in Cle({(t,x): t >0, 0 <2 < Spaset})-
It then follows as in [47, Lemma 3.1] that

liminf inf u(¢,2) > infg > 0
e—0 K
for each compact subset K C {(t,z) : t >0, 0 < x < Spgset}. For each n > 0, we may take
K ={(1,s) : infg/2 < s < spyse — n}, and deduce

lim inf inf u(t,z) = liminfinf u(¢,2) >0 for any n > 0.
t—00 %gt§$§(sbase_77)t e—~0 K

Since 1 > 0 is arbitrary, this implies ¢, > sSpgse- Combining with ¢, < Spese, We obtain ¢, =
C, = Spase- This concludes the proof of Theorem [[in the case Ay = max{g(400)}. O

Having verified that w* and w, are FL-subsolution and FL-supersolution of (2.9]), one may
apply the arguments in [36] to obtain a comparison principle. Here, however, we will follow
the arguments due to Lions and Souganidis [44] to show that they are in fact viscosity sub-
and supersolutions of certain Kirchhoff junction conditions, and establish the more general
comparison principle (see Appendix [C]).

Remark 5.9. The concept of FL-sub/supersolutions was originally introduced in [36, 37], in
which the authors established the comparison principle based on the construction of certain
“vertex test functions”.
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5.3 Verification of Kirchhoff junction conditions

Let B € R be given. We consider the Hamilton-Jacobi equation with Kirchhoff junction condi-
tion:

min{p,p+ H(s,p')} =0 for s # ¢,
min{p(c1), min{p(c1) + H(c1=, p'(c1 %)), p'(e1—) — p'(er+) — B}} <0, (5.30)
min{p(er), max{p(er) + H(erms, o (e1)), (e —) — gl (e1+) — BY) > 0.

The definition of viscosity solution to the above problem also involves the use of piecewise C'*
test functions.

Definition 5.10. (a) We say that p is a viscosity subsolution of (5.30) provided (i) p is upper
semicontinuous, and (ii) if p — 1 has a local maximum point at some sg such that 1 € C';w
and p(sg) > 0, then

p(s0) + H(s0,%'(s0)) <0 in case so # ci,
min{p(c1) + H(c1£,¢'(e1%)), 9" (e1—) = ¢'(e14) = B} <0 in case sp = c1.

(b) We say that 7 is a viscosity supersolution of (5.30) provided (i) p is lower semicontinuous,
(ii) p > 0 for all s, and (iii) if p — ¢ has a local minimum point at some so such that
(NS C;w then

B(s0) + H(s0,%'(s0)) >0 in case so # ci,

max{p(c1) + H(c1 £, (c1%)), ¢ (e1—) — ¢ (e1+) — B} >0 in case sg = c1.

(c) We say that p is a viscosity solution of (5.30]) provided it is a viscosity subsolution and
supersolution of (5.30).

2
Next, for each flux-limiter A > Ay, where Ay = max{g(+oo)} — %1, we associate a Kirchhoff
junction condition parameter B as follows:

B=—puy—p-,
where p, ;i are uniquely determined in terms of A by
H (ei+,puy)=A and H (c1—,—p_) = A. (5.31)

By recalling the definition of H* (c1+,p) and H™ (c1+,p) in [27) and (Z.8)), we deduce

i = glen+\J T 44— g(+00)), po = 5(—er+fef +4(A— g(o0)))

2
Lemma 5.11. Let A > Ay := max{g(+o0)} — ¢, and define py in terms of A as in (B31).
If p is a FL-subsolution to ([Z3), then it is a viscosity subsolution of the problem ([5.30) with

Kirchhoff junction condition with parameter B = —puy — p—.

Proof. It remains to show that p is a subsolution to the second equation of (5.30). For this
purpose, let 1 € C’;w and suppose p — v has a strict global maximum point at c¢;, and that
Y(c1) = p(c1) > 0. Denote

A= —plc1) = —¢(ar), py = (1+), p-=—¢'(c1—).

Suppose
H(ci+,p+) > A and  H(ci—,p-) > A, (5.32)
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we need to show that
—p- =Dt +pg +p- <0, (5.33)

Thanks to the critical slope lemma (Lemma [L5]), H(ci+,ps+ + py) < A for some py < 0, it
follows that p; > argmin H(c1+,-). Similarly, we have —p_ < argmin H(c;—,-).

By the definition of FL-subsolution (see Defintion [2.2)), it follows that A > A. This, together
with the fact that py (resp. —p_) is the larger (resp. smaller) root of p — H(c1+,p) — A,
implies

pyr>pge and  —po < —p_. (5.34)
Therefore, we obtain —p; —p_ + 4 + pu— <0. O

Lemma 5.12. Let A > Ay. If p is a FL-supersolution of (Z9)), then it is a viscosity superso-
lution of the problem (5.30) with Kirchhoff condition with parameter B = —py — pi—.

Proof. Tt remains to verify the second condition of (530). Suppose there is a test function
P € C’;w that touches p from below only at s = ¢;.

Denote
A= —p(c1), pr = (), p- =Y (c1—-).
Suppose
H(ei+,p+) <A and H(ci—, —p—) < A, (5.35)
we need to show
—p— — P4+ pg +p— > 0. (5.36)

Since p is a FL-supersolution, we have A > A. Upon considering (5.35)), and also p4+ (resp.
—p_) being the larger (resp. smaller) root of H (ci+,p) = A (resp. H (c1—,p) = A), we
deduce?

pr <py and —p_ > —pu_. (5.37)

This implies (5.36]). O

Corollary 5.13. p* (resp. ps) are viscosity subsolution (resp. supersolution) of (B.30) with

2
B = —py — p_ where py are associated with A = Ay — ¢ via (EI2).

Proof. Fix A=Ay — % > max{g(+o0)} — %. Define piy, u— by (BI12).

2

By Proposition[5.4], p* and p, are FL-subsolution and supersolution of (2.9) with A = A4 —%,
respectively. By Lemmas .11l and B.12] they are viscosity sub- and supersolutions of (B.30])
with B=—puy —pu_. O

5.4 Proof of main results

Proof of Proposition [2.3. Recall that Ag = max{g(£oo)} — %. Let p and p be a pair of FL-
subsolution and FL-supersolution of (2.9)) for some A > Ay, such that ([2.I1]) holds.
If A < Ap holds, then by Proposition 5.8, p, 7 is a pair of viscosity sub- and supersolution
of ([2:20)) in the sense of Ishii. The comparison principle follows from [40), Proposition 2.11].
Henceforth, we assume A > Ag. Then, it follows from Lemmas 51T and that p, p are a
pair of sub- and supersolutions of (5.30). The comparison principle then follows from Theorem

O

2Note that we do not need p4 < +oo here, comparing with the proof of the previous verification for junction
subsolution. This asymmetry in the arguments of super and subsolutions is due to the fact that H is quasiconvex
and coercive.
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Proof of Corollary and Theorem [1. For given function g, denote A = A; — %, where A is
given in (Z.0]). By Proposition @2(a), A > Ag := max{g(£o0)} — %.

For the case A = Ay, in view of Proposition (.8, the problem is equivalent to (2.26]) and
[212). The existence and uniqueness of p4, follows from [40, Proposition 1.7(b)]. The conver-
gence we(t, ) — tp(x/t) in Cjye and determination of spreading speed is given in the first part
of the proof of Theorem [I] (see Subsection [5.2]).

For the case A > Ay, it follows that p* and p, are viscosity sub- and supersolutions of (5.30)
and satisfies p*(0) = p«(0) = 0 and p.«(s)/s — +o0o0 as s — +oo (see Lemma [5.3]). Hence,
Theorem implies p* < p,. Arguing similarly as in the proof of the first part Theorem [I] (in
Subsection [5.2]), we conclude that (i) (2.9)-(2Z12]) has a unique FL-solution pa(s); (ii) we(t,x) —
tpa(x/t) in Cioe; (iil) the spreading speed is given by ¢, = §4 =sup{s > 0: pa(s) = 0}. O

A Proof of Proposition

Proof of Proposition[{.3 For (a), observe that if ¢” + g(y)¢ < A¢ in R for some positive
¢ € C3.(R) and A < g(+00), then ¢” < 0 for y > 1. Since ¢ > 0 in R, we deduce that
¢ > 0 for y > 1, and hence ¢'(+o0) € [0,400) and ¢(+00) € (0,+00] both exist. However,
this means limsup,_,. #"(y) < (A — g(+00))¢(+00) < 0, which contradicts ¢'(4+o0) > 0.
This proves Ay > g(4o00). Similarly, we can show that A; > g(—o0). Next, we apply [14],
Theorem 1.4] to infer that (24) has a positive solution if and only if A € [A},00). (Note that
A1 = —Xi(L,R) in the notation of [14].) This proves (a).

For (b)(i), we first apply [I4, Proposition 1.11(ii)] to deduce that if A; > max{g(+o0)},
then A; is a simple eigenvalue and ®; converges exponentially to zero as |y| — co. To establish
([#3)), it suffices to prove the estimation of accurate decay rate of ®1 at +oo. Since A1 > g(400),
there exists ag > 0 such that A; > g(y) for any y > ag. Now we define

Ma) :=sup /Ay —g(y), Ala) = inf /A1 —g(y), Yy = ao.

y=>a

Fix a > ag. Then for any € > 0 and M > 0, it is easy to check that ®M(y) = Me 2@ 4 ¢is a
supersolution of (24 on [a,+00), that is,

(@) + (9(y) — A)@Y <0 on [a,+00).

For any given small ¢y > 0, there exists M; > eA(®%®,(a) such that P21 (y) > @1 (y) on [a, +00).
Using the sliding argument or strong maximum principle, we infer that ®(y) > ®;(y) on
[a, +00) for any € € (0,€g). Letting € — 0%, we have M;e 2(¥ > &, (y) on [a,+00).

Similarly, for any M > 0 and ¢ € (0, %M®), dM(y) = maX{O,M(e_X(“)y — €} is a
subsolution of ([24]) in (a,+00), that is,

(@M)" + (g(y) — A2 > 0 on [a,+00).

For any given small ¢ > 0, there exists My > 0 such that ®22(y) < ®(y) on [a,+00). By
the sliding argument again, it follows that ®M2(y) < ®;(y) on [a,+00) for any € € (0, €.
Letting € — 0%, we have Mye ¥ < &,(y) on [a, +o0). Consequently, there exist C > 0,C >
O(dependent on a), such that

Ce N < @y (y) < Ce 2V, vy > 0.
Noting that A(a) and \(a) are continuous on [ag, +00) with A(+00) = A(+00) = A;. Therefore,

for any sufficiently small > 0, there exists a > ag such that A,y —n < A(a) < Xa) < Ay + 1.
This implies the first inequality in (£3)) is valid.

28



For (b)(ii), suppose (A, ®) is an eigenpair of (Z4)). By the first assertion of the Proposition,
A € [A1,00). On the one hand, if A = A, then we can immediately conclude by the fact that
Ay is simple (by [14} Proposition 1.1(ii)]).

On the other hand, if A > A, then one can prove that ®(y) ~ e~ VA-9(+o)ytoly) g
y — +o0. It then follows that ®(y)/®;(y) — 0 as y — +oo. By repeating the argument, we
also obtain ®(y)/®1(y) — 0 as y — —oo. We can then touch ®(y) from below with k®(y) to
obtain, from the strong maximum principle, that ®;(z) = k®(z) for some k > 0. In this case
A = A4, a contradiction.

For (c), fix an arbitrary nn > 0 we choose, for each k € N, a continuous function such that

gk (z) = g(x), 2| >k +1,
g(z) < gh(z) < gla)+n, [<|a|<k+1,
gk (x) = g(z) +n, z| < k.

If Al(g,];) > Ay(g) for some k, we are done. Suppose to the contrary that Al(glg) = A4(g) for all
k, and let ®; € C? . be a positive eigenfunction of Al(g,’j ). By Harnack inequality, there exists

a positive function C'(R) independent of k such that
1

k()
C(R) = B4(0)

A

<C(R) forkeN, |z|<R.

Normalizing by ®;(0) = 1, we see that {®;} is bounded in C?([-R, R]) for each R. It follows
that (up to a subsequence) ®; converges in CL (R) to a positive eigenfunction ® € C? (R)
satisfying

" + (g(z) +n)® = Ai(¢)® inR.

By assertion (a), it follows that Aj(g) > Ai(g + 1), which is impossible since Aj(g + n) =
Ai(g) + . 0

B Proof of Lemmas and (4.7

Following the same procedure in [36, Lemmas 2.9 and 2.10], it suffices to prove Lemma [4.7]
without weak continuity condition and then show the finiteness of p, in Lemma with weak
continuity condition.

Proof of Lemma[{.7. By the definition of p o We see that p n > 0. For any sufficiently small
€ > 0, there exists e € (0,¢€) such that

p(s) = ¢(s) +(p, —€)(s —c1) for0<s—cp <re
and there exists s € (c1,c¢1 + %) such that
Plse) <@(se) + (p, +€)(se — ).

Now construct a smooth function ¥ : R — [—1, 0] such that

Tls) — 0 for s € (—1/2,1/2),
(5= -1 fors¢ (—1,+1)

and define

(p, +e)(s—c1) ifseUn(c,+00)
0 if seUnN(—o0,c]
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with U, (s) =¥ ((s — c1)/re). It then follows that ®(c1) = ¢(c1)=p(c1) and

{@(cl +10) = pler+r) + (p, — €)re <pler +70),
P(se) = p(s¢) + (£+ +€)(se — c1) > p(se)-

This implies that there exists a point s, € (¢, ¢1 + r) such that p — ® attains a local minimum
at S.. Therefore, by the definition of viscosity supersolution and H (-, p) is convex in p, we obtain
P(8¢) + sup  H(s, (I)/(EE)) > p(5e) + H™(3e, q)l(ge)) >0,

s€(c1,e1+7e)
which yields
®(5)+ sup  H(s,¢'(5) +2e¥; (5) +p, +¢) > 0.
s€(c1,c147e) B
Letting € — 0, we reach
o(cr) + H(ei+, ¢ (1) +p.)=0.

Now the conclusion follows immediately from the fact that p(c;)=¢p(c1). O

Proof of Lemma[{.5. We only show that p > —oo. Without loss of generality, we might assume
that ¢(c1) = p(c1) > 0. Suppose by contradiction that py = —oo, then there exists p, — —oo
and r, > 0 such that

o(s) +pn(s—c1) > p(s) for 0 <s—cy <rp.

Modifying ¢ if necessary (e.g., ¢ + (s — ¢1)?), we could further assume that
©(s) + pn(s —c1) > p(s) for 0 <s—cp <y (B.1)

For fixed n, since p satisfies the weak continuity condition (4.4), it then follows that there exists
Sm € (c1,¢1 +1y) such that s, — ¢; and p(s,,) — p(c1) as m — +oo. Define
2
Sm — C1
Up(s) = ¢(s) +pn(s —c1) + %, s> c1.
For each m € N, there exists $,, € (¢1,c1 + ] such that ¥, — p attains the minimum at 3.
Then

o(1) = Yy (sm) — B(Sm) > Wi (5m) — B(ém) > @(8m) + pn(8m —c1) — B(ém) (B.2)

Suppose §,, — so # ¢1 (up to a subsequence) as m — oo. Then letting m — 400 in (B.2]), we
have
0> (P(SO) +pn(30 - 01) — lim inf p(§m) > 07

m—oo —
where the second inequality follows from (B.I)) and the upper semicontinuity of p. This is a
contradiction. Therefore, we conclude that 3,, — ¢; and p(5,,) — p(c1) > 0 as m — oo. Now
we might assume p(5,,) > 0 for each m € N, by the definition of viscosity subsolution, we obtain

i)+ B (S ()~ =) <
m * my m n (ém—01)2 - .

Note that (inf }H(s,p) < H.(8m,p). Then we pass to the limit as m — 400 in the inequality
s€(c1,8m
above and get

pler) + H(eit, ¢ (er+) +p2) <0,

where p2 = p, — limsup (Sm_cl)z € [—00,0]. It then follows from liminf, , - H(ci+,p) > 0

(8m—c1)
m— 00
that p2 > —oo and p? is bounded from below by a constant C' which only depends on H (c1+,p),
p(c1) and ¢'(c1+). But this also implies p, > C, which leads to a contradiction. This completes
the proof of the finiteness of p, . O
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C Comparison Principle for problem with Kirchhoff condition

The comparison principle for FL-solutions was first proved by Imbert and Monneau [36, 37).
Subsequently, Lions and Souganidis gave an alternative proof by connecting it to the Kirchoff
junction condition [45], [44]. We combine the arguments of the latter and of [40] to prove a
comparison result that allows for solutions that grows superlinearly.

Let P = {¢;}} for some 0 < ¢; < ... < ¢, and B; € R for all i. We establish a comparison
principle for viscosity sub- and supersolutions of the Hamilton-Jacobi equation

min{p,p+ H(s,p))} =0 in (0,00) \ {¢;} (C.1)
with the following Kirchhoff junction condition at ¢;
pci—)—p'(e;i+)—Bi=0 fori=1,..,n, (C.2)

and boundary conditions p(0) = 0 and p(s)/s — +oo as s — +o0o. Here, we assume the
following for the Hamiltonian function H (s, p).

(A1) For any given L > 0 and each sg € (3, L)\ {¢;}?;, there exists 8y = do(L) and hg € {£1}
such that
H*(s,p) — Hu(s',p) < wi(]s — 5'|(1 + |p]))
for all s, s’ such that 0 < |s—so|+|s’—so| < dp and (s'—s)hy < 0. Here wy, : [0, 00) — [0, 00)
is a modulus of continuity for each L > 0, i.e. it is continuous with wr,(0) = 0, and H*

(resp., H,) is the upper (resp., lower) semicontinuous envelope of H with respect to the
first variable, that is,

H*(s,p) = limsup H(s',p) (resp., Hi(s,p) = liminf H(s',p)). (C.3)

/
s'—s §—s

(A2) p— H(s,p) is convex, inf H(s,0) > 0and lim [inf H(s,p)} — oo for each compact set
5>0 |p|—o0 [sEK
K C (0,00).
(A3) The one-sided limits H(c;+,p) are well defined.

(A4) There exists 3 > max{c;}?_, such that H(s,p) = —sp+ H(s,p) + R(s) for s > 5 and such
that H(s,p) is non-increasing in s € [5,00). Moreover, R € L is locally monotone in
s €[5, 00).
Remark C.1. The definition of local monotonicity of R(s) is stated in (H3’) of Subsection
2.4} see also [15]. Note also that (A1) implies that H (s, p) is locally monotone as a function
of two variables.

Remark C.2. For our purpose, we will take H(s,p) = —sp + p? + R(s), where R equals to
positive constants on (0, ¢;) and on (c1,00). It is obvious that (A1)-(A4) hold.

To define what it means by a viscosity solution to (C.I)—([C.2), we recall the space of piecewise
C! test functions

Cpw = Cioe((0,00)) N CH((0, e1]) N € ([ex, e2]) M. N C([en-1, €n]) N Cle[en, 00)).
and use the notations in (C.3).

Definition C.3. (a) We say that p is a viscosity subsolution to (CI)-(C2) if p is upper
semicontinuous on (0, +00) and it satisfies, in the viscosity sense,

min{p(¢;), min{p'(¢;—) — p'(ci+) — Bi, p(ci) + H(ci%, p'(c;£)} <0 for each 1 <14 < n.
(C.4)

{min{p,p + H(s,p))} <0 forse (0,00)\P,
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i.e. whenever p—1 has a strict local maximum point at sq for some ¢ € C;w and p(sg) > 0,
we have

p(so) + H.(s0,%'(s0)) <0 if sg € (0,00) \ P,

min{¢’(¢;—) — ¢'(¢;i+) — Bi, p(ci) + H(eit, ¥ (e;£)} <0 if 59 = ¢;.

(b) We say that p is a viscosity supersolution to (CI)—(C.2) if p is lower semicontinuous on
(0, +00) and it satisfies, in the viscosity sense,

min{p,p+ H(s,p' )} >0 for s € (0,00) \ P,
min{p(¢;), max{p’(¢;—) — p'(¢;+) — Bi, p(¢;) + H(c;%, p'(¢;+))}} > 0 for each i.
(C.5)
ie. p >0 for all s > 0 and whenever p — ¢ has a strict local minimum point at so for
some 1) € C;w, we have

ﬁ(SQ) + H*(SO7¢,($O)) >0 ifsye (O, OO) \P,
max{t(c;—) — V' (c;+) — By, p(c;) + H(cit, 9/ ()} >0 if s = ¢;.

(¢) We say that p is a viscosity solution to (CI)) —(C.2), if it is both a viscosity subsolution
and viscosity supersolution.

Remark C.4. The above setting includes the case with general r(z,t) with infinitely many shifts
(in that case H;(p) = p? and R is locally monotone except possibly at c;), as well as the case
when there is finitely many shifts, but periodic homogenization in between (in that case R = 0).

Theorem C.5. Let p and p be, respectively, viscosity sub- and supersolutions of (C.II)~(C.2),
such that

and P

p(0) <0 <75(0), p(s)<oo foralls>0, — = 400 ass— +oo.
= s

Then p(s) < p(s) in [0, +00).

Remark C.6. The above theorem directly implies the corresponding comparison principle for
KL-super /subsolutions (see Proposition[2.3]). This is because p and p being a pair FL-super/subsolution
(for an arbitrarily given A € R) implies the corresponding supe?/subsolution property with
Kirchhoff junction condition (for some B = B(A)); See Subsection [.3

Proof of Theorem [C.A. First of all, we may assume without loss that p is nonnegative, p(0) =0
and p € Lip;,.([0,00)). This can be achieved by replacing p by max{0,p}. Since 0 and p
(and hence also max{p,0} is automatically a viscosity subsolution (in Ishii sense) to min{p, p+
H(s,p')} =0, Lemma 5] is applicable and it is therefore locally Lipschitz continuous.
Suppose to the contrary that
sup|p(s) —p(s)] > 0. (C.6)

s>0

Step #1. We may assume without loss of generality that p(s) —p(s) — —o0 as s — +oc.

If limsup,_, oo @ < 00, then we are done. Otherwise, we proceed as in [40), Proposition

2.11]. First, observe that p € Lip;,.((0,00)). By Rademacher’s theorem, it is differentiable in
some [0, 00)\ S where S has zero Lebesgue measure. Hence, we may choose sy, € [3,00), s, — 00
such that p is differentiable at s, and

iréfg(sk) >0 and R(sg)— limsup R(s).

5§—00
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Note that the latter is a consequence of local monotonicity of R thanks to (A4). Next, define

() p(s) — vy for 0 < s < s,

p,.(8) =<~

g p(sk) = v+ p/(sk)(s — sp)  for s > sy,

where vy, = sup[,, o) R — R(sx) (note that v — 0). Observe that p, is a viscosity subsolution

in [0, 00) with linear growth as s — oco. Indeed, Py, is viscosity subsolution of (C.J) in [0, s;) on
the one hand, and classical subsolution of (KE]) in [sg,00) on the other hand, since

P, + H(s,g;g) =p, sg;ﬁ + FI(s,Q;) + R(s)
= [ag — vi, + bi(s — sx)] — sby + H(s,by,) + R(s)
ax — Vg — sgby, + H(sp, bg) + R(s)
= (ak — skbr + H(sk,br) + R(sk)) + (R(s) — R(sy) — vi)
< p(sk) + H(sk, p'(s)) <0,

IN

where we adopted the notation ay = p(sg), bx = p'(s)-

We can then replace p by Py if necgssary. Note that (C.8) still holds provided k is sufficiently
large, since v — 0 and s — +o0.

In the rest of the proof, we will show the comparison result is valid, i.e.

max{p, (s),0} <p(s) in[0,00), for all sufficiently large k.

Granted, then we can take k — oo to deduce that p <.

Step #2. For A € (0,1), define W(s) = Ap(s) — p(s). Then choose A 1, 0 < s9 < 5p such
that

no := W(sp) = max W(s)>max{q sup W,(1—-X) sup |H(s,p)| (C.7)
e R )
pI=4|s50

For given 1 < i < n, we consider two cases . Either (i) there is a sequence A; /1 such that
5o # ¢; for all j, or (ii) there exists a sequence A; 1 such that sqg = ¢; for all j. We first
consider case (i), sp # ¢;.

Step #3. Next, define
1—

Wa(s.2) = Mpls + 0 ho) = (1) — s — 12— 222 s — sol? (©3)

where hyg is given in (A1).

Claim C.7. There exists & > 0 such that if a > &, then the following statements hold.
(i) Wq has an interior local mazimum (s1,t) in (32, 20550) x (0, 5).
(i) @

(ill) afs; —t
v)

(i

al(s1,t1) = Va(so,s0) = no +o(1) > 0.
2= 0 as a — co.
(s1,t1) — (s0,80) as a — oo.

Denote @ = [%, S°+S°] x [0,50]. Clearly, ¥, is upper semicontinuous in (), therefore, it
attains the maximum at (s1,t1) € Q. By (CX) and p € Lip;,.((0,00)), it follows that

Sgp‘l’a > Wo(50,50) = 1m0 + A(p(s0 + “12pg) — p(s0)) =no +o(1)
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where o(1) is considered with respect to v — +oo. This proves (ii). For (iii), first observe that
alsy —t1|?> = O(1) which is a direct consequence of statement (ii). In particular, (sq,t1) — (3, 3)
for some § € [, 20420] By (i), we can write

1—A
2

a
Sls1— t1[> < =W(so) + [W(s1) + p(s1)] — B(t1) — |51 = sol* + o(1).
Since s — W (s) + p(s) and ¢t — —p(t) are both upper semicontinuous, we can take o — oo to

obtain
1_

2

where the last inequality follows from the fact that W attains global maximum at sg. This
proves (iii) and (iv). Finally, statement (iv) yields (s1,¢1) must be an interior point of (). This
proves (i).

Step #4. Fixing ¢t = t1, observe that for a > &, p(s1 + a~Y2hg) > no +5(t1) + o(1) > 0 since
p >0, and s+ p(s) — ¢(s) attains a local maximum at s = 31 := s1 + a2y, where

A
Oglimsup%\sl—tl\z < —Wi(so) + W(8) — 15— s0|* <0,

a—0o0

1 « _ 1
o(6) = 3 [pltn) + s = o V2ho — i +

_ )\|s —a Vhy — 50|2] .

By definition of viscosity subsolution, we have

<§17 01(81 - tl) + 1—A

5) + A
p(51) + 3 y

(81 — SO)) S 0. (Cg)

Using the convexity of H,, we have

a(sl—tl) 1—A
A * A

ANH., <§1, (81 — SO)) + (1 — )\)H* (§1, —(81 — 80)) > H, (§1,0é(81 — tl)) .

Substitute into ([C.9)

Ap(31) + Hy (81,a(s1 — 1)) < (1 = XN)H (51, —(51 — 50)) < (1 = A) SS[lolP] H(s,p). (C.10)
REEA

Next, we fix s = s1 and observe that ¢ — p(t) —(t) has an interior local minimum at ¢ = t;,
where

2

(0%
P(t) = Ap(s1) — §|t — 1% - |s1 — 0.

Hence,
ﬁ(tl) + H*(tl,a(sl — tl)) >0 (C.ll)

since sg ¢ P and thus ¢; ¢ P. Combining (CI0) and (C.II), we have

Ap(81) = p(tr) < H¥(t1, a(s1 — t1)) — Hi(S1,a(s1 — 1)) + (1 = A) sup. H(s,p) (C.12)
s€[0,5¢g
IpI<2|50]

Step #5. Observe that Ap(31) — p(t1) > Wo(s1,t1) > no +o(1). Using also |hg| = 1 (by (Al))
and als; — t1|> = o(1) (by Claim [CI7(iii)), we have

(tl — §1)h0 = [tl — 81 — Oé_l/zho]ho < ’tl — 81‘ — 04_1/2 < 0.
We can then apply (A1) to (C.12) to get

o(1) +no <wp(|t;1 —s1 — a_1/2h0|(a|t1 —s1|4+1)+(1=2A) sup H(s,p). (C.13)
56[0750]7|p|§2|§0‘
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Using a|s; — t1]2 = o(1) and
lt1 — 51— o 2hol(afty — s1]+ 1) < (o' 2]ty — 51 + 1) (a2t — 51| + a7/,
we let @ — oo in (C.13)) to obtain

o < (1—=X) sup H(s,p),
5€[0,50],|p|<2]50]

which is a contradiction. This concludes the proof when W (s) = Ap(s) — p(s) attains a local
maximum at sg, such that sg # ¢; for all <.

It remains to consider the case (ii) (see Step #2), when there is A\; 1 such that A\jp —p
has a global maximum at sy = ¢; for some 4. Since this holds for a sequence of A\; 1, we
reduce to the case that p — p attains the global maximum at ¢; for some i. For convenience,
let’s assume sy = ¢1. Next, define

=p(c1) and  b=p(c1)

and assume to the contrary that a > b > 0. (We will show that a < b so there is a contradiction.)

Step #6. We claim that the critical slopes of p, given as follows, are finite.

p-=sup{p € R: Ir >0, p(c1) +p(s —c1) > p(s) for —r <s—c; <0} (C.14)

pr=sup{p € R: 3Ir >0, p(c1) —p(s —c1) > p(s) for 0 <s—cy <r}. (C.15)

Indeed, they are finite because p is locally Lipschitz continuous. Moreover, we have

(C.16)

a+H(ei—,p-) <0, a+H(ci+,—p4) <0, and
min{p’ + p/, — Bi,a+ H(c1 £, Fpl)} <0 for (p_,p,) € (—o0,p_] x (—00,p4],

where the former is due to Lemma and Remark (note that p € Lipy,,., so there exists at
least one test function in C’;w), while the latter holds by considering the test function ¢ (s) =
p(cr) +p"min{s — ¢;,0} — p/, max{s — ¢1,0}, which touches p from above at ¢;.

Next, define

s) — p(c s) — p(c
p* = limsup M and p} = —liminf M (C.17)
s—c1— S —C1 s—c1+ S —C1
Note that
pL>p-  and p} >py, (C.18)
, o pls) —pla) : p(s) = pler)
since p— = liminf =——=—— and py = —limsup=———.
s—c1— s—c1 s—c1+ s—aC

Step #7. We improve (C.I6]) to

a+H(Cl_apt) SO, a+H(Cl+,_pi) Soa and (C 19)
min{p’_ +p', — Bi,a+ H(ci £, Fply)} <0 for (p',p/,) € (—o0,p* ] x (—o0,pk]. .
Indeed, since p is locally Lipschitz, p’ exists a.e. and p(s) f p'(t) dt, the definition

of p*% implies that, for each 6 > 0, the set {s € (c1,¢1 + 5) ,0'( ) < =i + 5} has positive
measure. This implies that there is a sequence s ~\ ¢ such that p is differentiable at s; and
also that limsup p/(sy) < —p% . Hence, letting k — oo in p(sy) + H sk, ¢/ (s1)) < 0, we obtain

k—o00

a+ H(cp+,liminf p/(s;)) < 0.
k—oo —
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Noting that H is convex in p variable, lign inf p/(s1,) < —p < —p4, and using the first part of
—0o0 T

(C14l), we deduce

a+ H(ci+,—p') <0 forall p, € [py,ph]. (C.20)

By a completely similar argument, we also have
a+ H(cp—,p) <0 forallp’ € [p_,p*]. (C.21)

Combining (C.20) and (C2) into (CI6]), we obtain (C.19).

Step #8. We claim that the critical slopes of p, defined as follows, are well-defined but possibly
equals —oo.

g—=inf{geR: Ir>0, p(cr) +q(s —c1) <p(s) for —r <s—c; <0} (C.22)
gy =inf{geR: Ir>0, plcr) —q(s —c1) <p(s) for 0 <s—cy <7} (C.23)

Indeed,
p(s) —p(s) < p(c1) —p(cr) forall s,  with equality holds at s = ¢, (C.24)

i.e. the locally Lipschitz function p(s) — p(c1) + p(c1) touches p(s) from below at s = ¢;. This
shows that ¢_ and ¢ are well-defined in RU {—o0}.
Next, we observe that

¢-<p- and g <p3, (C.25)
which is due to (C.17), (C.24]), and
qulimsupM and q+:—liminfM_
S—C1— s—C1 s—c1+ s—cC

Step #9. Suppose g+ > —oo, then we have

b+ H(ci—,q-)>0, b+ H(ci+,—¢q+)>0 and (C.26a)
max{q_ + ¢, — B1,b+ H(c1£,F¢})} >0, for (¢_,¢,) € [g—,0) x [g+,0), (C.26b)

where the former holds by virtue of the critical slope lemma (Lemma [£7 and Remark [4.8)),
and the latter holds by considering the CJ, test function ¢ (s) = p(c1) + ¢ min{s — ¢1,0} —
¢’ max{s — c,0}.

If - = —o0 (resp. g4 = —o0) then take ¢ (resp. ¢y) large and negative enough (but

finite) to satisfy both (C.25)) and (C.26al). Then, for any (¢, ¢".) € [g—,0) X [g4,00), the test
function 9 (s) = p(c1) + ¢ min{s — ¢1, 0} — ¢/, max{s — ¢, 0} touches p at s = ¢;. Then it
follows that (C.260) holds.

Step #10.

In view of (C19), (C:25)), and (C.26]), we may apply the LemmalC.8 with (H;(p) = H(c1—,p)
and Hy(p) = H(ci+,—p), p € R, p1 = p*, p2 = p}, ¢t = q— and g2 = ¢4) to conclude that
a < b. This is a contradiction to the assumption that a > b. The proof is now complete. U

The following key lemma is due to Lions and Souganidis [44].

Lemma C.8. Assume that Hy,...,Hy,, € C(R), p1,..c;Dmsq1, -y Gm € R, and a,b € R are such
that, for alli=1,...,m,

1. pi > qi, a+ Hi(pi) <0 < b+ Hi(g:) for all i,

2. min (3>, p} — B, min;(a + H;(p}))) < 0 for each p}; € (—o0, pi,
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3.

max (>, ¢; — B, max;(b+ H;(q}))) <0 for each ¢; € [g;,00).

Then a < b.

Remark C.9. By replacing p; by p1 + B and ¢ by ¢1 + B, and redefining

Hy(-) tobe Hi(-+B),

one can reduce Lemma [C.8 to the case B = 0, which is exactly [44, Lemma 3.1].

D

Definition of viscosity solution in sense of Ishii

Definition D.1. Let p: (0,00) — R.

(a)

()

We say that p is a viscosity subsolution of
min{p, p+ H(s,p')} =0 for s >0 (D.1)

in the sense of Ishii provided (i) p is upper semicontinuous, (ii) if j—1 has a local maximum
point at s > 0 such that ¢ € C' and p(sg) > 0, then

p(s0) + Hu(s,9/(s0)) <0,

where ﬁ*(s,p) is the lower envelope of I:[(s,p), ie.

—Sp+p2 + g(—0) for s < ¢q,
H.(s,p) = § H(ci—,p) A H(er+,p) = —c1p + p* + min{g(—00), g(+00)}  for s =i,
—sp + p? + g(+00) for s > ¢;.

We say that p is a viscosity supersolution of (D.J) in the sense of Ishii provided (i) p is
lower semicontinuous, (ii) p > 0 for all s > 0, (iii) if p — ¢ has a local minimum point at
sp > 0 such that ¢ € C', then

p(s0) + H* (s, (s0)) 2 0,

where H*(s,p) is the upper envelope of H (s, p), i.e.

—sp+ p? + g(—o0) for s < ¢y,
*(5,0) = { A{er.p) v H{ert.p) = —erp + p* + max{g(—oo), g(+00)} for s = c1,
—sp + p? + g(+00) for s > ¢;.

We say that p is a viscosity solution of (D.J)) in the sense of Ishii if it is both subsolution
and supersolution of (220 in the sense of Ishii.
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