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Strong asymptotic freeness of Haar unitaries in
quasi-exponential dimensional representations

Michael Magee and Mikael de la Salle

Abstract

We prove almost sure strong asymptotic freeness of i.i.d. random
unitaries with the following law: sample a Haar unitary matrix of di-
mension n and then send this unitary into an irreducible representa-
tion of U(n). The strong convergence holds as long as the irreducible
representation arises from a pair of partitions of total size at most
n

1
24

−ε and is uniform in this regime.
Previously this was known for partitions of total size up to ≍

log n/ log logn by a result of Bordenave and Collins.

Contents

1 Introduction 2

2 Preliminaries 6
2.1 Representation theory of U(n) . . . . . . . . . . . . . . . . . . 6
2.2 Representation theory of SU(n) . . . . . . . . . . . . . . . . . 6

3 Matrix integral results 8

4 Markov brothers inequality 9

5 A criterion for strong convergence 11
5.1 Bump functions with small Fourier coefficient . . . . . . . . . 13
5.2 Sobolev algebras in the full group C∗algebra . . . . . . . . . . 14
5.3 Unique trace and exactness . . . . . . . . . . . . . . . . . . . 17
5.4 Proof of Proposition 5.2 and Proposition 5.6 . . . . . . . . . . 18

1

ar
X

iv
:2

40
9.

03
62

6v
1 

 [
m

at
h.

PR
] 

 5
 S

ep
 2

02
4



6 Random walks on free groups 19
6.1 Proper powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Random walks and tempered functions . . . . . . . . . . . . . 22

7 Proof of Theorem 1.1 from Theorem 3.1 24
7.1 From convergence in probability to almost sure convergence . 30
7.2 Variants and operator coefficients . . . . . . . . . . . . . . . . 31

8 Proof of Corollary 1.2 33

9 Transverse maps 34

10 Proof of Theorem 3.1 Part 1 36

11 Proof of Theorem 3.1 Part 2 and 3 38
11.1 Proof of Proposition 11.2 . . . . . . . . . . . . . . . . . . . . . 40
11.2 Proof of Theorem 3.1 Part 3 . . . . . . . . . . . . . . . . . . . 42

12 Appendix: Extension of the method of Random Unitary
Representations of Surface Groups II 43

1 Introduction

Let U(n) denote the group of complex n × n unitary matrices. For each
k, ℓ ∈ N there is a unitary representation

π0
k,ℓ : U(n) → U

(
(Cn)⊗k ⊗

(
(Cn)∨

)⊗ℓ
)
.

This representation has a non-zero invariant vector for U(n) if and only if
k = ℓ, and in that case the space of invariant vectors is understood1. Let πk,ℓ

be the restriction of π0
k,ℓ to the orthocomplement to the invariant vectors.

Fix r ∈ [n]. The main theorem of this paper is the following.

1The space of invariant vectors is the image of C[Sk] in End
(
(Cn)⊗k

) ∼= (Cn)
⊗k ⊗(

(Cn)
∨)⊗k

. If n ≥ k this is isomorphic to C[Sk] and we will always be in this regime
in this paper. If n < k the dimension of the space is still understood as the number of
permutations in Sk with longest increasing subsequence ≤ n [BR01, §8].
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Theorem 1.1. Let U
(n)
1 , . . . , U

(n)
r denote i.i.d. Haar distributed elements

of U(n). For any A < 1
24

the following holds almost surely. For any non-
commutative ∗-polynomial2 p

sup
k+ℓ≤nA

∣∣∣∥∥∥πk,ℓ

(
p
(
U

(n)
1 , . . . , U (n)

r

))∥∥∥− ∥p(x1, . . . , xr)∥
∣∣∣ = o(1)

where x1, . . . , xr are generators of a free group Fr and the norm on the right
is the one in C∗

red (Fr).

The analog of Theorem 1.1 with U(n) replaced by Sn will appear in
forthcoming work of E. Cassidy.

Theorem 1.1 gives a clean statement about strong convergence of i.i.d.
Haar elements of SU(n) in representations of quasi-exponential dimension in
the following form:

Corollary 1.2. Let U
(n)
1 , . . . , U

(n)
r denote i.i.d. Haar distributed elements

of SU(n). For any A < 1
24

the following holds almost surely. For any non-
commutative ∗-polynomial p

sup
π∈ŜU(n)\triv

dim(π)≤exp(nA)

∣∣∣∥∥∥π (p(U (n)
1 , . . . , U (n)

r

))∥∥∥− ∥p(x1, . . . , xr)∥
∣∣∣ = o(1).

Our proof of Theorem 1.1 relies on two things:

• a recent breakthrough of Chen, Garza-Vargas, Tropp, and van Handel
[CGVTvH24] who found a new (and remarkable) approach to strong
convergence based on ‘differentiation with respect to n−1’. We add
to this method in various ways in the sequel. One of the conceptual
differences is a new criterion that we find for temperedness of a unitary
representation of a free group (or more generally a group with the
rapid decay property), and therefore for strong convergence towards
the regular representation, see §5. This allows us to bypass the use of
Pisier’s linearization argument, which was essential in many proofs of
strong convergence so far (a notable exception is the work of Paraud
and Collins-Guionnet-Parraud [CGP22, Par23a, Par23b, Par22]), and
replace it by considerations on random walks on free groups, see §6.

2That is, a polynomial in r non-commuting indeterminates X1, . . . , Xr and their formal
adjoints X∗

1 , . . . , X
∗
r .
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• The method above is given as input rapid decay estimates for expected
values of stable characters of word maps on U(n). The key feature
of these estimates is that, up to a point, they actually improve with
the complexity of the representations that we consider. This feature is
intimately related to the concept of stable commutator length in free
groups as uncovered in [MP19].

Theorem 1.1 was proved when k = 1, ℓ = 0 by Collins and Male in [CM14].
This resolved a problem left open in Haagerup and Thorbjørnsen’s break-
through work [HT05]. Bordenave and Collins [BC22] prove Theorem 1.1 in
the regime

k + ℓ ≤ c
log(n)

log log(n)

for some positive c.
Theorem 1.1 can be written in the following two alternate ways.

• Let V
(n)
i

def
=
⊕

k+ℓ≤nA πk,ℓ(U
(n)
i ). The random matrices V

(n)
i are (almost

surely) strongly asymptotically free.

• The random unitary representations of Fr described by xi 7→ V
(n)
i

almost surely strongly converge to the regular representation of Fr.

The following simple case of Theorem 1.1 is both new and important.

Corollary 1.3. For any A < 1
24
, almost surely, for all k, ℓ ∈ N ∪ {0} such

that k + ℓ ≤ nA∥∥∥∥∥
r∑

i=1

πk,ℓ

(
U

(n)
i

)
+ πk,ℓ

(
U

(n)
i

)−1

∥∥∥∥∥ = 2
√
2r − 1 + on→∞(1).

We highlight this corollary in connection with the following well known
question of Gamburd, Jakobson, and Sarnak [GJS99, pg. 57] — do generic
in (Haar) measure (u1, . . . , ur) ∈ SU(2)r have some ϵ > 0 such that for all
k > 0 ∥∥∥∥∥

r∑
i=1

πk (ui) + πk (ui)
−1

∥∥∥∥∥ ≤ 2r − ϵ?

It was proved by Bourgain and Gamburd in [BG08] for ui with algebraic
entries that generate a dense subgroup of SU(2). This was extended to
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SU(n) for general n ≥ 3 by Bourgain and Gamburd [BG12] — in this case
the spectral gap is uniform over all representations πk,ℓ with k + ℓ > 0. The
analogous result for all compact simple Lie groups was obtained by Benoist
and de Saxce [BdS16].

Of course, Corollary 1.3 does not advance these questions for any fixed
n as it deals only with infinite sequences of random matrices of dimension
n → ∞ but it does make significant progress on a relaxation of the problem.
The motif of Theorem 1.1 is that we have only a small amount of randomness
of our matrices compared to their dimensions.

The method of proof also allows us to obtain estimates for large matrix
coefficients. For example, we have the following result, which relies on the
ideas from [CGVTvH24] and the results of [Par23a].

Theorem 1.4. Let kn ≤ exp(n
1
2 (log n)−4). For every q and every sequence

Pn of non-commutative ∗-polynomial of degree ≤ q and with coefficients in
Mkn(C), almost surely

lim
n

∥Pn(U
(n)
1 , . . . , U

(n)
r )∥

∥Pn(x1, . . . , xr)∥
= 1.

Bordenave and Collins [BC23, Theorem 1.1] proved the same theorem

for q = 1 and kn ≤ exp(n
1

32r+160 ) instead of kn = exp(n
1
2
+o(1)); this result

gives yet another proof of the result from [BC24], which has important con-
sequences in the theory of von Neumann algebras [Hay22, HJE24]. It is an
intriguing question whether the exponent 1

2
is optimal or not. As observed

by Pisier [Pis14], the optimal exponent is necessarily at most 2.
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2 Preliminaries

2.1 Representation theory of U(n)

For partitions λ = (λ1, . . . , λp) ⊢ k, µ = (µ1, . . . , µq) ⊢ ℓ, for n ≥ p + q let
sλ,µ : U(n) → C denote the character of the representation

(πλ,µ, V
λ,µ)

with dominant weight

(λ1, λ2, . . . , λp, 0, 0, . . . , 0︸ ︷︷ ︸,−µq,−µq−1, . . . ,−µ1).

n− (p+ q)

Because this character interpolates for all n ≥ p+ q, we refer to it as a stable
character. In the paper we write |λ| = k for the size of λ.

2.2 Representation theory of SU(n)

The irreducible unitary representations of SU(n) are closely related to those
of U(n): for every partitions λ, µ as before with n ≥ p+ q, the restriction of
πλ,µ to SU(n) is an irreducible representation; all irreducible representations
of SU(n) appear in this way; and the restrictions of πλ,µ to SU(n) and πλ′,µ′

to SU(n) coincide if and only if the dominant weights differ by a multiple of
(1, . . . , 1). In other words, the irreducible unitary representations of SU(n)
are indexed by the sets of integral dominant weights of the root system
An−1, which can be parametrized by the set of n-tuples of integers Λ =
(Λ1, . . . ,Λn) ∈ Zn with Λ1 ≥ · · · ≥ Λn, modulo the subgroup Z(1, . . . , 1).

Write ∥Λ∥1 for the norm on Rn/R(1, . . . , 1)

∥Λ∥1 = inf
t∈R

∑
i

|Λi − t|.

It is the natural norm in the dual of the subspace of (Rn, ∥ · ∥∞) for
which the coordinates sum to 0. In what follows, whenever Λ belongs to the
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quotient Rn/
(
R(1, . . . , 1)

)
, we will chose a representative (Λ1, . . . ,Λn) ∈ Rn

such that
∑

i |Λi| = ∥Λ∥1. If Λ belongs to the image of Zn, we can and will
assume that (Λ1, . . . ,Λn) has integer coordinates.

By Weyl’s dimension formula, if π is an irreducible representation of
SU(n) with highest weight Λ,

dim(π) =
∏

1≤i<j≤n

j − i+ Λi − Λj

j − i
. (2.1)

Lower bounds for dim(π) in terms of Λ have been obtained in [GLM12], but
we will need a bound that is more precise3 in the regime ∥Λ∥1 = o(n).

Proposition 2.1. There is a constant c > 0 such that for every integer n ≥ 2
and every irreducible representation π of SU(n),

exp(cmin(∥Λ∥1, n)) ≤ dim(π) ≤ exp(∥Λ∥1 log n),

where Λ is the highest weight of π.

Proof. The upper bound is because π appears as a sub-representation of
the representation of SU(n) on (Cn)k ⊗ (Cn)⊗ℓ), where k is the sum of the
positive Λi’s and −ℓ is the sum of the negative Λi’s. And (Cn)k ⊗ (Cn)⊗ℓ)
has dimension (k + ℓ)n = exp(∥Λ∥1 log n).

For the lower bound, by Weyl’s dimension formula (2.1) we have to prove

cmin(∥Λ∥1, n) ≤
∑
i<j

log

(
1 +

Λi − Λj

j − i

)
. (2.2)

We will prove this inequality for every Λ ∈ Rn with Λ1 ≥ · · · ≥ Λn. In
that case, since the right-hand side increases if we replace Λ by tΛ for t > 1,
it is enough to consider the case when ∥Λ∥1 ≤ n. Finally, replacing Λ by
(−Λn, . . . ,−Λ1), we can assume that the sum of the positive entries of Λ is
at least ∥Λ∥1/2.

Let n1 = ⌊n
2
⌋ and n2 = ⌊3n

4
⌋. Expressing that the ℓ1 norm of (Λ1, . . . ,Λn)

is at most the ℓ1 norm of (Λ1 − t, . . . ,Λn − t) for every t ̸= 0, we see that Λ
has at most n

2
positive entries, and at most n

2
negative entries. In particular,

we have
n1∑
i=1

Λi ≥
1

2
∥Λ∥1, (2.3)

3For example if Λ = (k, 0, . . . , 0), our bound gives dim(π) ≥ exp(ck), whereas [GLM12]
gives dim(π) ≥ (k + 1)log(n−1).
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and Λj ≤ 0 for every n2 < j ≤ n. If i ≤ n1 and j > n2, we have

Λi − Λj

j − i
≥ Λi

n
.

We deduce the obvious bound∑
i<j

log
(
1 +

Λi − Λj

j − i

)
≥

∑
i≤n1,n2<j

log
(
1 +

Λi

n

)
.

By the bound log(1 + t) ≥ t log(2) for every 0 ≤ t ≤ 1 and the inequality
0 ≤ Λi ≤ ∥Λ∥1 = n, this is at most

log(2)
∑

1≤i≤n1

∑
n2<j≤n

Λi

n
≥ log(2)

4

n1∑
i=1

Λi.

By (2.3), we obtain (2.2) with c = log(2)
8

.

Corollary 2.2. For every 0 < A ≤ 1 and every n ≥ N , for every irreducible
representation π of SU(n):

dim(π) < exp(cnA)

implies

π ⊂
⊕

k+ℓ≤nA

πk,ℓ,

which in turn implies
dim(π) ≤ exp(nA log n).

3 Matrix integral results

Let Fr denote the free group on a fixed generating set X
def
= {x1, . . . , xr}.

For w ∈ Fr let
w : U(n)r → U(n)

denote the induced word map defined by substituting in an r-tuple of uni-
taries for the elements of X appearing in a reduced expression of w. For
example if w = x1x2x

−1
1 x−1

2 then w(u1, u2, . . . , ur) = u1u2u
−1
1 u−1

2 . Let |w|
denote the word length of w w.r.t. X.
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Let

En[sλ,µ(w)]
def
=

∫
U(n)r

sλ,µ(w(u1, u2, . . . , ur))du1 · · · dur. (3.1)

For L ∈ N let

gL(x)
def
=

L∏
c=1

(1− c2x2)⌊
L
c
⌋. (3.2)

The input into our analysis is the following result about expected values
of stable characters of word maps, building on the works [MP19, Mag22,
Mag21].

Theorem 3.1. Let w ∈ Fr be not the identity with |w| ≤ q.

1. There is a polynomial Pλ,µ,w ∈ Q[x] such that for
n ≥ (k + ℓ)|w|,

En[sλ,µ(w)] =
Pλ,µ,w

(
1
n

)
g(k+ℓ)q

(
1
n

) ,
with

deg (Pλ,µ,w) ≤ 3(k + ℓ)q (1 + log ((k + ℓ)q)) .

2. If w is not a proper power in Fr, then En[sλ,µ(w)] = O(n− 1
3
(k+ℓ)).

3. If w is not a proper power in Fr and µ = ∅, then En[sλ,∅(w)] =
O(n−(k+ℓ)).

It is probable that the conclusion of Part 2 also holds with O(n−(k+ℓ)),
but we are unsure how to prove this at the moment, and it just changes
constants in our theorems.

Part 3 of Theorem 3.1 follows from combining a result of [MP19] with
one of Duncan and Howie [DH91] as explained in §11.2.

Theorem 3.1 will be proved in the later part of the paper (§9-11).
In §4-7 we prove Theorem 1.1 from Theorem 3.1.

4 Markov brothers inequality

We use the following fundamental inequality by Andrey and Vladimir Markov,
see [CGVTvH24, Section 4.1] for references. If P is a degree ≤ D polynomial
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in one variable, then for every integer k,

sup
[−1,1]

|P (k)| ≤ D2(D2 − 1) . . . (D2 − (k − 1)2)

(2k − 1)!!
sup
[−1,1]

|P | (4.1)

where (2k − 1)!! = 1 · 3 . . . (2k − 1). By an affine change of variable, for a
general interval (4.2) becomes:

sup
[a,b]

|P (k)| ≤ 2k

(b− a)k
D2(D2 − 1) . . . (D2 − (k − 1)2)

(2k − 1)!!
sup
[a,b]

|P |. (4.2)

We deduce the following, which is essentially [CGVTvH24, Lemma 4.2].

Lemma 4.1. For every polynomial P of degree ≤ D and every integer N ≥
D2

sup
[0, 1

N
]

|P | ≤ 1

1− D2

N+1

sup
n≥N

∣∣∣∣P ( 1

n

)∣∣∣∣ .
Proof. Every element of the interval [0, 1

N
] is at distance at most 1

2N(N+1)

from { 1
n
| n ≥ N}. Therefore, by the fundamental inequality of calculus, we

have

sup
[0, 1

N
]

|P | ≤ sup
n≥N

∣∣∣∣P ( 1

n

)∣∣∣∣+ 1

2N(N + 1)
sup
[0, 1

N
]

|P ′|.

By the Markov brothers inequality (4.2) with k = 1, this is less than

sup
n≥N

∣∣∣∣P ( 1

n

)∣∣∣∣+ 1

2N(N + 1)
· 2ND2 sup

[0, 1
N
]

|P |.

The lemma follows.

As a consequence,

Lemma 4.2. For every polynomial P of degree ≤ D and every integer k ≤ D,

sup
[0, 1

2D2 ]

|P (k)| ≤ 22k+1D4k

(2k − 1)!!
sup
n≥D2

|P
(
1

n

)
|.

Proof. By (4.2) with a = 0 and b = 1
2D2 ,

sup
[0, 1

2D2 ]

|P k| ≤ (4D2)k
D2(D2 − 1) . . . (D2 − (k − 1)2)

(2k − 1)!!
sup

[0, 1
2D2 ]

|P |.

The lemma follows from the bound D2(D2−1) . . . (D2− (k−1)2) ≤ D2k and
Lemma 4.1.
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5 A criterion for strong convergence

In this section, Γ will be a finitely generated group with a fixed finite gener-
ating set and corresponding word-length. We denote by C≤q[Γ] the subspace
of the elements of the group algebra of Γ supported in the ball of radius q.

Definition 5.1. A function u : Γ → C is tempered if

lim sup
n→∞

|u((x∗x)n)|
1
2n ≤ ∥λ(x)∥

for every x ∈ C[Γ]. Here λ is the left-regular representation of Γ on ℓ2(Γ)
and the norm is the operator norm.

A function u : Γ → C is completely tempered if

lim sup
n→∞

|Tr⊗ u((x∗x)n)|
1
n ≤ ∥(id⊗ λ)(x)∥

for every integer k ≥ 1 and every x ∈ Mk(C) ⊗ C[Γ], where Tr is the trace
on Mk(C).

For example, if u(γ) = ⟨π(γ)ξ, ξ⟩ is a matrix coefficient of a unitary rep-
resentation of Γ, then u is tempered if and only if it is completely tempered,
if and only if the cyclic representation generated by ξ is weakly-contained in
the left-regular representation. So Definition 5.1 can be seen as an adaptation
to functions that are not related to representations of the classical notion of
tempered representation.

This section is devoted to the proof of the following criterion for strong
convergence in probability of a sequence of random representations.

Proposition 5.2. Let πn be a sequence of random unitary representations of
finite nonrandom dimension, un : Γ → C be functions and εn > 0. Assume
that

• un is tempered and there is a polynomial Pn such that for every q and
every x ∈ C≤q[Γ], |un(x)| ≤ Pn(q)∥x∥C∗(Γ),

•
∣∣ETr(πn(x))− un(x)

∣∣ ≤ εn exp(
q

log(2+q)2
)∥x∥C∗(Γ) for every q and every

x ∈ C≤q[Γ],

• limn εn = 0.

11



Then for every y ∈ C[Γ], and every δ > 0,

lim
n

P(∥πn(y)∥ ≥ ∥λ(y)∥+ δ) = 0.

If C∗
λ(Γ) has a unique trace, then the conclusion becomes that

lim
n

P(
∣∣∥πn(y)∥ − ∥λ(y)∥

∣∣ ≥ δ) = 0.

Remark 5.3. The choice of w(q) = exp
(

q
log(2+q)2

)
is an arbitrary choice that

is convenient for our applications, the crucial property that is used is that∑
q

1
1+q2

logw(q) < ∞, reminiscent of the Beurling-Malliavin Theorem. It

could be replaced by exp(q2uq) for an arbitrary decreasing and summable
sequence (uq)g≥0.

Remark 5.4. Proposition 5.2 is a variant with high derivatives of the criterion
for strong convergence that appeared implicitely, for polynomial w, in [HT05]
with un(γ) = 1γ=1, and [Sch05] for general un.

Remark 5.5. The condition on the existence of Pn is probably not needed,
but will be trivially satisfied in the applications. It allows to use standard
results on distributions rather than ad-hoc proofs.

We have the following variant for matrix coefficients.

Proposition 5.6. Let πn, dn, un, εn be as in Proposition 5.2. Assume more-
over that un is completely tempered. Let kn be a sequence of integers such
that limn εnkn = 0.

Then for every integer q, δ > 0 and every sequence yn ∈ C≤q[Γ]⊗Mkn(C)
with ∥yn∥C∗(Γ)⊗Mkn

≤ 1,

lim
n

P(∥πn(yn)∥ ≥ ∥λ(yn)∥+ δ) = 0.

If C∗
λ(Γ) has a unique trace and is exact, then the conclusion becomes that

lim
n

P(
∣∣∥πn(yn)∥ − ∥λ(yn)∥

∣∣ ≥ δ) = 0.

We first collect a few ingredients that we need for the proof.
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5.1 Bump functions with small Fourier coefficient

A nonzero compactly supported continuous function cannot have a Fourier

transform that decays too fast at infinity, as it has to satisfy
∫ log |f̂(t)|

1+t2
dt >

−∞. In other words, the condition
∫∞
0

φ(t)
1+t2

dt < ∞ on a function φ : R+ →
R+ is a necessary condition for the existence of a nonzero compactly sup-
ported continuous function f such that |f̂(t)| ≤ exp(−φ(|t|) for every t.
The Beurling-Malliavin theorem asserts that this is often also a sufficient
condition, see for example [MNH06]. The following elementary fact is an
illustration of the same phenomenon. The small nuance compared to the
Beurling-Malliavin theorem is that we need that f be nonnegative. The
same proof works for φ(t) = t

(log(2+|t|))1+ε replaced by any continuous func-

tion [0,∞) → [0,∞) such that φ(t)
t2

is non-increasing and integrable on [1,∞).

Lemma 5.7. For every ε > 0, there is a real number M > 0 and an even
function C∞ function f : R → R that is strictly positive on (−1, 1), zero
outside of (−1, 1), and such that

|f̂(t)| ≤ exp

(
−M

|t|
(log(2 + |t|))1+ε

)
.

Proof. The proof is a standard construction of a smooth bump function as
infinite convolution product of indicator functions [Kat04, Lemma V.2.7].
Define aj = c

j(log 2+j)1+ε , where c > 0 is chosen such that
∑

j≥1 aj = 1.

Let (Xj)j≥1 be a sequence of independent random variables, all uniform in
[−1, 1]. Let µ be the law of

∑
j ajXj. It is a measure with full support in

[−
∑

j aj,
∑

j aj] = [−1, 1]. Then

µ̂(t) = E exp(−it
∑

ajXj) =
∏
j≥1

sin(taj)

taj
.

The inequality

|µ̂(t)| ≤
∏

j≤ t
(log 2+t)1+ε

1

|t|aj
≤ exp

(
−M

|t|
(log 2 + t)1+ε

)

is a computation. It implies that µ is absolutely continuous with respect to
the Lebesgue measure and that its Radon-Nikodym derivative, which is our
f , is C∞. f does not vanish on the interval (−1, 1) because f is a log-concave
function as a limit of convolutions of log-concave functions.
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Remark 5.8. In this lemma, we have tried to optimize the rate of decay of
the Fourier transform of f , because this is what allows to take A the largest
in Theorem 1.1. But this is reflected by the fact that f(t) is extremely
small when t < 1 is close to 1, something like exp(− exp(O( 1

1−t
))), which

gives rather bad quantitative estimates for the speed of the convergence. For
smaller values of K ≪ nA, it would better to use functions with slower decay
of f̂ .

We can periodize the above function:

Lemma 5.9. For every 0 < α < π, there is a nonnegative real-valued even
function φα ∈ C∞(R/2πZ) that is strictly positive on (−α, α) + 2πZ, zero
outside of (−α, α) + 2πZ with support equal to [α, α] and such that

|φ̂α(k)| ≤ exp

(
−M

|k|α
log(2 + |k|α|)1+ε

)
for every k ∈ Z.

Proof. Set φα(t+ 2πZ) = f(t/α) for every t ∈ [−π, π].

5.2 Sobolev algebras in the full group C∗algebra

Let (w(q))q∈N be a non-decreasing sequence of positive real numbers satisfy-
ing w(q1 + q2) ≤ w(q1)w(q2). Set

Sw(Γ) =
{
x ∈ C∗(Γ) | x =

∑
q

xq, xq ∈ C≤q[Γ],
∑
q

w(q)∥xq∥C∗(Γ) < ∞
}
.

It is a Banach algebra for the norm

∥x∥w := inf
{∑

q

w(q)∥xq∥C∗(Γ) | x =
∑
q

xq, xq ∈ C≤q[Γ]
}
.

For w(q) = (1 + q)i we denote the corresponding space Si(Γ).
We have the following elementary fact:

Lemma 5.10. A function u : Γ → C extends by linearity to a linear map
Sw(Γ) → C of norm ≤ N if and only if for every q and every x ∈ C≤q[Γ],

|u(x) :=
∑
γ

x(γ)u(γ)| ≤ Nw(q)∥x∥C∗(Γ).

14



The next lemma is useful and suggests the terminology of Sobolev alge-
bras for the algebras Si(Γ).

Lemma 5.11. Let y = y∗ ∈ C≤q[Γ] and f : [−∥y∥C∗(Γ), ∥y∥C∗(Γ)] → R be
a continuous function. Let w : N → R as above. Assume that the function
φ(θ) = f(∥y∥C∗(Γ) cos θ) satisfies

∑
n∈Zw(q|n|)|φ̂(n)| < ∞. Then f(y) ∈

Sw(Γ) and

∥f(y)∥w ≤
∑
n∈Z

w(q|n|)|φ̂(n)|.

In particular, if f is Ci+1, then f(y) ∈ Si(Γ) with norm ≤ Ci(1 +
∥y∥C∗(Γ))

i+1(1 + q)i∥f∥Ci+1.

Proof. In the proof, we write ∥y∥ for ∥y∥C∗(Γ). The assumption implies that
the Fourier coefficients of φ are absolutely summable, which gives rise to a
norm-converging expansion

f(y) =
∑
n∈Z

φ̂(n)Tn(y/∥y∥)

where Tn is the n-th Chebyshev polynomial Tn(cos θ) = cos(nθ). So Tn(y/∥y∥)
belongs to C≤q|n|[Γ], has norm ≤ 1 in C∗(Γ) and∑

n

w(q|n|)|φ̂(n)|∥Tn(y/∥y∥)∥C∗(Γ) ≤
∑
n

w(q|n|)|φ̂(n)|.

The proves the first part of the lemma. For the second part, if f is Ci+1,
then so is φ, and by the Cauchy-Schwarz inequality∑

n

(1 + q|n|)i|φ̂(n)| ≤ (
∑
n

(1 + q|n|)−2)
1
2 (
∑
n

(1 + q|n|)2i+2|φ̂(n)|2)
1
2 ,

which is finite.

Proposition 5.12. Let u : Γ → C. Assume that u extends to a continuous
linear map u : Si(Γ) → C. Then u is tempered if and only if there is n such
that for every selfadjoint x ∈ Si(Γ) ∩ kerλ, u(xn) = 0. In that case, this
holds for all n ≥ i+ 2.

Furthermore, u is completely tempered if and only if there is n such that
for every k and every selfadjoint x ∈ Mk(C)⊗(Si(Γ)∩kerλ), (Tr⊗u)(xn) = 0.
In that case, this holds for all n ≥ i+ 2.

15



Proof. We prove the equivalence for temperedness, the proof for complete
temperedness is identical.

We start with a preliminary observation. Lemma 5.11 tells us that for
every self-adjoint y ∈ C≤q(Γ), the function f ∈ C∞(R) 7→ u(f(y)) is a
compactly supported distribution of order ≤ i+ 1, and the largest symmet-
ric interval containing its support is [− lim sup |u(yk)| 1k , lim sup |u(yk)| 1k ], see
[CGVTvH24, Lemma 4.9]).

Given this observation, the if direction is direct. Let ε > 0, and pick f be
a C∞ function equal to 0 on the interval [−∥λ(y)∥2, ∥λ(y)∥2] and to 1 outside
of the ε-neighbourhood of it. For k large enough (so that t 7→ |t|k/n is Ci+2),
x = (y∗y)k/nf(y∗y) belongs to Si(Γ) ∩ kerλ. As a consequence, u(xn) = 0
and therefore

u((y∗y)k) = u((y∗y)k(1− f(y∗y)n)).

But the Ci+1 norm of t 7→ tk(1 − f(t)n) is ≤ C(i, ε, y)(∥λ(y)∥2 + ε)k, which
implies that

lim sup
k

|u((y∗y)k)|1/2k ≤
√

∥λ(y)∥2 + ε.

This proves that u is tempered.
For the converse, consider a self-adjoint x ∈ Si(Γ) ∩ kerλ. Decompose

x =
∑

q xq as in the definition of Si(Γ). We can moreover assume that each
xq is self-adjoint. Let yq =

∑
s≤q xq ∈ C≤q[Γ]. Then we have

∥λ(yq)∥ = ∥λ(yq − x)∥ ≤
∑
q>n

∥xs∥ = o((1 + q)−1),

because
∑

q(1 + q)i∥xq∥ < ∞. Let φ be a C∞ function equal to 1 on [−1, 1]

and 0 outside of [−2, 2], and let φq(t) = φ( t
∥λ(yq)∥). We know from the

preliminary observation that Λq(f) = u(f(yq)) is a distribution with support
inside [−∥λ(yq), ∥λ(yq)∥] and such that |Λq(f)| ≤ C(1+q)i∥f∥Ci+1(R) for some
C independent from q. Therefore, for every n we have

u(ynq ) = u(ynqφq(yq)) = (1 + q)iOq→∞(∥λ(yq)∥n−i−1).

If n ≥ i− 2 this goes to 0. Therefore, we have

u(xn) = u(lim
q

ynq ) = lim
q

u(ynq ) = 0.

The proposition is proved.
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5.3 Unique trace and exactness

We use the following easy consequence of the operator-space reformulation
of exactness, in the line of [BC23, Theorem 7.3].

Lemma 5.13. Let A be an exact C∗-algebra. For every finite family a1, . . . , an
in A and every ε > 0, there is an integer d such that for every k and every
b1, . . . , bn ∈ Mk(C), there are norm ≤ 1 matrices u, v ∈ Md,k(C) such that

(1− ε)∥
∑
i

ai ⊗ bi∥ ≤ ∥
∑
i

ai ⊗ ubiv
∗∥.

Proof. If ai belong to MN(C), the lemma is easy with d = N , because the
norm of X =

∑
ai ⊗ bi is the supremum of ⟨Xξ, η⟩ over norm 1 elements of

CN ⊗ Ck, and every element of CN ⊗ Ck belongs to CN ⊗ E for a subspace
E ⊂ Ck of dimension ≤ N . The general case follows by Kirchberg’s charac-
terization of exact C∗-algebras, which implies that for every ε > 0, there is N
such that the operator space spanned by a1, . . . , an is at completely bounded
distance ≤ 1 + ε from a subspace of MN(C) [Pis03, Corollary 17.5].

Lemma 5.14. Let Γ be a finitely generated group. Assume that C∗
λ(Γ) has a

unique trace. Then for every integer q and ε > 0, there exist y1, . . . , yn ∈ C[Γ]
and δ > 0 such that, for every finite dimensional unitary representation π of
Γ, if

max
i

∥π(yi)∥
∥λ(yi)∥

≤ 1 + δ

then

inf
y∈C≤q [Γ]

∥π(y)∥
∥λ(y)∥

≥ 1− ε. (5.1)

If moreover C∗
λ(Γ) is exact, the conclusion (5.1) can be strengthened to

inf
d≥1

y∈Md(C)⊗C≤q [Γ]

∥(id⊗ π)(y)∥
∥(id⊗ λ)(y)∥

≥ 1− ε.

Proof. We use the following fact: C∗
λ(Γ) has a unique trace if and only if for

every γ ∈ Γ \ {1} and every ε, there is δ > 0 and a finite family y1, . . . , yk ∈
C[Γ] such that, for every unitary representation π : Γ → A to a C∗-algebra A

with a tracial state σ, maxi
∥π(yi)∥
∥λ(yi)∥ ≤ 1 + δ implies |σ(π(γ))| ≤ ε. The only if

direction is direct: if σ is an arbitrary tracial state on C∗
λ(Γ), by applying the
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criterion to A = C∗
λ(Γ) and π the left-regular representation, we obtain that

|σ(λ(γ))| ≤ ε for every γ ̸= 1 and ε > 0, that is σ is the standard trace. The
converse is proved by standard ultraproduct arguments (see [LM23, Lemma
6.1] for the details).

The first conclusion of the lemma follows quite easily from this charac-
terization of the unique trace property. Indeed, if y ∈ C[Γ], there is an

integer p such that ∥λ(y)∥ ≤ (1 + ε)τ((y∗y)p)
1
2p , and by compactness the

same p can be taken for every y ∈ C≤q[Γ]. Now applying the criterion for
every γ in the ball of radius 2qp, we obtain that there is a finite family
y1, . . . , yk ∈ C[Γ] such that, for π,A, σ as above, maxi

∥π(yi)∥
∥λ(yi)∥ ≤ 1 + δ im-

plies that for every y ∈ C≤q[Γ], τ((y
∗y)p)

1
2p ≤ (1 + ε)σ(π((y∗y)p))

1
2p , and in

particular ∥λ(y)∥ ≤ (1 + ε)2∥π(y)∥. This is (5.1), up to a change of ε.
Observe that exactly the same argument also shows that, without any

further assumption on C∗
λ(Γ), for any fixed d, (5.1) can be replaced by

inf
y∈Md(C)⊗C≤q [Γ]

∥(id⊗ π)(y)∥
∥(id⊗ λ)(y)∥

≥ 1− ε.

But of course, yi and δ a priori depend on d. If C∗
λ(Γ) is exact, Lemma 5.13

allows to remove this dependence and to conclude the proof of the lemma.

5.4 Proof of Proposition 5.2 and Proposition 5.6

Proof of Proposition 5.2. Let in be the degree of Pn and w(q) = exp( q
log(2+q)2

).

Lemma 5.10 implies that un extends by continuity to Si(Γ), and that on its
subspace Sw(Γ), ∣∣ETr(πn(x))− un(x)

∣∣ ≤ εn∥x∥w. (5.2)

Without loss of generality, we can take y ̸= 0 and normalize it so that
∥y∥C∗(Γ) = 1.

By Lemma 5.11, the map f 7→ un(f(y
∗y/2)), is continuous for the

Cin+1([−1/2, 1/2]) topology, so it extends to a distribution. The assump-
tion that un is tempered in turn implies that its support in contained in
[−∥λ(y)∥2/2, ∥λ(y)∥2/2] (see [CGVTvH24, Lemma 4.9]). In particular, us-
ing ∥λ(y)∥ > 0, we have that un(f(y

∗y)) = 0 for every f that vanishes on
[−∥λ(y)∥2/2, ∥λ(y)∥2/2] [Hör03, Theorem 2.3.3].

Let α = arccos(∥λ(y∗y)∥/2) ∈ [π
3
, π
2
). Let φα be the function given by

Lemma 5.9, but for ε = 1
2
. It is even, so it is of the form φα(θ) = f(cos(θ)) for
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a continuous function f : [−1, 1] → R that is zero on [−∥λ(y)∥2/2, ∥λ(y)∥2/2],
strictly positive outside of this interval, and C∞ on (−1, 1). We take x =
f(y∗y). By the preceding discussion, un(x) = 0 for every n. Moreover, by
Lemma 5.11, x belongs to Sw(Γ), because∑

N≥1

exp(
qN

log(1 + qN)2
−M

αN

(log(1 + αN))1+
1
2

) < ∞.

So the inequality (5.2) together with the obvious inequality ∥πn(x)∥ ≤
Trπn(x) gives

E∥πn(x)∥ ≤ εn∥x∥w,

which goes to zero by the last assumption.
Now, since f is strictly positive on [−1, 1] \ [−∥λ(y)2∥/2,−∥λ(y)2∥/2],

there is c > 0 such that f(t/2) > c if |t| ≥ (∥λ(y)∥ + δ)2. In particular, we
have

P(∥πn(y)∥ > ∥λ(y)∥+ δ) ≤ P(∥πn(x)∥ > c) ≤ 1

c
εn∥x∥w,

which goes to 0. This proves the first part of the proposition.
The second half follows from the first half of Lemma 5.14.

Proof of Proposition 5.6. The first part is identical to that of Proposition 5.2,
considering the distribution f 7→ Tr⊗ un(f(y

∗
nyn)).

The second part follows, using the full statement of Lemma 5.14.

6 Random walks on free groups

The content of this section will play a key rôle in the proof of Theorem 1.1
(see Lemma 7.4).

6.1 Proper powers

Let µ be a symmetric probability measure on Fr, whose support is finite,
contains the identity element and generates Fr. To save space, we will call
such a measure reasonable. Let (gn)n≥0 be the corresponding random walk
on Fr, that is gn = s1s2 . . . sn for iid si distributed as µ. Let ρ = ρ(µ) be the
spectral radius, that is the norm of λ(µ) on ℓ2(Fr). We have the easy bound

∀g ∈ Fr,P(gn = g) = ⟨λ(µ)nδe, δg⟩ ≤ ρn. (6.1)
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We say that an element of Fr is a proper power if it is of the form hd for
h ∈ Fr and d ≥ 2.

Proposition 6.1. There is a constant C = C(µ) such that

P(gn is a proper power ) ≤ Cn5ρn.

The proof uses that the Cayley graph of Fr is a tree, in the following
form:

Lemma 6.2. There is a constant C and an integer a such that for every
h ∈ Fr and every h′ on the segment from the identity to h,

P(gn = h) ≤ C
n+a∑
k=0

P(gn+a = h and gk = h′}).

Proof. When µ is supported on the generators, this is clear with C = 1 and
a = 0: any nearest-neighbor path from e to h has to pass through h′. In the
general case, the idea is that such a path has to pass not too far from h′,
and forcing it to pass exactly through h′ does not cost too much, neither in
time nor in probability. Let us make this idea precise. By our assumptions
on µ, there is an integer r such that the support of µ is contained in the ball
of radius r, and another integer a0 such that c := infg∈B(e,r) P(ga0 = g) > 0.

Let T be the first hitting time of the ball of radius r around h′, so that if
gn = h then T ≤ n. The lemma will follow from the following observation:
if we add 2a0 steps to the random walk after time T , with probability at
least c2 we will be at h′ at time T + a0 and back to gT at time T + 2a0, and
then we can run the random walk as before. More formally, define another
realization of the random walk as follows: let g′i be an independent copy of
the random walk, and define

g̃n =


gn if n ≤ T

gTg
′
n−T if T ≤ n ≤ T + 2a0

gTg
′
2a0

g−1
T gn−2a0 if T + 2a0 ≤ n.

By the Markov property (T is a stopping time) (g̃n)n≥0 is distributed as the
random walk with step distribution µ.

Conditionally to T , the event A = {g′2a0 = e and g′a0 = g−1
T h′} happens

with probability ≥ c2, and when it happens we have g̃n+2a0 = gn for every
n ≥ T and g̃T+a0 = h′. Therefore, we can bound the probability of the event

B =
{
g̃n+2a0 = h and h′ ∈ {g̃k, 0 ≤ k ≤ n+ 2a0}

}
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as follows
P(B) ≥ P(gn = h and A) ≥ c2P(gn = h).

By the union bound we obtain

c2P(gn = h) ≤
n+2a0∑
k=0

P(g̃n+2a0 = h and g̃k = h′),

which is the content of the lemma with C = c−2 and a = 2a0.

Proof of Proposition 6.1. Denote by pn the probability that gn is a cyclically
reduced proper power, that is gn = hd for a cyclically reduced h and d ≥ 2.
We shall prove the following two inequalities, from which the proposition
follows immediately: there are constants C1, C2 such that

P(gn is a proper power ) ≤ C2n
2 max
k≤n+2a

pn+2a−kρ
k. (6.2)

pn ≤ C1n
3ρn, (6.3)

We start with the proof of (6.3). Let h be cyclically reduced and d ≥ 2.
The assumption that h is cyclically reduced means that h belongs to the
segment between 1 and hd, and that hd−1 belongs to the segment between h
and hd (tautologically if d = 2). By two applications of Lemma 6.2, we have

P(gn = hd) ≤ C2
∑

k1+k2+k3=n+2a

P(gk1 = h, gk1+k2 = hd−1, gk1+k2+k3 = hd)

= C2
∑

k1+k2+k3=n+2a

P(gk1 = h)P(gk2 = hd−2)P(gk3 = h).

The inequality (6.1) allows us to bound the middle term by ρk2 , and by
symmetry we have

P(gk1 = h)P(gk3 = h) = P(gk1 = h)P(gk3 = h−1) = P(gk1 = h and gk1+k2 = e).

Summing over all cyclically reduced words, we get∑
h cyclically reduced

P(gn = hd) ≤ C2
∑

k1+k2+k3=n+2a

ρk2P(gk1+k3 = e).

By (6.1), this is less than C2(n+ 2a+ 1)2ρn+2a. Summing over all d ≤ n we
obtain (6.3).
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We now move to (6.2). Let h ∈ Fr, not necessarily cyclically reduced.
Write h = wh̃w−1 its reduced expression with h̃ cyclically reduced. Then
hd = wh̃dw−1 is the reduced expression of hd. In particular w and wh̃d are
on the segment from the identity to hd, and by two applications of Lemma 6.2
we obtain

P(gn = hd) ≤ C2
∑

k1+k2+k3≤n+2a

P(gk1 = w)P(gk2 = h̃d)P(gk2 = w−1).

If we first sum over all h̃ such that wh̃w−1 is reduced , and then over w, we
obtain

P(gn is a proper power) ≤ C2
∑

k1+k2+k2≤n+2a

pk2
∑
w

P(gk1 = w)P(gk3 = w−1).

The formula (6.2) follows because
∑

w P(gk1 = w)P(gk3 = w−1) = P(gk1+k3 =
e) ≤ ρk1+k2 , by (6.1).

6.2 Random walks and tempered functions

The following is a useful criterion for a function on a group with the rapid
decay property to be tempered. Recall a group is said to have the rapid
decay property if it admits a finite generating set and a polynomial P such
that, for every a ∈ C≤q[Γ],

∥λ(a)∥ ≤ P (R)(
∑
γ

|a(γ)|2)
1
2 . (6.4)

Haagerup’s inequality [Haa79, Lemma 1.5] asserts that free groups with their
standard generating sets have the rapid decay property, with P (R) = 3(1 +
R2).

Proposition 6.3. Let Γ be a finitely generated group with the rapid decay
property, and u : Γ → C a function. Assume that for every reasonable prob-
ability measure µ on Γ, if (γn)n≥0 is the associated random walk on Γ,

lim sup
n

(
E|u(γn)|

) 1
n ≤ ρ(µ). (6.5)

Then u is tempered, and even completely tempered.
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Proof. Before we start, let us observe that the assumption (6.5) in fact holds
for every symmetric finitely supported probability measure µ, even if it not
reasonable in the sense that its support is not generating or does not contain
the identity. Indeed, let ν be a fixed reasonable probability measure. Then
for every ε > 0, µε = 1

1+ε
(µ + εν) is a reasonable probability measure, so

that (6.5) holds for µε. If Eε and E denote the law of the random walk with
transition µε and µ respectively, the inequality µ ≤ (1 + ε)µε gives

E|u(γn)| ≤ (1 + ε)nEε|u(γn)|,

so we obtain

lim sup
n

(
E|u(γn)|

) 1
n ≤ (1 + ε)ρ(µε) ≤ ρ(µ) + ερ(ν).

This proves that (6.5) holds for µ by taking ε → 0.
We now move to the proof of the proposition. We claim that for every

k, q ≥ 1 and every x = x∗ ∈ Mk(C)⊗ C≤q[Γ],

lim sup
n→∞

|Tr⊗ u(xn)|
1
n ≤ P (q)

√
k∥(id⊗ λ)(x)∥. (6.6)

Here P is the polynomial satisfying (6.4), given by the assumption that Γ
has the rapid decay property.

By a standard tensor-power trick, (6.6) implies that u is completely tem-
pered. Indeed, given an arbitrary x ∈ Mk(C) ⊗ C≤q[Γ], applying (6.6) to
y = (x∗x)m (which belongs to Mk(C)⊗C≤2mq[Γ] and satisfies ∥(id⊗λ)(y)∥ =
∥(id⊗ λ)(x)∥2m) and raising to the power 1

2m
, it implies

lim sup
n→∞

|Tr⊗ u((x∗x)n)|
1
2n ≤ (P (2mq)

√
k)

1
2m∥(id⊗ λ)(x)∥,

and in the m → ∞ limit

lim sup
n→∞

|Tr⊗ u((x∗x)n)|
1
2n ≤ ∥(id⊗ λ)(x)∥.

So it remains to prove (6.6). We can normalize x so that
∑

γ ∥x(γ)∥ =
1, where ∥ · ∥ is the operator norm on Mk(C). Let µ(s) = ∥x(s)∥; it is
a symmetric finitely supported probability measure on Γ. By the triangle
inequality and the inequality |Tr(x(s1) . . . x(sn))| ≤ k∥x(s1)∥ . . . ∥x(sn)∥, we
have

|Tr⊗ u(xn)| ≤ k
∑

s1,...,sn∈Γ

µ(s1) . . . µ(sn)|u(s1 . . . sn)| = kE|u(γn)|.
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By the assumption in the extended form above, we obtain

lim sup
n→∞

|Tr⊗ u(xn)|
1
n ≤ ρ(µ).

By the rapid decay assumption (6.4), this is less than

P (q)(
∑
s

µ(s)2)
1
2 .

By by the basic fact µ(s)2 = ∥x(s)∥2 ≤ Tr(x(s)∗x(s)), we have∑
s

µ(s)2 ≤ (Tr⊗ λ)(x∗x) ≤ k∥(id⊗ λ)(x)∥2,

which proves the claimed inequality (6.6).

7 Proof of Theorem 1.1 from Theorem 3.1

Let K ≥ 1 be an integer. Most of the objects will depend on K but our
notation will not reflect this. The only exception is the letter C, which will
always denote a constant that does not depend on anything, but that can
change from one line to the next.

The aim of this section is to explain why Theorem 3.1 implies the strong
convergence result from Theorem 1.1.

Let
σn

def
=

⊕
|λ|+|µ|=K

πλ,µ.

It is a sub-representation of
⊕ℓ

k=0 π
0
k,K−k, therefore

dim(σn) ≤ (K + 1)nK . (7.1)

Recall the definition of gL from §3. Theorem 3.1 immediately implies the
following result about σn. Throughout this section and as in §3 En or simply
E will denote the integral with respect to the Haar measure on U(n)r.

Theorem 7.1. For every w ∈ Fr, there is a rational function φw ∈ Q(x)
such that
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1. For every integer n ≥ Kmax(|w|, 1),

φw

(
1

n

)
=

1

nK
En[Tr(σn(u1, . . . , ur))].

2. If w ̸= e has length ≤ q, then gKqφw is a polynomial of degree ≤ Dq =
3Kq log(1 +Kq).

3. If w is not a proper power, then φ
(i)
w (0) = 0 for all i < K + K

3
.

We collect in the next lemma some of the basic properties of gL that we
need.

Lemma 7.2. Let L ≥ 1 be an integer. The polynomial
gL(t) =

∏L
c=1(1− c2t2)⌊

L
c
⌋ has the following properties, for every 0 ≤ t ≤ 1

2L2

and every integer i ≥ 0:
1

2
≤ gL(t) ≤ 1, (7.2)

|g(i)L (t)| ≤ (3iL
3
2 )i, (7.3)∣∣∣( 1

gL

)(i)
(t)
∣∣∣ ≤ 2 · i! · (C

√
iL

3
2 )i. (7.4)

Proof. Fix 0 ≤ t ≤ 1
2L2 . The inequality gL(t) ≤ 1 is clear and only uses

|t| ≤ 1
L
. For the converse, use that (1− u) ≥ e−2u for 0 < u < 1

4
to bound

gL(t) ≥ exp(−2
L∑

c=1

L

c
c2t2) = exp(−L2(L+ 1)t2) ≥ 1

2
.

We now prove (7.3). Let N =
∑L

c=1⌊
L
c
⌋ and write gL(t) =

∏N
k=1(1 − c2kt

2).
Each of the factors hk(t) = (1 − ckt

2) is a degree 2 polynomial, so when we
differentiate i times gL using the Leibniz rule, we obtain a big sum of terms,
in which some factors are derived twice (so equal to h′′

k(t) = −2ck2), some are
derived once (so equal to h′(t) = −2ck2t) and all the other are not derived.
Gathering the terms according to how many factors are derived twice, we
can write

g
(i)
L

gL
=

⌊ i
2
⌋∑

s=0

(
i

2s

)
(2s− 1)!!

∑
k1,...,ks,ℓ1,...,ℓi−2s all distinct

s∏
α=1

h′′
kα

hkα

·
i−2s∏
β=1

h′
ℓβ

hℓβ

.
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The term
(

i
2s

)
(2s − 1)!! appears as the number of ways to partition a set of

size i (the steps of derivation) into s sets of size 2 (the steps when a factor
hk is derived twice) and i − 2s sets of size 1 (the steps when a factor hk is
derived once). Forgetting the condition that the kα and ℓβ are distinct, and

bounding (1− c2kt
2) ≤ 1 and (2s− 1)!! ≤ i

i
2 , we can bound the preceding, in

absolute value, as follows:

|g(i)L (t)| ≤ i
i
2

⌊ i
2
⌋∑

s=0

(
i

2s

)
ti−2s

( N∑
k=1

2c2k
)i−s ≤ i

i
2

i∑
j=0

(
i

j

)
ti−j
( N∑

k=1

2c2k
)i− j

2 .

Using
N∑
k=1

2c2k =
L∑

c=1

2⌊L
c
⌋c2 ≤ L2(L+ 1) ≤ 2L3,

we obtain

|g(i)L (t)| ≤ i
i
2

i∑
j=0

(
i

j

)(
1

2L2

)i−j (
2L3
)i− j

2 = i
i
2

(
L+

√
2L

3
2

)i
≤
(
3
√
iL

3
2

)i
.

This proves (7.3).
The last inequality (7.4) is a formal consequence of the first two. Indeed,

by induction we see that, for any function g we can write the ith derivative
of 1

g
as a product of (2i− 1)!! terms, each of which is of the form

±g(α1) · · · · · g(αi)

gi+1

where (α1, . . . , αi) are nonnegative integers that sum to i. For g = gL, by

(7.2) and (7.3), each of these terms is bounded above that
(
3
√
iL

3
2

)i
2i+1.

We extend the map w 7→ φw by linearity, setting φx =
∑

w∈Fr
x(w)φw for

x ∈ C[Fr].

Lemma 7.3. If x ∈ C≤q[Fr], then for any i,

sup
t∈
[
0, 1

2D2
q

] |φ(i)
x (t)|
i!

≤ p(i, q)∥x∥C∗(Fr),
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where

p(i, q) =


(2K + 2)

(
CD4

q

i2

)i
if i ≤ Dq,

(2K + 2)
(
CD2

q

)Dq
(
C
√
iD

3
2
q

)i−Dq

if i > Dq.

Proof. Let P = gKqφx. We know that P is a polynomial of degree ≤ Dq, so to
bound its derivatives using the Markov brothers inequality, we need to derive
an a priori bound on the values of P . For n ≥ Kq, we have gKq(

1
n
) ∈ [0, 1]

and therefore∣∣∣∣P ( 1

n

)∣∣∣∣ ≤ ∣∣∣∣φx

(
1

n

)∣∣∣∣ = n−K
∣∣∣E[Tr(σn(x(u1, . . . , ur)))]

∣∣∣.
For every (u1, . . . , ur) ∈ U(n)r, the map w 7→ σn(w(u1, . . . , ur)) is a unitary
representation of Fr (hence of C∗(Fr)), so ∥σn(x(u1, . . . , ur))∥ ≤ ∥x∥C∗(Fr)

almost surely. Bounding the trace of a matrix by its norm times its size,
we obtain |E[Tr(σn(x(u1, . . . , ur)))]| ≤ dim(σn)∥x∥C∗(Fr), and we conclude
by the dimension bound (7.1) that∣∣∣∣P ( 1

n

)∣∣∣∣ ≤ (K + 1)∥x∥C∗(Fr).

We deduce by Lemma 4.2 that for any integer j,

sup
t∈[0, 1

2D2
q
]

|P (j)(t)|
j!

≤ (2K + 2)

(
CD4

q

j2

)j

∥x∥C∗(Fr). (7.5)

By the Leibniz rule, remembering that P is a polynomial of degre ≤ Dq,

φ(i)
x =

min(i,Dq)∑
j=0

(
i

j

)
P (j)

(
1

gKq

)(i−j)

.

We see from Lemma 7.2 and (7.5) that the leading term is for j = min(i,Dq).
The lemma follows directly if i ≤ Dq. If i > Dq, we obtain the lemma by
bounding Kq ≤ Dq and i−Dq ≤ i, so that

sup
t∈[0, 1

2D2
q
]

1

(i−Dq)!
|
(

1

gKq

)(i−Dq)

(t)| ≤
(
CD2

q

)i( i

Dq

) i−Dq
2

.
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We deduce two facts from this lemma. In the first, the temperedness of
vi is where most of the results of this paper are used. It is worth noting here
that, in the particular case of K = 1, a much stronger result is known: all
the vi’s are tempered, as proven by Parraud [Par23a]. We will see below that
they are even completely tempered, see Proposition 7.9.

Lemma 7.4. For every integer i ≥ 0, let vi : w ∈ Fr 7→ φ
(K+i)
w (0)
(K+i)!

. There is a

polynomial P of degree 4K +Ki + 1 such that |vi(x)| ≤ Pn(q)∥x∥C∗(Fr) for
every q and every x ∈ C≤q[Fr]. Moreover, vi is tempered if i < K

3
.

Proof. The existence of Pn is a consequence of Lemma 7.3 and the bound
Dq ≤ CKq log(1 +K) log(1 + q), which implies supq≥1

p(i,q)
(1+q)4i+1 < ∞.

Let us explain why vi is tempered if i < K
3
. The proof combines several

ingredients: the first is Haagerup’s inequality, which tells us that we can
apply the criterion for temperedness given in Proposition 6.3. The second is
the polynomial growth of vi: as a particular case of what we have just shown,
there is a constant Ci such that for every q and every w ∈ Fr in the ball of
radius q, |vi(w)| ≤ Ci(1 + q)j, where j = 4i + 4K + 1. The third ingredient
is the small support of vi given by item 3 in Theorem 3.1. The last is the
random walk results from Section 6.

Let us put all these ingredients together. Let µ be a reasonable probability
measure on Fr, and (γn)n be the associated random walk on Fr. If µ is
supported in the ball of radius q, we know that γn belongs to the ball of
radius qn, so that

E|vi(γn)| ≤ Ci(1 + qn)jP(vi(γn) ̸= 0) ≤ CiC(µ)(1 + qn)jn5ρ(µ)n.

We deduce
lim sup

n
(E|vi(γn)|)

1
n ≤ ρ(µ),

so vi is tempered by Proposition 6.3.

The second consequence is an analogue in our context to the master
inequality in [CGVTvH24, Theorem 7.1]. In the particular case K = 1, a
similar result was obtained in [Par23a].
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Lemma 7.5. Let w(q) = exp( q
log(2+q)2

). For every integers r, q, n ≥ 1 and

every x ∈ C≤q[Γ]

∣∣∣ETr(σn(x(u1, . . . , ur))− τ(x)Id
)
−

r−1∑
i=0

vi(x)

ni

∣∣∣
≤ (C(K + r)2 log(1 +K + r)12K4 log(1 +K)4)K+r

nr
w(q)∥x∥C∗(Fr). (7.6)

Proof. If n ≥ Kq, by (1) in Theorem 7.1, we know that the left-hand side of
(7.6) is equal to

nK
∣∣∣φx(

1

n
)−

K+r−1∑
i=0

φ
(i)
x (0)

i!ni

∣∣∣.
By Taylor’s inequality and Lemma 7.3, if we moreover assume that n ≥ 2D2

q ,
this is less than

1

nr
p(K + r, q)∥x∥C∗(Fr). (7.7)

If n ≤ 2D2
q , we claim that this bound is still valid. Indeed, we can bound the

left-hand side of (7.6) by

2dim(σn)∥x∥C∗(Fr) +
r−1∑
i=0

|vi(x)|
ni

.

By Lemma 7.3 and (7.1), this is less than

nK(p(0, q) +
r−1∑
i=0

1

nK+i
p(K + i, q))∥x∥C∗(Fr),

which is indeed bounded above by (7.7), at least if the constant C appearing
there is large enough : for example C ≥ 2e2 guarantees that 1

nj+1p(j+1, q) ≥
2 1
nj p(j, q) for every j.
The statement of the lemma follows because

sup
q

p(i, q) exp
(
− q

log(2 + q)2

)
≤ (CK4i2 log(1 +K)4 log(1 + i)12)i.

We can now deduce the main result of this section. Now we make K vary,
so we write σK,n the representation that was denoted σn so far, and vK,i the
function denoted vi so far.
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Lemma 7.6. Let A < 1
24
. Then for every x ∈ C[Fr],

lim
n

sup
K≤nA

E
∣∣∣∥σn,K(x(u1, . . . , ur))∥ − ∥x∥C∗

λ(Fr)

∣∣∣ = 0.

Proof. Let 1 ≤ Kn ≤ nA for every n, and let πn be the random representation
of Fr: πn(w) = σK,n(w(u1, . . . , ur)). Apply Lemma 7.5 for the smallest
integer r ≥ K

3
: for every q and every x ∈ C≤q[Γ],∣∣∣ETr(πn(x))− un(x)

∣∣∣ ≤ εnw(q)∥x∥C∗(Fr).

where

εn =
(CK6

n(logKn)
12+8ε)Kn+r

nr
≤ (Cn24A−1(log n)12+8ε)

1
3 → 0

and

un(x) = dim(σn,k)τ(x) +
r−1∑
i=0

vKn,i(x)

ni
.

By Lemma 7.4, the function un is tempered as a finite sum of tempered
function, and it satisfies

|un(x)| ≤ C(n)(1 + q)4r+4Kn−3.

Moreover, C∗
λ(Γ) has a unique trace (it is even simple [Pow75]). So all

the hypotheses of Proposition 5.2 are satisfied; its conclusion proves the
lemma.

7.1 From convergence in probability to almost sure
convergence

Lemma 7.6 is not exactly our main result, because we have convergence in
expected value. However, by the concentration of measure phenomenon in
the groups U(n) (see [Mec19, Theorem 5.17]), we can improve our results to
almost sure convergence.

Proposition 7.7. For every x ∈ C≤q[Fr], there is a constant C(x) =∑
w |x(w)||w| such that

P
(
∥σn,K(x(U

(n)
1 , . . . , U (n)

r ))∥ ≥ E∥σn,K(x(U
(n)
1 , . . . , U (n)

r ))∥+ ε)
)

≤ exp

(
− (n− 2)ε2

24C(x)2K2

)
.
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Proof. Equip U(n)r with the L2-sum of Hilbert-Schmidt distances. The func-

tion (U
(n)
1 , . . . , U

(n)
r ) 7→ ∥σn,K(x(U

(n)
1 , . . . , U

(n)
r ))∥ is KC(x)-Lipschitz, so the

bound is [Mec19, Theorem 5.17] (for the original see [Voi91, Proof of Thm.
3.9]).

Proof of Theorem 1.1. Theorem 1.1 now follows by combining Proposition
7.7 and Lemma 7.6.

7.2 Variants and operator coefficients

If we only consider the representation πk,ℓ from the introduction with ℓ = 0,
we have the stronger conclusion 3 in Theorem 3.1 instead of 2. Taking this
improvement into account, with the notation of Theorem 1.1, the conclusion
becomes that if A < 1

12
,

sup
k≤nA

∣∣∣∥∥∥πk,0

(
p
(
U

(n)
1 , . . . , U (n)

r

))∥∥∥− ∥p(x1, . . . , xr)∥
∣∣∣ = o(1).

This improvement illustrates that the more of the higher derivatives vK,i

from Lemma 7.4 are shown to be tempered, the stronger the conclusion.
For example, if we knew that vK,i is tempered for every i and every K
(which Parraud has proved in the case K = 1 [Par23a]), or at least for every
i ≤ K/o(1), then the condition on A in Theorem 1.1 would be A < 1

6
.

Theorem 7.8. Let A < 1
6
and for every n, let Kn ≤ nA. Assume that vKn,i

is tempered for every n and every i. Let kn = exp(n
1
2
−2A(log n)−4).

For every q and every sequence yn ∈ Mkn ⊗ C≤q(Fr), almost surely

lim
n

∥(id⊗ σKn,n)(yn)∥
∥(id⊗ λ)(yn)∥

= 1.

If the assumption was that vKn,i is completely tempered, the proof of the
theorem would be a straightforward adaptation of the proof of Theorem 1.1.
So our main task is to prove the following:

Proposition 7.9. For every K, I, if vK,0, . . . , vK,I are all tempered, then they
are all completely tempered.

For the proof, we need the following result. Here if A is an algebra, An

denotes its subalgebra equal to the linear span of {x1 . . . xn | xi ∈ A}.
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Lemma 7.10. Let A be a ∗-algebra and u : A → C a positive linear map:
u(x∗x) ≥ 0 for every x ∈ A. If there is i such that u(xi) = 0 for every
self-adjoint x, then u = 0 on A3.

Proof. The form ⟨a, b⟩ = u(a∗b) is a scalar product. By the Cauchy-Schwarz
inequality, if k ≥ 2, if a∗ = x∗xx∗ . . . (k + 1) terms and b = . . . x (k − 1)
terms,

|u((x∗x)k)|2 = |⟨a, b⟩| ≤ u((x∗x)k+1)u((x∗x)k−1),

so by induction we have u((x∗x)2) = 0, and by the Cauchy-Schwarz inequality
again, u(x∗xz) = 0 for every z ∈ A. By polarization we deduce u(xyz) = 0
for every x, y, z.

Proof of Proposition 7.9. We use the notation and results from Section 5.2.
In particular, Lemma 7.4 tells us that vK,i extends by continuity to a linear
map S4K+4i+1(Fr) → C. Let Ai = S4K+4i+1(Fr) ∩ kerλ. We prove by
induction that vK,i vanishes on (Ai)

3i+1
for every i ≤ I. This readily implies

that Tr ⊗ vK,i vanishes on Mk ⊗ (Ai)
3i+1

for all k. In particular, vK,i is
completely tempered by Proposition 5.12.

So let us assume that vK,j vanishes on (Aj)
3j+1

for every j < i (we assume
nothing if i = 0), and let us show that it is true for j = i.

Using the induction hypothesis, it follows from Lemma 7.5 that on the
∗-algebra (Ai)

3i (which is contained in ker τ and (Aj)
3j+1

for every j < i),

vK,i(x) = lim
n

niETrσK,n(x).

In particular, vK,i is positive on (Ai)
3i as a limit of positive maps. Moreover,

the fact that vK,i is tempered implies that vK,i(x
n) = 0 for all n ≥ 4K +

4i + 3, see Proposition 5.12. By Lemma 7.10, we obtain that vK,i vanishes

on (Ai)
3i+1

. This concludes the proof of the proposition.

Proof of Theorem 7.8. Thanks to Proposition 7.9, the temperedness assump-
tion is automatically upgraded to complete temperedness. We apply Lemma 7.5
with r = n

1
2
−2A(log n)−

7
2 , which is chosen so that

kn
(C(K + r)2 log(1 +K + r)12K4 log(1 +K)4)K+r

nr
→ 0.

So by Proposition 5.6 we deduce the convergence in probability. The almost
sure convergence is obtained by the concentration of measure phenomenon
from Proposition 7.7.
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For Kn = 1 (that is, A = 0), Parraud proved that v1,i are tempered for
every i. As a consequence, we obtain the unconditional result from Theo-
rem 1.4.

8 Proof of Corollary 1.2

Corollary 1.2 follows easily from the proof of Theorem 1.1 and the following
lemma:

Lemma 8.1. For every partitions λ ⊢ k, µ ⊢ ℓ, every w ∈ Fr and every
n > (k + ℓ)|w|, we have

En[sλ,µ(w)] =

∫
SU(n)r

sλ,µ(w(v1, v2, . . . , vr))dv1 · · · dvr.

Proof. Let z1, . . . , zr, z
′
1, . . . , z

′
r, v1, . . . , vr be independent random variables

where zi are uniform in the center of U(n) (the complex numbers of mod-
ulus one), z′i are uniform in the center of SU(n) (the n-th roots of unity)
and vi ∈ SU(n) are Haar distributed, so that (z1v1, . . . , zrvr) are indepen-
dent Haar-distributed variables in U(n), and (z′1v1, . . . , z

′
rvr) are independent

Haar-distributed variables in SU(n).
By Schur’s lemma, for every z in the center of U(n), πλ,µ(z) is a multiple of

the identity. On the other hand, we know that (λ1, . . . , λp, . . . ,−µq, . . . ,−µ1)
is the maximal weight of πλ,µ, so the corresponding character of the maximal
torus appears in the restriction of πλ,µ. This means that the scalar πλ,µ(z)
is zλ1+···+λp−µq−···−µ1 = zk−ℓ for every z in the center of U(n). Putting these
two facts together, we see that

En[sλ,µ(w)] = E[sλ,µ(w(z1v1, . . . , zrvr))]

decomposes by independence as the product

En[sλ,µ(w)] = E[sλ,µ(w(v1, . . . , vr))] · E[w(z1, . . . , zr)k−ℓ],

and similarly

E[sλ,µ(w(z′1v1, . . . , z′rvr))] = E[sλ,µ(w(v1, . . . , vr))] · E[w(z′1, . . . , z′r)k−ℓ].

But Ew(z1, . . . , zr)k−ℓ is equal to 1 if wk−ℓ vanishes in the abelianization Zr

of Fr, and is equal to 0 otherwise. Similarly, Ew(z′1, . . . , z′r)k−ℓ is equal to 1
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if wk−ℓ vanishes in (Z/nZ)r and 0 otherwise. These two conditions coincide
if n > |k − ℓ| · |w|, and in particular if n > (k + ℓ)|w|.

Proof of Corollary 1.2. Using Lemma 8.1, we see that Lemma 7.5 also holds
if En denotes the integration over SU(n)r: the validity of (7.7) when x ∈
C≤q[Fr] with n ≥ 2D2

q is by Lemma 8.1, the extension for arbitrary x follows
with the same proof. Therefore, Lemma 7.6 also holds for SU(n). Moreover,
the concentration of measure from Proposition 7.7 also holds for SU(n) (same
reference as there), so Theorem 1.1 holds also for independent variables in
SU(n). Corollary 1.2 follows by Corollary 2.2.

9 Transverse maps

We now fix the free group we work with Fr and its generators {x1, . . . , xr}.
Here we introduce a framework, following [MP19], that we use to prove The-
orem 3.1.

In the sequel, a marked rose refers to a finite CW -complex structure Rr

whose underlying topological space is the wedge of r circles, with the base-
point being the wedge point, denoted o, and with a marking π1(Rr, o) ∼= Fr

that identifies the generators {x1, . . . , xr} with oriented circles of the rose.
The following definition will not be used in the paper but gives important

background motivation for the definitions to follow.

Definition 9.1 (Motivational). A transverse map is a manifold M , a based
marked rose Rr and a continuous function

f : M → Rr

transverse to all the vertices of Rr.

In the rest of the paper we work with classes of transverse maps. Instead
of getting into what is an isotopy of transverse maps, etc, we make the
following equivalent combinatorial definition.

Definition 9.2. An (isotopy) class of (filling) transverse map from a surface
with boundary to a marked rose Rr is the finitary combinatorial data:

• a marked base-point and orientation for each boundary component
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• a ribbon graph structure on the surface, where vertices are discs and
edges correspond to interfaces between discs on their boundaries; such
an interface is called an arc

• information about which arc is in the preimage of each vertex of Rr

other than o, and which sides of the vertex correspond to which sides
of the arc

• up to isomorphism of the above data under decoration respecting home-
morphisms.

We refer to these simply as classes of transverse maps.

Definition 9.3 (Strict transverse maps). A class of transverse map f as in
Definition 9.2 is strict if for every two vertices p1, p2 of Rr that are consecutive
on some circle (and not o), do not have parallel preimages in the following
sense. Suppose the orientation of their circle in Rr points from p1 to p2. The
preimages of p1 and p2 are parallel if for every arc α in the preimage of p1,
there is a parallel4 arc in the preimage of p2 on the side of α ‘towards’ p2.

Given a class [f ] of transverse map on surface with boundary there is an
obvious way to get a boundary class of transverse map on a union of circles,
denoted ∂[f ].

Given κ : [r] → N ∪ {0} let Rκ
r be the (isomorphism class of) rose with

κ(i) + 1 vertices in the interior of the circle corresponding to xi. Let |κ| =∑
i∈[r] κi.

Given every non-identity w ∈ Fr, let w : S1 → Rr denote a fixed im-
mersion5 from a based oriented circle to the based rose such that if γ is the
generator of π1(S

1, basepoint) corresponding to the chosen orientation,

w∗(γ) = w ∈ π1(Rr, o).

4Cobounding a rectangle.
5Away from the base point of S1, where there could be backtracking if w is not cyclically

reduced.
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10 Proof of Theorem 3.1 Part 1

Suppose |w| ≤ q, λ ⊢ k, µ ⊢ ℓ as before. By a result of Koike [Koi89, eq.
(0.3)] it is possible to write for g ∈ U(n)

sλ,µ(w) =
∑

|λ′|≤k,|µ′|≤ℓ

αλ,µ
λ′,µ′sλ′(w)sµ′(w−1)

where the coefficients αλ,µ
λ′.µ′ are given in (ibid.) as sums of products of

Littlewood–Richardson coefficients and importantly, do not depend on n.
Then by base change between Schur polynomials as above and power sum
symmetric polynomials, we obtain

sλ,µ(w) =
∑

|λ′|≤k,|µ′|≤ℓ

βλ,µ
λ′,µ′pλ′(w)pµ′(w−1) (10.1)

where again the coefficients do not depend on n. This tells us the poles of
E[sλ,µ(w)] are at most the union of every possible pole of

En[pλ′(w)pµ′(w−1)]

with k′ = |λ′| ≤ k, ℓ′ = |µ′| ≤ ℓ.
For the purpose of finding the poles, we can here use the Weingarten

calculus in the most naive possible way (later, we need to do something more
sophisticated). To this end, [MP19, Theorem 2.8] yields

En[pλ′(w)pµ′(w−1)] =
∑

[f :Σ→R
(2)
r ]

∂f∼=w◦φλ′,µ′

( ∏
1≤i≤r

Wg(k′+ℓ′)Li(w) (πf,i)

)
nN(f) (10.2)

where R
(2)
r = R

(κ)
r with κ = (2, 2, . . . , 2), πf,i ∈ S(k′+ℓ′)Li(w) are permutations

determined from the combinatorial structure of f , and N(f) ∈ N is similar
— neither depend on n. It is a finite sum.

Each term
Wg(K+ℓ)Li(w) (πf,i) ∈ Q(n)

is given by the formula for the Weingarten function [CŚ06, eq. (9)]

WgL(π) =
1

(L!)2

∑
λ⊢L

χλ(1)
2

sλ(1)
χλ(π); (10.3)
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here we are viewing sλ(1) as the formal element of Q(n)

sλ(1)
def
=

∏
□∈λ(n+ c(□))∏

□∈λ hλ(□)
,

c(□) is the content of the box,

c(□) = j(□)− i(□)

and hλ(□) is the hook-length of the box. The only terms in the formula for
the Weingarten function that depend on n are therefore the denominators∏

□∈λ(n+ c(□))
If c ≥ 0 then the factor (n + c(□)) appears at most d(c, L) times in the

denominator of WgL(π) where d(c, L) is the largest natural number d such
that

d(d+ c) ≤ L.

Clearly d(c, L) ≤ L
c
for c > 0. If c < 0 then a similar argument says (n + c)

appears at most d(n,−c) times.
This means that

∏
□∈λ(n+ c(□)) can be written as nLQλ(

1
n
) where Qλ is

a polynomial that divides gL(
1
n
) where (as in (3.2))

gL(x)
def
=

L∏
c=1

(1− c2x2)⌊
L
c
⌋.

Therefore,
gL(

1
n
)∏

□∈λ(n+c(□))
= 1

nL
gL
Qλ

( 1
n
) is a polynomial in 1

n
of degree ≤ L +

deg(gL). By 10.3 the same is true for gL(
1
n
)WgL(π). Since

r∏
i=1

g(k′+ℓ′)Li

divides g(k+ℓ)q, we see from (10.1) that for n ≥ (k+ ℓ)q, the rational function
agreeing with g(k+ℓ)q(

1
n
)E[sλ,µ(w)] in this range can be written as a sum of a

polynomial in 1
n
of degree ≤ (k+ℓ)q+deg(g(k+ℓ)q) and possibly a polynomial

in n (because of the terms nN(f)). However, the polynomial in n is necessarily
constant because it is known (see Theorem 1.7 in [MP19, Thm. 1.7]) that
g(k+ℓ)q

(
1
n

)
E[sλ,µ(w)] remains bounded as n → ∞.

To conclude, observe that we can bound the degree of gL by
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2
L∑

c=1

⌊L
c
⌋ ≤ 2

L∑
c=1

L

c
≤ 2L(1 + logL),

so that (k + ℓ)q + deg(g(k+ℓ)q) ≤ 3L(1 + logL).

11 Proof of Theorem 3.1 Part 2 and 3

In the paper [Mag21] the integrals∫
U(n)4

Tr(w̃(u1, u2, u3, u4))sλ,µ([u1, u2][u3, u4])du1du2du3du4

w.r.t Haar measure are calculated in a very specific way that exhibits can-
cellations that cannot be easily seen6 using the formula (10.1). The initial
part of this calculation is very general and does not depend on w̃ or the word
w = [x1, x2][x3, x4]. So the method generalizes as-is to the case when the
Tr(w̃) term is not present and [x1, x2][x3, x4] is replaced by any reduced word
w. That is, to integrals of the form

En[sλ,µ(w)]
def
=

∫
U(n)r

sλ,µ(w(u1, . . . , ur))du1 · · · dur

where w is any element of Fr, viewed as a reduced word in the generators.
The analog of [Mag21, Cor. 4.7] here is the following bound. LetR0

r be the
based CW -complex structure on Rr with one interior vertex per circle (and
a vertex for the wedge point o). Recall the immersion w : (S1, basepoint) →
(R0

r , o) from §9. Let

φλ,µ :

ℓ(λ)∐
i=1

S1 ⊔
ℓ(µ)∐
i=1

S1 → S1

denote the map whose components are

• multiplication by λi on the ith circle, if i ≤ ℓ(λ),

• and multiplication by−µi (so orientation reversing) on the (i−ℓ(λ))thcircle
for i > ℓ(λ).

6In fact, we do not know how to.
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This map is a convenient way of book-keeping winding numbers.

Proposition 11.1. We have

En[sλ,µ(w)] = Ok,ℓ,w(n
maxw,k,l χ(Σ))

where maxw,k,ℓ is the maximum over classes of transverse maps [f ] from a
surface with boundary to R0

r such that

Σ is an oriented surface with compatibly oriented boundary

For some λ′ ⊢ k and µ′ ⊢ ℓ, ∂[f ] factors as

∂[f ] = [w ◦ φλ′,µ′ ] (11.1)

where [w◦φλ′,µ′ ] is the (unique) class of transverse map to R0
r obviously

associated to the immersion w◦φλ′,µ′. Components of ∂Σ mapped in an
orientation respecting (resp. non-orientation respecting) way by φλ′,µ′

are called positive (resp. negative).

Forbidden Matchings In the factorization of ∂f above, no such arc has
endpoints in a positive and negative component of ∂Σ that are mapped
to the same point under φλ′,µ′.

This proposition follows formally from [Mag21, §§3.1 - §§4.3], but we give
most details in the Appendix, §12.. The Forbidden Matchings property
is completely crucial and the main point of the method introduced in (ibid.).
The following topological result is a new input to that method.

Proposition 11.2. If w is not a proper power in Fr and cyclically reduced,
then any class of transverse map [f ] on underlying surface Σ satisfying the
conditions of Proposition 11.1 has

χ(Σ) ≤ −k + ℓ

3
.

Corollary 11.3 (Theorem 3.1 Part 2). If w is not a proper power in Fr then

En[sλ,µ(w)] = Ok,ℓ,w

(
n− 1

3
(k+ℓ)

)
.

N.B. One can assume without loss of generality in Corollary 11.3 that w
is cyclically reduced, as conjugating w does not change En[sλ,µ(w)].
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11.1 Proof of Proposition 11.2

Suppose w is cyclically reduced and not a proper power or the identity, with
word length |w|. Suppose that some class of transverse map [f : Σ → R0

r ]
satisfies P1-P4 of Proposition 11.1.

Let L(e) denote the number of edges in the chain defining e.
Let V ∗,E∗ denote the topological vertices and edges respectively. We

have
2E∗ =

∑
v∈V ∗

d(v) ≥ 3V ∗

and hence

−χ(Σ) = E∗ − V ∗ ≥ E∗

3
. (11.2)

We now aim to show E∗ is large under the previous assumptions.
Each class of strict transverse map f is a (isomorphism class of) ribbon

graph R whose edges correspond to the arcs of f . Each edge of the ribbon
graph inherits a direction and labeling by {x1, . . . , xr} from the manner in
which f crosses the (sole) interior vertex of the ith circle in R0

r along this
edge.

Say that a vertex v of R is a topological vertex if it has valence d(v) ≥ 3.
A topological edge e is a maximal chain of edges incident at vertices of valence
2. (As w is cyclically reduced, there are no vertices of valence 1).

Every topological edge e is bordered by two segments of ∂R that each
spell a subword of wki or w−ℓi for some i, reading along the fixed orientation
of the boundary.

Suppose that for some topological edge e, L(e) > |w|. For a reduced word
v in the generators of Fr, write v for its mirror (reversing order and replacing
generators by inverses). Then both boundary segments spell words

u1w
au2, v1w

bv2

with a, b ∈ Z\{0}, |u1|, |u2|, |v1|, |v2| < |w|.
Case 1. If a, b have same sign. In this case one arrives at

wu = vw

with |u|, |v| < w. (see Figure 11.1). This is impossible since then v is a prefix
of w and v is too, meaning v = v̄ since they have the same length, so v is
empty. Similarly u is empty and w = w contradicting w being the identity.

40



∂Σ

u1 w w w u2

v2 w w w v1

∂ΣCase 2

∂Σ

v w
uw

∂ΣCase 1

Figure 11.1: Auxiliary to proof of Proposition 11.2.

Case 2. If a, b have opposite signs. So without loss of generality
assume a > 0 and b = −B with B > 0, then we have

u1w
au2 = v2w

Bv1.

Condition P4 implies that |u1| ̸= |v2|. Again without loss of generality
assume |u1| < |v2|. Write v2 = u1w1.

If |u2| > |v1| then write u2 = w2v1 to obtain

waw2 = w1w
B (11.3)

as reduced words. This immediately implies w2 = w1, as both are prefixes of
w of the same length. Since w is not a proper power, e.g. [Raz14, Lemma
2.2] implies that w1 is a power of w, which must be empty since its length is
less than w.

If |u2| < |v1| then write w2u2 = v1 to arrive at

wa = w1w
Bw2.

This implies w1 and w2 are both prefixes and suffixes of w.
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Write w = w1w3 and obtain

w3w
a−1 = wBw2.

Since B > 0, a > 1 here and we argue as we did from (11.3) to get a
contradiction.

The upshot of this argument is that each topological edge e has

L(e) ≤ |w|.

Since the total lengths of topological edges is (k+ℓ)|w| this gives |E∗| ≥ k+ℓ.
Hence from (11.2)

−χ(Σ) ≥ k + ℓ

3
.

11.2 Proof of Theorem 3.1 Part 3

If µ = ∅, i.e. sλ,µ = sλ is a polynomial stable character, then instead we can
use the following two results.

For w ∈ Fr the commutator length of w, denoted by cl(w) ∈ N ∪ {∞} is
defined by

cl(w) = inf{ g : w = [u1, v1] · · · [ug, vg] , ui, vi ∈ Fr }

interpreted as ∞ if it is not possible to write w as a product of commutators,
i.e. w /∈ [Fr,Fr]. The stable commutator length of w, denoted scl(w), is
defined as

scl(w)
def
= lim

m→∞

cl(wm)

m
.

On Fr, scl takes values in Q by a result of Calegari [Cal09]. Duncan and
Howie proved in [DH91] that

scl(w) ≥ 1

2
(11.4)

for all w ∈ Fr. This bound can be combined with the following result of
the first named author and Puder following immediately from [MP19, Cor.
1.11].

Theorem 11.4. We have

En[sλ(w)] = O

(
1

n2kscl(w)

)
. (11.5)
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In fact, [MP19, Cor. 1.11] says that for every w ∈ [Fr,Fr], there is some
λ such that the bound (11.5) is saturated, but we do not use this here.

Combining (11.4) with (11.5) gives

En[sλ(w)] = O
(
n−k
)

as required.

12 Appendix: Extension of the method of

Random Unitary Representations of Sur-

face Groups II

In this section we explain the extension of the methodology of [Mag21] to
bound the integrals En[sλ,µ(w)] defined in (3.1). We import some results
from [Mag21].

Background

In this section, fix λ ⊢ k and µ ⊢ ℓ, and assume n ≥ k + ℓ. Let Dλ,µ(n) =
sλ,µ(1). Write χλ for the character of Sk associated to the irreducible rep-

resentation W λ that corresponds to λ. Let dλ
def
= χλ(id) = dimW λ. Given

λ ⊢ k, the element

pλ
def
=

dλ
k!

∑
σ∈Sk

χλ(σ)σ ∈ C[Sk]

is the central projection in C[Sk] to the W λ-isotypic component. We view
Sk × Sℓ as a subgroup of Sk+ℓ in the standard way.

Let
pλ⊗µ

def
= pλp

′
µ

where p′µ is the image of pµ under the inclusion Sℓ ≤ Sk × Sℓ ≤ Sk+ℓ. We
define Young subgroups, for λ ⊢ k

Sλ
def
= Sλ1 × Sλ2 × · · · × Sλℓ(λ)

≤ Sk.

Let
T k,ℓ
n

def
= (Cn)⊗k ⊗

(
(Cn)∨

)⊗ℓ
.
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For I = (i1, . . . , ik+ℓ) let

I ′(I; π)
def
= iπ(1), . . . , iπ(k),

J ′(I; π)
def
= iπ(k+1), . . . , iπ(k+ℓ).

For π ∈ Sk+ℓ let

Φ(π)
def
=

∑
I=(i1,...,ik),J=(jk+1,...,jk+ℓ)

eJI′(I⊔J ;π) ⊗ ě
J ′(I⊔J ;π)
I ∈ End(T k,ℓ

n )

and extend the map Φ linearly to C[Sk+ℓ].
Recall the definition of the Weingarten function from (10.3). Let

z
def
=

∑
τ∈Sk+ℓ

z(τ)τ (12.1)

def
=

[Sk : Sλ][Sℓ : Sµ]

dλdµ
pλ⊗µ

 ∑
σ∈Sλ×Sµ

σ

 pλ⊗µWgn,k+ℓ ∈ C[Sk+ℓ].

One has the following bound on the coefficients of z [Mag21, Lemma 3.3]

z(τ) = Ok,ℓ(n
−k−ℓ−∥τ∥k,ℓ). (12.2)

Let
q

def
= Dλ,µ(n)Φ(z).

Theorem 12.1.

1. The operator q is an orthogonal projection with U(n)-invariant image
that is isomorphic to V λ,µ as a U(n)-representation.

2. For any i1, . . . , ik+ℓ, j1, . . . , jk+ℓ and any p ∈ [k + ℓ],∑
u

q(i1···ip−1uip+1···ik+ℓ),(j1···jp−1ujp+1···jk+ℓ) = 0.

Part 1 is the combination of [Mag21, Lemma 2.3, eq. (3.11), Prop. 3.2,
eq. (3.12)].

Part 2 arises from the fact that q is zero on the orthocomplement to the
contraction free subspace Ṫ k,ℓ

n from [Mag21].
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Combinatorial integration

We write w in reduced form:

w = f ϵ1
1 f ϵ2

2 . . . f ϵq
q , ϵu ∈ {±1}, fu ∈ {xi}, (12.3)

where if fu = fu+1, then ϵu = ϵu+1. For f ∈ {a, b, c, d} let pf denote the
number of occurrences of f+1 in (12.3). The expression (12.3) implies that

for u
def
= (ui : i ∈ [r]) ∈ U(n)r,

sλ,µ(w(u)) = TrT k,ℓ
n

(
qf ϵ1

1 qf ϵ2
2 q . . . qf

ϵ|w|
|w|

)
(12.4)

=
∑

Ij∈[n]k,Jj∈[n]ℓ

q∏
u=1

qKi⊔Li,qIi+1⊔Ji+1

(uϵ1
f1
)I1⊔J1,K1⊔L1(u

ϵ2
f2
)I2⊔J2,K2⊔L2 · · · (u

ϵq
fq
)Iq⊔Jq ,Kq⊔Lq (12.5)

=
∑

π1,...,π1∈Sk+ℓ

q∏
i=1

z(πi)
∑

Ij∈[n]k,Jj∈[n]ℓ
qKi⊔Li,qIi+1⊔Ji+1

(uϵ1
f1
)I1⊔J1,K1⊔L1(u

ϵ2
f2
)I2⊔J2,K2⊔L2 · · · (u

ϵq
fq
)Iq⊔Jq ,Kq⊔Lq

1 {Ki ⊔ Ji+1 = (Ii+1 ⊔ Li) ◦ πi : i ∈ [q] } . (12.6)

In the last line above the indices run mod q. Each product of matrices here
can be integrated using the Weingarten calculus.

We view all Iu etc as functions from indices (the domain) to [n]. We view
all domains for distinct u as disjoint as possible.

There are however, fixed matchings between the domains of each

Iu ⊔ Ju and Ku ⊔ Lu.

These will come into play later.
We now define sub-collections of all the indices that are treated as ‘the

same type’ by the Weingarten calculus.
For each i ∈ [r], let:

• Si be all indices of Iu such that fu = xi and ϵu = +1 and indices of Lu

such that fu = xi and ϵu = −1,

• S∗
i be all indices of Ju such that fu = xi and ϵu = +1 and indices of

Ku such that fu = xi and ϵu = −1,
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• Ti be all indices of Ku such that fu = xi and ϵu = +1 and indices of Ju
such that fu = xi and ϵu = −1,

• T ∗
i be all indices of Lu such that fu = xi and ϵu = +1 and indices of

Iu such that fu = xi and ϵu = −1.

Let M denote the set of data consisting of

• for each i ∈ [r], σi a bijection from Si to S∗
i ,

• for each i ∈ [r], τi a bijection from Ti to T ∗
i .

Doing the integral of terms in either (12.5) or (12.6) replaces

(uϵ1
f1
)I1⊔J1,K1⊔L1(u

ϵ2
f2
)I2⊔J2,K2⊔L2 · · · (u

ϵq
fq
)Iq⊔Jq ,Kq⊔Lq

by ∑
D∈M

∏
i∈[r]

Wgk+ℓ(σiτ
−1
i )1{D ‘respected’ by Iu, Ju, Ku, Lu}.

Before going on, we make a key argument. Suppose that some index of I2 is
matched to an index of J2 by D, for example the two first indices. Then the
result of integrating (12.5), the terms corresponding to D contain all contain
factors ∑

a=I2(1)=J2(1)

qK1⊔L1,qI2⊔J2

where all indices but the first indices of I2 and J2 are frozen (conditioned
upon). This is zero by Theorem 12.1 part 2.

This means, going back to (12.6), if we define M∗ to be the subset of M
such that

• σi never matches indices Iu to those of Ju for any u,

• σi never matches indices of Lu to those of Ku for any u,

• τi never matches indices of Ku to those of Lu for any u,

• τi never matches indices of Ju to those of Iu for any u,
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then we obtain

En[sλ,µ(w(u))] =
∑

π1,...,πq∈Sk+ℓ

∑
D∈M∗

q∏
i=1

z(πi)
∏
i∈[r]

Wgk+ℓ(σiτ
−1
i )N (π1, . . . , πq,D)

(12.7)
where N (π1, . . . , πq,D) is the number of choices of I, J,K, L such that

Ku ⊔ Ju+1 = (Iu+1 ⊔ Lu) ◦ πu : u ∈ [q], (12.8)

indices matched by D have the same value.

Surface construction

Now construct a surface as follows.
Begin with a vertex for every index. Add an edge (calledD-edge) between

all matched indices (by D). Add an edge (called w-edge) between indices
paired by the fixed identifications

Iu ⊔ Ju ∼= [k + ℓ] ∼= Ku ⊔ Lu

and direct this edge from the indices on the left hand side above to those on
the right hand side.

Add also an edge (called π-edge) between indices matched by (12.8). We
now have a trivalent graph.

We now glue two types of discs to this graph following [Mag21, §§4.1].
The boundaries of the discs are glued along two types of cycles in the graph:

Type-I Cycles that alternate between π-edges and D edges. Such cycles are
disjoint.

Type-II Cycles that alternate between w-edges and D-edges. Again, such
cycles are disjoint.

The resulting glued discs therefore meet only along the D-edges and the
resulting total object is a topological surface we call

Σ(D, {πi}).

The boundary cycles of this surface alternate between w-edges and π-edges.
For σ ∈ Sk+ℓ, let ∥σ∥k,ℓ denote the minimum m for which

σ = σ0t1t2 · · · tm
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where σ0 ∈ Sk × Sℓ and t1, . . . , tm are transpositions in Sk+ℓ. The analog of
[Mag21, Thm. 4.3] is that, after an elementary calculation using (12.2) and
bounds for the Weingarten function one obtains

q∏
i=1

z(πi)
∏
i∈[r]

Wgk+ℓ(σiτ
−1
i )N (π1, . . . , πq,D) ≪w,k,ℓ n

−
∑

i ∥πi∥k,ℓnχ(Σ(D,{πi})),

hence from (12.7)

En[sλ,µ(w(u))] ≪w,k,ℓ

∑
π1,...,πq∈Sk+ℓ

∑
D∈M∗

n−
∑

i ∥πi∥k,ℓnχ(Σ(D,{πi})).

Surfaces with large contribution

It is shown in [Mag21, §§4.2] — the same proof applies without change to
the current setting — that given any

π1, . . . , πq ∈ Sk+ℓ, D ∈ M∗,

it is possible to modify these so that

π′
1, . . . , π

′
q ∈ Sk × Sℓ,

∑
i

∥π′
i∥k,ℓ = 0 (12.9)

D′ = {σ′
i, τ

′
i} ∈ M∗with σ′

i = τ ′i for all i ∈ [r] (12.10)

and there exists an inequality between corresponding terms

nχ(Σ(D′,{π′
i})) ≥ n−

∑
i ∥πi∥k,ℓnχ(Σ(D,{πi})).

The condition (12.10) means all type-II cycles are now rectangles with
two (non-consecutive) edges in the boundary; we now replace each rectangle
with an arc connecting the two boundary segments of the rectangle.

Connection to transverse maps

We now create a class of transverse map on the surface Σ(D′, {π′
i}) as follows

(cf. Definition 9.2).
The ribbon graph structure is the one dictated by the arcs we just prior

constructed. By construction, they cut the surface into discs. For each
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boundary component, place a marked point in some (it does not matter) π-
edge that arose from π′

q. Recall the CW -complex rose R0
r with one point (call

it zi) in the interior of the circle corresponding to xi. If an arc arose from a
rectangle with edges that arose from σ′

i = τ ′i then we declare our function to
take the constant value zi on this arc and the transverse map will traverse
the arc from the σ′

i side to the τ ′i side.
The property (12.9) implies that for every boundary component of the

surface, the w-edges are all directed the same way along this boundary com-
ponent and hence give an orientation to the boundary. With respect to this
orientation, the isotopy class of SF transverse map satisfies (11.1).

The fact thatD′ ∈ M∗, rather thanM, implies that the class of transverse
map has the crucial Forbidden Matchings property.
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IAS Princeton, School of Mathematics, 1 Einstein Drive, Princeton 08540,
USA
delasalle@math.univ-lyon1.fr

53


	Introduction
	Preliminaries
	Representation theory of U(n)
	Representation theory of SU(n)

	Matrix integral results
	Markov brothers inequality
	A criterion for strong convergence
	Bump functions with small Fourier coefficient
	Sobolev algebras in the full group C*algebra
	Unique trace and exactness
	Proof of Proposition 5.2 and Proposition 5.6

	Random walks on free groups
	Proper powers
	Random walks and tempered functions

	Proof of Theorem 1.1 from Theorem 3.1
	From convergence in probability to almost sure convergence
	Variants and operator coefficients

	Proof of Corollary 1.2 
	Transverse maps
	Proof of Theorem 3.1 Part 1
	Proof of Theorem 3.1 Part 2 and 3
	Proof of Proposition 11.2
	Proof of Theorem 3.1 Part 3

	Appendix: Extension of the method of Random Unitary Representations of Surface Groups II

