Cataphora detection and resolution: Advancements and Challenges in Natural Language Processing - Archive ouverte HAL
Rapport (Rapport Technique) Année : 2024

Cataphora detection and resolution: Advancements and Challenges in Natural Language Processing

Davide Buscaldi
  • Fonction : Directeur scientifique
  • PersonId : 1430844
Leo Liberti

Résumé

In the field of natural language processing (NLP), accurately understanding and processing complex linguistic structures remains a major challenge. This paper addresses the less-explored phenomenon of cataphora-where a pronoun or noun phrase points forward to a yet-tobe-mentioned entity in the discourse. While anaphora resolution has been extensively studied, cataphora detection and resolution have not received the same level of attention and remain underexplored. This paper seeks to bridge this gap by evaluating state-of-the-art techniques and identifying the obstacles that hinder effective cataphora resolution. We investigate the role of syntactic and semantic ambiguities, contextual influences, and the integration of world knowledge. Additionally, the potential of deep learning, neural network and hybrid models to advance cataphora resolution is explored.
Fichier principal
Vignette du fichier
Cataphora_detection_and_resolution_Draft_Reforged.pdf (396.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04747642 , version 1 (22-10-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-04747642 , version 1

Citer

Nabil Moncef Boukhatem, Davide Buscaldi, Leo Liberti. Cataphora detection and resolution: Advancements and Challenges in Natural Language Processing. LIX, École Polytechnique. 2024. ⟨hal-04747642⟩
0 Consultations
0 Téléchargements

Partager

More