Strong asymptotic freeness of Haar unitaries in quasi-exponential dimensional representations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Strong asymptotic freeness of Haar unitaries in quasi-exponential dimensional representations

Résumé

We prove almost sure strong asymptotic freeness of i.i.d. random unitaries with the following law: sample a Haar unitary matrix of dimension $n$ and then send this unitary into an irreducible representation of $U(n)$. The strong convergence holds as long as the irreducible representation arises from a pair of partitions of total size at most $n^{\frac{1}{24}-\varepsilon}$ and is uniform in this regime. Previously this was known for partitions of total size up to $\asymp\log n/\log\log n$ by a result of Bordenave and Collins.
Fichier principal
Vignette du fichier
2409.03626v1.pdf (690.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04726591 , version 1 (08-10-2024)

Identifiants

Citer

Michael Magee, Mikael de la Salle. Strong asymptotic freeness of Haar unitaries in quasi-exponential dimensional representations. 2024. ⟨hal-04726591⟩
19 Consultations
7 Téléchargements

Altmetric

Partager

More