Weighted Leave-One-Out Cross Validation - Archive ouverte HAL
Article Dans Une Revue SIAM/ASA Journal on Uncertainty Quantification Année : 2024

Weighted Leave-One-Out Cross Validation

Résumé

We present a weighted version of Leave-One-Out (LOO) cross-validation for estimating the Integrated Squared Error (ISE) when approximating an unknown function by a predictor that depends linearly on evaluations of the function over a finite collection of sites. The method relies on the construction of the best linear estimator of the squared prediction error at an arbitrary unsampled site based on squared LOO residuals, assuming that the function is a realization of a Gaussian Process (GP). A theoretical analysis of performance of the ISE estimator is presented, and robustness with respect to the choice of the GP kernel is investigated first analytically, then through numerical examples. Overall, the estimation of ISE is significantly more precise than with classical, unweighted, LOO cross validation. Application to model selection is briefly considered through examples.
Fichier principal
Vignette du fichier
LOOCV_HAL.pdf (2.66 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04689100 , version 1 (05-09-2024)

Licence

Identifiants

Citer

Luc Pronzato, Maria-João Rendas. Weighted Leave-One-Out Cross Validation. SIAM/ASA Journal on Uncertainty Quantification, 2024, 12 (4), pp.1213-1239. ⟨10.1137/23M1615917⟩. ⟨hal-04689100⟩
48 Consultations
59 Téléchargements

Altmetric

Partager

More