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Weighted Leave-One-Out Cross Validation∗

Luc Pronzato† Maria-João Rendas†

September 5, 2024

Abstract

We present a weighted version of Leave-One-Out (LOO) cross-validation for estimating
the Integrated Squared Error (ISE) when approximating an unknown function by a predictor
that depends linearly on evaluations of the function over a finite collection of sites. The
method relies on the construction of the best linear estimator of the squared prediction error
at an arbitrary unsampled site based on squared LOO residuals, assuming that the function
is a realization of a Gaussian Process (GP). A theoretical analysis of performance of the
ISE estimator is presented, and robustness with respect to the choice of the GP kernel is
investigated first analytically, then through numerical examples. Overall, the estimation
of ISE is significantly more precise than with classical, unweighted, LOO cross validation.
Application to model selection is briefly considered through examples.

Keywords Leave-one-out cross validation, integrated squared prediction error, computer
experiments, space-filling design

MSCcodes 65D05, 62G99, 62-08

1 Introduction

The paper addresses the characterization of the performance of data-driven model learning.
We consider the fairly general setting where a learning dataset collecting the evaluations of an
unknown function f at a given set of sites Xn = {x1, . . . ,xn} is used to predict the value of f at
generic points x in some set X . When function evaluations are computationally expensive (for
example when they involve complex computer simulations) their number is necessarily limited
and the selection of appropriate sites xi is crucial, a problem addressed by the experimental
design literature. Regardless of the sites chosen and the prediction method used, it is important
to assess the quality of the predictions produced by the learned model. The most common
measure of performance is the Integrated Squared (prediction) Error (ISE) for a given measure
of interest µ over X , and this is the criterion considered in this paper.

Gaussian Process (GP) models are commonly used in computer experiments to formalize
prior knowledge about the behavior of the unknown f , as they provide access to the full Bayesian
machinery: considering f as a realization of a GP, it is possible to encode prior knowledge on
f , such as its regularity over X , and function evaluations f(xi), considered as observations
yi = Yxi on a sample path of the GP, can be used to update knowledge about f in a Bayesian

∗This work was partially funded by project ANR INDEX (ANR-18-CE91-0007).
†CNRS, Université Côte d’Azur, Laboratoire I3S, Sophia Antipolis, France
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way. Although in computer experiments GP models are traditionally used to predict values of
f , in this work we use them to infer the performance of a given predictor, by exploiting the
property that fourth-order moments of Gaussian variables are directly available. The predictor
whose performance is inferred may be itself the Best Linear Unbiased Predictor (BLUP) derived
from a GP model, but this is not mandatory and our approach applies to any predictor linear in
the observations yi whose weights may depend arbitrarily on x. Linearity in the observations is
essential in order to preserve the Gaussianity of prediction errors, but this covers a wide range of
prediction methods (extension to non-linear predictors is theoretically possible, through Taylor
series expansion and the calculation of higher-order moments of Gaussian variables, but seems
tedious and rather unpractical). Also, the paper focuses on the case of noise-free observations, i.e.
situations where we directly observe the response of a deterministic simulator, but the presence
of observational noise can be taken into account by introducing a nugget effect into the GP
model, and the modifications this implies are briefly indicated in Section 4.7 (some simulation
results for noisy observations are presented in Section D.2).

A classical approach to evaluate the performance of a prediction method without using
observations other than those used to learn the prediction model itself is Cross Validation (CV),
and in particular Leave-One-Out Cross Validation (LOOCV). In LOOCV, the value of f at each
site xi is predicted by the same method but removing xi from the learning dataset; the difference
with the observed value yi determines a residual error ε−i, and the empirical average of the ε2−i
is used to quantify the overall quality of the prediction method. A large number of papers have
addressed cross validation, in particular questioning in what sense it can be considered as an
estimate of a statistic of the prediction error, see e.g. [4]. In general, the performance analysis
considers that LOOCV provides an estimate of the expected squared prediction error, assuming
that the learning dataset is an independent and identically distributed (i.i.d.) sample from the
joint distribution of the model covariates and outputs. Additionally, it usually assumes that
the available observations are noisy versions of the model output, an assumption that we relax
here. We will show that, as it can be anticipated, for a well spread design Xn LOOCV tends
to strongly overestimate the actual conditional ISE, given the learning dataset. The estimator
we propose, by using the geometry of the design on which the model has been learned to weight
the LOO residuals, is able to overcome this drawback. As an unsought feature, our method
is able to cope with the problem of covariate shift, of current interest amongst the community
of machine learning [23, 24] and to which CV is known to be highly sensitive. Covariate shift
occurs when the design in the learning dataset is not a sample from the target distribution under
which we want to assess the prediction error: the weights of the corrected LOOCV estimator
that we propose depend on the design used to learn the model studied, and thus automatically
adjust to covariate shift.

The main objective of the paper is to propose an estimate of the ISE that overcomes some of
the limitations of the LOOCV methodology by relying on a GP model, not necessarily stationary,
for the fitted function f (the possible extension to mixtures of GP models is briefly considered in
Section F in the supplement). This allows us to estimate the expected squared prediction error,
conditioned on the learning dataset, the expectation being now taken with respect to f . Our
method builds on [18] and relies on the construction of the best linear estimate of the squared
prediction error at any x ∈ X based on the set of squared LOO residuals ε2−i. Integration
with respect to x (a simple summation when the measure µ is discrete) then provides the ISE
estimate. The numerical experiments presented show that our method significantly improves
the accuracy of performance evaluation compared to the straightforward application of LOOCV.
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As the resulting performance measure depends on the assumed GP model, the paper and its
supplement include extensive numerical analyses that confirm robustness with respect to its
choice.

2 Notation, motivation and paper organization

2.1 Notation

Consider an n-point design Xn = {x1, . . . ,xn} without repetitions, i.e., xi 6= xj for all i 6= j,
and let yn = [y1, . . . , yn]>, where yi = f(xi) is the observation at site xi

1. We denote by
Fn the learning dataset: Fn = {(xi, yi)ni=1} — a sub-index n will indicate dependency of the
corresponding quantity on Fn (sometimes, only on the design Xn).

Let ηn(x) be the (arbitrary) predictor of f(x) at an unsampled site x, learned using Fn,
whose performance we want to assess, and denote by

εn(x) = f(x)− ηn(x)

its prediction error at x. Our goal is to estimate, using only the dataset Fn, the ISE for some
given positive measure of importance µ over X :

ISE(ηn) =

∫
X
ε2n(x)µ(dx) . (2.1)

Without any loss of generality, we assume that Xn ∈ X n. All predictors ηn considered
in the paper are linear, being defined by a weight function w(·, ·) : (x,Xn) ∈ X × X n →
w(x,Xn) ∈ Rn, such that the prediction of f(x) based on yn is ηn(x) = w>(x,Xn)yn, for any
n ∈ N and any Xn. In the following, we use the simpler notation wn(x) = w(x,Xn) — note
that ηn does not necessarily interpolate the data, i.e., we may have ηn(xi) 6= yi; the prediction
error is therefore not necessarily null at the xi. We always assume that wn(·) is bounded on X .

The estimator of ISE(ηn) proposed in this paper, ÎSEBLP (ηn), assumes that f is a realization
of a GP Yx ∼ GP(0, σ2K), indexed by x in X . Here K is a Strictly Positive Definite (SPD)
kernel and Yx ∼ GP(0, σ2K) means that E{Yx} = 0 and E{YxYx′} = σ2K(x,x′) for all x and x′

in X . Throughout the paper, kn(x) is the vector with components K(x,xi), i = 1, . . . , n, and
Kn is the n × n matrix with {Kn}i,j = K(xi,xj), i, j = 1, . . . , n. We will denote Mn = K−1n
(and to simplify notation the subindex n will be dropped, i.e., M ≡Mn).

The assumption of a GP model for f is important for at least three reasons: (i) it is
extremely convenient for evaluating the performance of an arbitrary ISE estimator for a given
linear predictor ηn; (ii) it is essential for the derivation of the ISE estimator we propose; (iii) it
is commonly used to define a predictor ηn. We thus need to carefully distinguish between three
possibly different GP models in the developments presented below.

We will denote by GP(0, σ2K) the (“true”) data generating model. In a real situation, the
data f(xi) are not samples from GP(0, σ2K), but this assumption allows explicit computation of
the bias and Mean Squared Error (MSE) of the different ISE estimators considered. When we
will need to distinguish it from GP(0, σ2K), the GP model assumed for the construction of our

estimator ÎSEBLP (ηn) will be denoted by GP(0, σ2eK
(e)). Indeed, there is no reason to assume

that GP(0, σ2K) ≡ GP(0, σ2eK
(e)), and we will investigate the impact of the possible modeling

1By default all vectors are column vectors.
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mismatch GP(0, σ2K) 6= GP(0, σ2eK
(e)). Finally, the predictor ηn for which we want to estimate

the ISE may itself rely on a certain GP model, which we shall denote by GP(0, σ2pK
(p)), where

K(p) differs in general from K and K(e). When necessary, a superscript (e) or (p) will explicitly
indicate the underlying model to which we refer. An essential feature of our method is that it
relies solely on predictions (it does not require estimation of the scaling parameter σ2), so the
choice of kernel is not very critical: indeed, predictions based on GP models are known to be
robust to the choice of kernel K, which is not the case for the prediction of their accuracy; see,
e.g., [21, Sect. 3.5]; one may also refer to [1, 14, 16] for results on the estimation of σ2 in a GP
model and consequences on model calibration.

That we always suppose a GP with zero mean may appear as a severe restriction, as the
hypothesis according to which f is a realization of a centred GP is often difficult to maintain
in practice. However, the presence of a linear trend τ>h(x), with h(·) = [h1(·), . . . , hn(·)]> a
vector of p functions on X , has no effect on our ISE estimator when the predictor satisfies
[hi(x1), . . . , hi(xn)]wn(x) = hi(x) for all i = 1, . . . , p, all n and all x and x1, . . . ,xn. This is the
case in particular for universal kriging (and when the trend is a constant mean, i.e., h(x) ≡ 1
for all x, the condition

∑n
i=1wi(x) = 1 for all n and all x is satisfied by the ordinary kriging

predictor). See Section E in the supplement for details, including a simple and convenient
modification of the estimator for the case when the weights wn(x) do not satisfy the condition
above.

The kernels used in the examples presented in the paper are all isotropic (i.e., K(x,x′)
only depends on ‖x − x′‖). However, this is not mandatory and any kernel K(e) can be used

to construct ÎSEBLP (ηn). This means that, independently of the particular predictor whose
performance is to be assessed, we may choose the kernel we think is the most appropriate as a
GP model for f : K(e) can be non isotropic, non stationary, and one may even consider a mixture
of GP models (see Section F in the supplement), which offers considerable flexibility.

2.2 Motivation

To motivate our work and precise the basic notions that we shall use, in this introductory section
we consider the case when GP(0, σ2eK

(e)) =GP(0, σ2pK
(p)) =GP(0, σ2K) and ηn ≡ η∗n, the Best

Linear Unbiased Predictor (BLUP) of f given Fn; that is, ηn is the simple kriging interpolator
(the posterior expectation under the GP model):

η∗n(x) = E {Yx|Fn} = k>n (x)K−1n yn . (2.2)

The posterior variance of Yx is independent of the observations yn: var{Yx|Fn} = E{[Yx −
η∗n(x)]2|Fn} = E{[Yx−η∗n(x)]2|Xn}, and direct calculation gives var{Yx|Fn} = σ2 ρ∗n

2(x), where

ρ∗n
2(x) = K(x,x)− k>n (x)K−1n kn(x) (2.3)

is the (simple) kriging variance. As the learning design Xn is fixed, all expectations are condi-
tioned on Xn but in the following we shall simply write E{·} = E{·|Xn}. The assumption that
ηn ≡ η∗n for a given GP model will be flagged with an asterisk.

For a given (positive) measure of importance µ on X , the Integrated Squared Error ISE(ηn)
defined in (2.1) is a natural criterion for measuring the overall predictive quality of ηn over X .
Since Yx, and thus εn(x), is unknown for x 6∈ Xn, ISE(ηn) is not computable. However, under
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the GP assumption for Yx its expected value (the Integrated Mean Squared Error) is given by

IMSE(η∗n) =

∫
X

E{ε2n(x)|Fn}µ(dx) = σ2
∫

X
ρ∗n

2(x)µ(dx) . (2.4)

As the process variance σ2 only appears as a multiplicative factor in (2.4), the design Xn that
minimizes IMSE(η∗n) is independent of σ2; see e.g. [20] for an early reference and [9, 10] for
methods that avoid repeated computations of integrals when constructing an IMSE-optimal
design. Note that unlike the method proposed in this paper, which further exploits knowledge
of Fn, direct use of (2.4) to quantify the predictive quality of the model learned over a design
Xn requires knowledge of σ2, the process variance2.

Several methods have been proposed to assess the performance of predictors using the learn-
ing dataset Fn, amongst which cross validation and in particular the LOOCV criterion [22]:

ÎSELOO(ηn) =
1

n

n∑
i=1

ε2−i , (2.5)

where ε−i = yi − ηn\i(xi), with ηn\i the predictor constructed without the i-th design point xi.

As explained in Section 3.1, the actual performance of ÎSELOO(ηn) as an estimator of ISE(ηn)
strongly depends on the design used to construct ηn. The ISE estimator that we propose
optimally weights the squared LOO residuals ε2−i by constructing the Best Linear Predictor
(BLP) of ε2n(x) at an unsampled site x (it minimizes a squared loss and is linear in the ε2−i),
and thereby ensures robust performance with respect to the design configuration. Central to
the method is the fact that all moments required to calculate this BLP are directly available,
thanks to the Gaussian assumption.

2.3 Paper organization

In Section 3.1, we derive the bias, variance and MSE of ISE estimators that are linear in the
squared LOO residuals ε2−i, under the GP model assumption and for a general linear predictor

ηn. Results for ÎSELOO(ηn) follow as a particular case. The special case where ηn ≡ η∗n, the
BLUP for the assumed GP model, is considered in Section 3.2. In Section 4.1, we derive our

estimator ÎSEBLP (ηn), the integral of the BLP ε̂2n(x) of the squared prediction error ε2n(x) based
on the squared LOO residuals ε2−i. Its mean and MSE are given in Section 4.2 under the assump-

tion that K(e) = K (i.e., in absence of modeling error). In Section 4.3 we assume that ηn ≡ η∗n,

the BLUP for GP(0, σ2K), and in Section 4.4 we consider the performance of ÎSEBLP (ηn) for
a general linear predictor ηn in presence of model misspecification (K(e) 6= K). Two limiting
behaviors for K(e) are briefly investigated in Section 4.5: the independent limit where the corre-
lation between Yx and Yx′ is negligible when x 6= x′, the flat limit where conversely Yx and Yx′

remain strongly correlated when ‖x′ − x‖ is large. The BLP ε̂2n(x) of Section 4.1 is biased, and

therefore ÎSEBLP (ηn) is biased too; a bias-corrected version (in absence of model misspecifica-
tion) is presented in Section 4.6. Modifications implied by the presence of observation noise are
briefly discussed in Section 4.7. A numerical investigation of the performance of the estimators

2Numerical investigations show that methods that rely on the estimation of σ2, e.g. by Maximum Likelihood
or LOOCV, and estimate ISE(ηn) by IMSE(ηn) perform worse than the one proposed in the paper; see Section 6
for a brief discussion.
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ÎSELOO(ηn) and ÎSEBLP (ηn) is carried out in Section 5 where several numerical examples are
presented. First, in Section 5.1 we illustrate the influence of the design Xn on both estimators
for a univariate function f . Then, in Section 5.2 we study the robustness of ÎSEBLP (ηn) with re-
spect to the assumed kernel K(e), considering kernels with different correlation lengths; different
predictors ηn are also considered: a non-interpolating polynomial (Section 5.2.1) and the BLUP
for a GP model GP(0, σ2pK

(p)) (Section 5.2.2). Additional material is provided in Section B of

the supplement and involves kernels K(e) with different regularities. While in Sections 5.1 and
5.2 Yx ∼ GP(0, σ2K), in Sections 5.3 and 5.4 we consider test-cases from the literature, with
f depending on 2 and 4 variables, respectively. Other numerical results are presented in the
supplement: average performance characteristics of ÎSEBLP (ηn) and ÎSELOO(ηn) for GP realiza-
tions with n ∈ {10 d, 20 d, 50 d, 100 d, 200 d} and d ∈ {4, 6, 8} in Section C; empirical performance
for random functions that are not GP realizations in Section D, including the introduction of
observation noise in Section D.2. Section 6 concludes and draws some perspectives for this work.

That we propose to estimate the ISE (2.1) by another integral may seem numerically cum-
bersome. However, the integrated function is known explicitly, and the integral can be approx-
imated by Quasi-Monte Carlo with small computational cost — an indication of computational
times for a Matlab implementation is provided in Sections 5.3, 5.4 and D.1 in the supplement.
In fact, the method proposed does not address the integration problem itself, but rather the

estimation ε̂2n(x), in the mean square sense, of the squared prediction error ε2n(x) at any x.
Note, however, that we cannot predict precisely the value of ε2n(x) at every x (and an example
presented in Section D.3 shows that the approach is unreliable for estimating a tail characteristic

such as a quantile or a conditional value-at-risk of ε̂2n(X) with X ∼ µ, for one realization of

Yx ∼ GP(0, σ2K), as the estimated value ε̂2n(X) and ε2n(X) have different distributions). Esti-

mation of ISE(ηn) by the integral of ε̂2n(x) can be justified by ergodicity arguments when K is
stationary, K(x,x′)→ 0 as ‖x− x′‖ → ∞, and the support of µ is large enough.

3 LOOCV for linear predictors under the GP assumption

For linear predictors, of the form η(x) = w>n (x)yn, the vector of LOO residuals εLOO =
(ε−1, . . . , ε−n)> is also linear in yn and can be written as

εLOO = R>nyn , (3.1)

where Rn = In −Wn\, with In the n-dimensional identity matrix and Wn\ an n × n matrix
whose diagonal is identically null (as ε−i = yi − ηn\i(xi) and ηn\i(xi) does not depend on yi).
We assume that Rn has full rank.

The assumption that f is a realization of a GP Yx ∼ GP(0, σ2K) allows us to derive the
expressions of the first two moments of an arbitrary linear combination γ>ε�2LOO of the squared
LOO residuals ε�2LOO = (ε2−1, . . . , ε

2
−n)>, γ ∈ Rn. (Here and in the following we denote by A�2

the Hadamard square of matrix A: {A�2}ij = A2
ij .) As the LOOCV criterion ÎSELOO(ηn)

corresponds to γ = 1n/n with 1n the n-dimensional vector with all components equal to 1, see

(2.5), we directly obtain the bias and MSE of ÎSELOO(ηn).
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Table 1: Moments of quantities of interest.

b σ2 ε�2LOO
>

σ εn(x) ε2n(x) ISE(ηn)

a E{ab}/σ4 ∗ ∗ ∗ ∗ ∗
σ2 ∗ 1 u>n 0 ρ2n(x) Jn
ε�2LOO ∗ un Sn 0 cn(x) bn
σ εn(x′) ∗ 0 0 ρ2n(x,x′) 0 0

ε2n(x′) ∗ ρ2n(x′) c>n (x′) 0 ρ2n(x)ρ2n(x′) + 2 ρ4n(x,x′)

ISE(ηn) ∗ Jn b>n 0 J2
n + 2Vn

3.1 Consequences of the GP assumption and notation

Under the GP assumption Yx ∼ GP(0, σ2K), the prediction error εn(x) = Yx − ηn(x) has zero
mean, E{εn(x)} = 0, and we denote

ρ2n(x) = E{ε2n(x)/σ2} = K(x,x)− 2 w>n (x)kn(x) + w>n (x)Knwn(x) . (3.2)

The vector of LOO residuals εLOO is also Gaussian and, for all x ∈X ,

E{εLOO} = 0, E{εLOOε>LOO} = σ2R>nKnRn, E{εLOOεn(x)} = σ2 R>n tn(x) ,

where

tn(x) = E{ynεn(x)}/σ2 = kn(x)−Knwn(x) . (3.3)

Using the formula for the expectation of the product of squared Gaussian variables a and b,

E{a2b2} = E{a2}E{b2}+ 2 [E{ab}]2 ,

we get E{ε2n(x)ε2n(x′)} = σ4
[
ρ2n(x)ρ2n(x′) + 2 ρ4n(x,x′)

]
, where ρ2n(x) is given by (3.2) and

ρ2n(x,x′)=
1

σ2
E
{
εn(x)εn(x′)

}
= K(x,x′)−w>n (x)kn(x′)−w>n (x′)kn(x) + w>n (x)Knwn(x′).

In the same manner, we obtain for the (normalized) first two moments of ε�2LOO,

un = E{ε�2LOO}/σ
2 = diag

{
(R>nKnRn)

}
, (3.4)

Sn = E{ε�2LOOε
�2
LOO

>}/σ4 = E{ε�2LOO/σ
2}E{ε�2LOO

>
/σ2}+ 2

(
E{εLOOε>LOO/σ2}

)�2
= unu

>
n + 2 (R>nKnRn)�2 , (3.5)

together with

cn(x) = E{ε2n(x)ε�2LOO}/σ
4 = E{ε2n(x)/σ2}E{ε�2LOO/σ

2}+ 2
(
E{ε(x)εLOO/σ

2}
)�2

= ρ2n(x)un + 2 [R>n tn(x)]�2 . (3.6)
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With these definitions (summarized in Table 1), we can compute the bias, variance and MSE

of any linear combination ÎSE(ηn) = γ>ε�2LOO, γ ∈ Rn:

Bias{ÎSE(ηn)} = E
{
ÎSE(ηn)− ISE(ηn)

}
= σ2 γ>un − E {ISE(ηn)} , (3.7)

var{ÎSE(ηn)} = E
{
ÎSE

2
(ηn)

}
−
[
E
{
ÎSE(ηn)

}]2
= σ4γ>(Sn − unu

>
n )γ

= 2σ4γ>(R>nKnRn)�2γ , (3.8)

MSE{ÎSE(ηn)} = E

{(
ÎSE(ηn)− ISE(ηn)

)2}
= σ4γ>Snγ − 2σ4γ>bn + var {ISE(ηn)}+ [E {ISE(ηn)}]2 , (3.9)

with

E {ISE(ηn)} = IMSE(ηn) = σ2Jn , (3.10)

var {ISE(ηn)} = 2σ4 Vn , (3.11)

where we have introduced

bn =

∫
X

cn(x)µ(dx) , (3.12)

Jn =

∫
X
ρ2n(x)µ(dx) , (3.13)

Vn =

∫
X 2

ρ4n(x,x′)µ(dx)µ(dx′) . (3.14)

We thus obtain for the LOOCV estimator (2.5) (for which γ = 1n/n)

Bias{ÎSELOO(ηn)} =
σ2

n
1>nun − IMSE(ηn) , (3.15)

MSE{ÎSELOO(ηn)} = σ4
[
1>nSn1n
n2

− 2
1>nbn
n

+ J2
n + 2Vn

]
. (3.16)

3.2 BLUP for the assumed GP model

We consider here the special case where ηn is the BLUP η∗n for the GP from which f is drawn,
i.e., GP(0, σ2pK

(p)) ≡ GP(0, σ2K), a situation where simpler expressions can be found since
wn(x) = K−1n kn(x), see (2.2). Indeed, it implies tn(·) ≡ 0, see (3.3), and ρ2n(x) defined by (3.2)
equals ρ∗n

2(x) given by (2.3).
Since the LOO residual ε−i is computed using the BLUP η∗n that leaves out (xi, yi), i.e.,

ε−i = yi − η∗n\i(xi), i = 1, . . . , n ,

where η∗n\i(x) = k>n\i(x)K−1n\iyn\i (with obvious notation), straightforward use of the block-
matrix inversion formula gives

Rn = MDn ,
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where M = K−1n and Dn = diag{1/Mii, i = 1, . . . , n}, with

Mii =
[
K(xi,xi)− k>n\i(xi)K

−1
n\ik

>
n\i(xi)

]−1
= 1/[ρ∗n\i

2(xi)]

the i-th diagonal element of M; see [7] (one may also refer to [11] for the extension to multiple-
fold CV). Note that in this case Rn always has full rank.

To highlight the difference with previous section, we insert an asterisk in superscript for cn,
un and Sn and write

c∗n(x) = u∗n ρ
∗
n
2(x) ,

S∗n = u∗nu
∗
n
> + 2 D�2n M�2D�2n , (3.17)

with

u∗n = (1/M11, . . . , 1/Mnn)> . (3.18)

The LOOCV criterion is then equal to

ÎSELOO(η∗n) =
1

n

n∑
i=1

ε2−i =
1

n
y>nMD2

nMyn , (3.19)

and its expectation for a given design Xn is

E
{
ÎSELOO(η∗n)

}
=
σ2

n
trace

(
MD2

nMKn

)
=
σ2

n

n∑
i=1

MiiDn
2
ii

=
σ2

n
trace (Dn) =

σ2

n

n∑
i=1

1

Mii
=
σ2

n

n∑
i=1

ρ∗n\i
2(xi) .

To shed some light on the issues involved in using (2.5) as a measure of prediction accuracy,
let us consider two extreme situations: (i) Xn is such that each design point has another one
in its vicinity; (ii) Xn is such that all design points are far enough from each other to have a
negligible correlation between Yxi and Yxj for i 6= j. In the first case, since when xi is dropped

there is another design point in its neighborhood, we have un ' 0, and thus ÎSELOO(ηn) is
overoptimistic, with a negative bias close to −IMSE(ηn), see (3.15). The behavior in case (ii)
depends on ηn, but for any reasonable predictor such that on average the accuracy of ηn(x)
improves when x is closer to a design point xi (and thus the correlation between Yx and Yxi
increases), on average ε2−i will be larger than ε2n(x): ÎSELOO(ηn) will thus tend to be pessimistic,
with a positive bias. One may refer to Section 5.1 for an illustrative example.

The actual performance of ÎSELOO(ηn) therefore strongly depends on the design configura-
tion: its attractive features pointed out in the literature are in fact valid on average, for designs

Xn with xi
i.i.d.∼ µ. Note that when the xi are designed to ensure precise prediction of f over

X , they are usually space-filling and thus far from resembling an i.i.d. sample, see, e.g., [17].

This situation approaches case (ii) and we will see in Sections 5.2 to 5.4 that indeed ÎSELOO(ηn)
tends to overestimate ISE(ηn).
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4 Best linear estimation of the ISE based on squared LOO resid-
uals

The LOOCV estimator (2.5) has two antagonist distinctive features: (i) it is free of any modeling
assumption, and can thus be used to infer the predictive quality of any predictor ηn; (ii) it is
agnostic to the geometry of the design Xn, and is thus unable to capture its impact on the
expected errors in regression problems, being thus highly sensitive to the covariate shift problem
[23]. On the one hand, the estimator we propose in this paper loses the universality of feature (i)
as it is strongly grounded on the GP assumption for f and is derived for linear predictors only.
On the other hand, its parameters are tuned to the design geometry, so that the impact of this
geometry on the estimated error is correctly accounted for. A key advantage over LOOCV is
thus that we can choose the design Xn by focusing solely on the accuracy of ηn, without worrying
about the possible impact of the choice of Xn on the precision of the estimate of ISE(ηn).

Our estimator, ÎSEBLP (ηn), relies on the assumption that Yx ∼ GP(0, σ2eK
(e)) for some

some SPD kernel K(e). In Sections 4.1 to 4.3 we assume that GP(0, σ2eK
(e)) ≡ GP(0, σ2K) and

drop the superscript (e), but in Section 4.4 we investigate the performance (bias and MSE) of

ÎSEBLP (ηn) in the case where the data generating model GP(0, σ2K) differs from the assumed
model GP(0, σ2eK

(e)); see also Sections B and C of the supplement.

4.1 Best linear estimation of ε2n(x)

We consider estimation of the squared prediction error ε2n(x) of a linear predictor ηn at a generic
point x ∈ X , based on the n observed squared LOO residuals ε�2LOO, assuming that Yx ∼
GP(0, σ2K). The linear estimator that minimizes E{[ε2n(x)−β>ε�2LOO]2} with respect to β ∈ Rn
is

ε̂2nBLP (x) = β̂
>
(x)ε�2LOO, with β̂(x) = S−1n cn(x) , (4.1)

where Sn = E{ε�2LOOε
�2
LOO

>}/σ4 and cn(x) = E{ε2n(x)ε�2LOO}/σ4 are respectively given by (3.5)
and (3.6). The assumption that Rn has full rank implies that Sn is invertible.

One may notice that when wn(xi) = ei, the i-th canonical basis vector, for all i = 1, . . . , n
(which is the case for example when ηn is a kriging predictor for a kernel K(p)), then ρ2n(xi) = 0
and tn(xi) = 0 for all i, see (3.2) and (3.3), and therefore cn(xi) = 0, see (3.6), implying that

ε̂2nBLP (xi) = 0 for all i. This is however not necessarily the case for an arbitrary predictor ηn.
The estimate of ISE(ηn) proposed in this paper is

ÎSEBLP (ηn) =

∫
X
ε̂2nBLP (x)µ(dx) = ε�2LOO

>
S−1n

∫
X

cn(x)µ(dx) = ε�2LOO
>

S−1n bn , (4.2)

with bn given by (3.12). When µ is approximated by a discrete measure on N points x(i),

i = 1, . . . , N , the complexity of the evaluation of ÎSEBLP (ηn) is of the order O(Nn3) (O(n3)

for the evaluation of each ε̂2nBLP (x(i))). As the minimization of MSE{ÎSE(ηn)} with respect to

γ in (3.9) yields γ̂BLP = S−1n bn =
∫
X β̂(x)µ(dx), ÎSEBLP (ηn) is the best estimator of ISE(ηn)

that is linear in the ε2−i. Note that there is no guarantee that ε̂2nBLP (x) = β̂
>
(x)ε�2LOO be

positive. We keep this ε̂2nBLP (x) in our analysis, but use ε̂2n
+

BLP (x) = max{ε̂2nBLP (x), 0} in
the numerical implementation that generated the examples provided in Section 5 and in the
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supplement: ε̂2n
+

BLP (x) minimizes E{[ε2n(x) − β>ε�2LOO]2} with respect to β ∈ Rn under the
constraint β>ε�2LOO ≥ 0.

4.2 Mean and MSE of the best linear ISE estimator (no modeling error)

The assumption Yx ∼ GP(0, σ2K) allows us to compute the statistical moments of ÎSEBLP (ηn),
in particular its bias and MSE. Substituting γ = γ̂BLP = S−1n bn in (3.7) and (3.9) we get

E{ÎSEBLP (ηn)} = σ2b>nS−1n un and thus the bias of ÎSEBLP (ηn) is

Bias{ÎSEBLP (ηn)} = σ2b>nS−1n un − σ2Jn .

Its mean squared error is

MSE{ÎSEBLP (ηn)} = σ4(J2
n + 2Vn)− σ4b>nS−1n bn , (4.3)

where un, Sn, bn, Jn and Vn are respectively given by (3.4), (3.5), (3.12), (3.13) and (3.14).

Notice that MSE{ÎSEBLP (ηn)} < σ4(J2
n + 2Vn) = E{ISE2(ηn)}, the MSE of the trivial estimator

ÎSE(ηn) = 0 — which is not necessarily the case for MSE{ÎSELOO(ηn)}, see (3.16). Direct
comparison with (3.16) gives

MSE{ÎSELOO(ηn)} −MSE{ÎSEBLP (ηn)} = σ4
(
1n/n− S−1n bn

)>
Sn
(
1n/n− S−1n bn

)
≥ 0

and Section 5 will highlight the superiority of ÎSEBLP (ηn) over ÎSELOO(ηn) in various situations
involving model misspecification; see also Sections B to D in the supplement.

4.3 BLUP for the assumed GP model

As in Section 3.2, assume now that ηn ≡ η∗n given by (2.2) (with again Yx ∼ GP(0, σ2K)). With
the notation of Section 3.2 we get b∗n =

∫
X c∗n(x)µ(dx) = J∗nu∗n with J∗n =

∫
X ρ∗n

2(x)µ(dx),
and our linear estimator has the simple form

ÎSEBLP (η∗n) = ε�2LOO
>
γ̂∗BLP = J∗n ε

�2
LOO

>
S∗n
−1u∗n , (4.4)

where S∗n and u∗n are given by (3.17) and (3.18). Simple algebraic manipulations yield

Bias{ÎSEBLP (η∗n)} = σ2J∗n

(
u∗n
>S∗n

−1u∗n − 1
)

= − σ2J∗n
1 + u∗n

>Q−1n u∗n
,

where Qn = 2(DnMDn)�2, showing that ÎSEBLP (η∗n) is negatively biased. As the numerical
results presented in Section 5 show, this is the case in most situations of interest, and we present
a bias-corrected version in Section 4.6. We also get from (4.3):

MSE{ÎSEBLP (η∗n)} = var{ISE(η∗n)}+ IMSE2(η∗n)
(

1− u∗n
>S∗n

−1u∗n

)
= var{ISE(η∗n)}+ IMSE2(η∗n)

1

1 + u∗n
>Q−1n u∗n

.
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4.4 Best linear ISE estimation with model misspecification

In this section, we return to the general framework of Section 4.1, where ηn(x) = w>(x,Xn)yn is
a given arbitrary linear predictor, but we estimate ISE(ηn) assuming the misspecified model Yx ∼
GP(0, σ2eK

(e)) when in fact Yx ∼ GP(0, σ2K), K 6= K(e). We thus add the superscript (e) to the

notation of Section 4.1. We have now γ̂BLP = S
(e)
n

−1
b
(e)
n and ÎSEBLP (ηn) = ε�2LOO

>
S
(e)
n

−1
b
(e)
n .

Substituting γ̂BLP for γ in (3.7) and (3.9) we obtain

E{ÎSEBLP (ηn)} = σ2 u>nS(e)
n

−1
b(e)
n , (4.5)

MSE{ÎSEBLP (ηn)} = σ4
[
b(e)
n

>
S(e)
n

−1
SnS

(e)
n

−1
b(e)
n − 2 b(e)

n

>
S(e)
n

−1
bn + J2

n + 2Vn

]
,(4.6)

where un,Sn,bn, Jn and Vn are defined in Section 3.1 (with the superscript (e) when the kernel
K(e) is substituted for K).

As one may expect, MSE{ÎSEBLP (ηn)} is minimum when using the oracle ISE estimator

based on the true model GP(0, σ2K). Indeed, denoting ÎSE
(oracle)

BLP (ηn) the estimator that uses K
instead of K(e), by direct calculation with (4.6) we get

MSE{ÎSEBLP (ηn)} −MSE{ÎSE
(oracle)

BLP (ηn)}

= σ4
(
S(e)
n

−1
b(e)
n − S−1n bn

)>
Sn

(
S(e)
n

−1
b(e)
n − S−1n bn

)
≥ 0 . (4.7)

4.5 Independent and flat limits

Here we assume that K(e) is translation invariant, with K(e)(x,x′) = Kθ(x,x
′) = Ψ[θ(x−x′)], for

some function Ψ defined on R+ such that Ψ(0d) = 1 and Ψ(z) tending to zero when ‖z‖ → +∞.
In particular, Kθ may be isotropic, with Kθ(x,x

′) = ψ(θ‖x−x′‖) and θ acting like the inverse of
a correlation length, with ψ(0) = 1 and ψ(r)→ 0 as r → +∞. All kernels used in the examples
of Section 5 have this property. We assume that µ(Xn) = 0. We call independent limit the case

θ → +∞ and flat limit the case θ → 0. There is no limiting behaviors to consider for ÎSELOO(ηn)

as it does not use K(e), and we thus only consider the case of ÎSEBLP (ηn) defined by (4.2).

Independent limit For a fixed design Xn, as θ → +∞ direct calculation gives K
(e)
n → In,

u
(e)
n → u

(e)
n (∞) = diag

{
(R>nRn)

}
, and we get

J (e)
n →

θ→+∞
J (e)
n (∞) = 1 +

∫
X
‖wn(x)‖2 µ(dx) ,

b(e)
n →

θ→+∞
b(e)
n (∞) = J (e)

n (∞) u(e)
n (∞) + 2 diag

{
(R>n I(w)Rn)

}
,

S(e)
n →

θ→+∞
S(e)
n (∞) = u(e)

n (∞)u(e)
n (∞)> + 2 (R>nRn)�2 ,

with I(w) =
∫
X wn(x)w>n (x)µ(dx). Therefore,

ÎSEBLP (ηn) →
θ→+∞

v>n S(e)
n

−1
(∞)b(e)

n (∞) and E{ÎSEBLP (ηn)} →
θ→+∞

σ2 u>nS(e)
n (∞)−1b(e)

n (∞) ,

and, similarly, the independent limit for MSE{ÎSEBLP (ηn)} is obtained by substituting S
(e)
n (∞)

and b
(e)
n (∞) for S

(e)
n and b

(e)
n in (4.6).
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Flat limit We let now θ tend to zero in K(e)(x,x′) = Ψ[θ(x− x′)]. When we take K = K(e),
i.e., when the data are also generated by GP(0, σ2eK

(e)), a careful analysis (which is beyond the
scope of this paper) based on [2, 3] shows the existence of a flat limit for the weights γ̂∗BLP =

J∗n S∗n
−1u∗n of the estimator ÎSEBLP (η∗n). Then, since E{vn} = σ2u∗n and {u∗n}i = ρ∗n\i

2(xi), see

Section 3.2, for a fixed σ2e , E{ÎSEBLP (η∗n)} →
θ→0

0 (and similarly MSE{ÎSEBLP (η∗n)} →
θ→0

0).

As explained below, the situation is different in the (more meaningful) situation where K 6=
K(e), K is fixed and θ → 0 in K(e). Studying the precise behavior of ÎSEBLP (ηn) when θ → 0
would require developments beyond the scope of this paper; we nevertheless list some basic facts
that explain certain features observed in the examples in Section 5.

As θ → 0, we have K
(e)
n → 1n1

>
n and k

(e)
n (x) → 1n for all x. Therefore, (3.2) gives

ρ
(e)
n

2
(x) →

θ→0
[1 − w>n (x)1n]2 and thus J

(e)
n →

θ→0
J
(e)
n (0) =

∫
X [1 − w>n (x)1n]2 µ(dx), and (3.3)

yields t
(e)
n (x) →

θ→0
[1−w>n (x)1n]1n. We also have

u(e)
n = diag

{
(R>nK(e)

n Rn)
}
→
θ→0

u(e)
n (0) = (R>n 1n)�2 ,

so that (3.6) gives c
(e)
n (x) →

θ→0
3 [1−w>n (x)1n]2 u

(e)
n (0) for any x ∈X , and therefore

b(e)
n →

θ→0
b(e)
n (0) = 3J (e)

n (0)u(e)
n (0) .

As R>nK
(e)
n Rn →

θ→0
R>n 1n1

>
nRn, S

(e)
n →

θ→0
S
(e)
n (0) = 3 u

(e)
n (0)[u

(e)
n (0)]>, a rank-one matrix. The

singularity of S
(e)
n (0) prevents the existence of a flat-limit for ÎSEBLP (ηn) when θ tends to zero,

explaining why we encounter numerical difficulties for evaluating ÎSEBLP (ηn) for (very) small θ.

When the predictor ηn is such that w>n (·)1n ≡ 1 for any n and any Xn, we have J
(e)
n (0) = 0

and thus b
(e)
n (0) = 0n, and moreover the matrix Rn in (3.1) satisfies R>n 1n = 0n and thus

u
(e)
n (0) = 0n. Therefore, S

(e)
n and b

(e)
n respectively tend to the null matrix and null vector when

θBLP → 0, and we may expect the numerical difficulties to be less pronounced for predictors
with this property; see the numerical example in Section 5.2.2 for an illustration.

4.6 Best linear unbiased estimation of the ISE

Assuming that Yx ∼ GP(0, σ2K), we can easily correct the bias of the linear estimator of ε2n(x)
derived in Section 4.1: we minimize E{[ε2n(x) − β>ε�2LOO]2} with respect to β ∈ Rn under the
constraint β>E{ε�2LOO} = E{ε2n(x)}. Since E{ε2n(x)} = σ2ρ2n(x) and E{ε�2LOO} = σ2un, see (3.2)
and (3.4), the constraint is β>un = ρ2n(x), which does not depend on σ2. The optimal solution
to this convex minimization problem is

β̂U (x) = S−1n

[
cn(x) +

ρ2n(x)− u>nS−1n cn(x)

u>nS−1n un
un

]
. (4.8)

The unbiased version of the linear estimate of ISE(ηn) is then ÎSEBLUP (ηn) = γ̂>BLUPε
�2
LOO,

with γ̂BLUP =
∫
X β̂U (x)µ(dx) = S−1n bn + (Jn − u>nS−1n bn)S−1n un/(u

>
nS−1n un) (which we also

directly obtain by minimization of MSE{ÎSE(ηn)} in (3.9) under the constraint γ>un = Jn, see
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(3.7) and (3.10)). Its bias, variance and MSE are respectively given by (3.7), (3.8) and (3.9)

with γ̂BLUP substituted for γ. Note that ÎSEBLUP (ηn) is unbiased only in absence of model
misspecification. Cases where ηn ≡ η∗n and where a misspecified kernel K(e) 6= K is assumed can
be considered similarly to Sections 4.3 and 4.4. A numerical illustration of the performance of
ÎSEBLUP (ηn) is given in Sections 5.2.2 (see Figure 5) and C, D in the supplement, indicating a

moderate improvement over ÎSEBLP (ηn) (in particular because bias cancellation is only effective
in the absence of modeling error).

4.7 Introduction of a nugget effect for noisy observations

Statistical modeling of physical systems usually relies on observations corrupted by noise. Sup-
pose that we observe y(xi) = f(xi) + ζi at the n design points xi, where the measurement
errors ζi are i.i.d. random variables. Assuming that these errors are normal, the develop-
ments above for the construction of the ISE estimate ÎSEBLP (ηn) remain valid provided we
use now a GP model with nugget effect: we assume that Yx ∼ GP(0, σ2K ′r) with K ′r defined
by K ′r(x,x

′) = K(x,x′) + r δx,x′ , where δx,x′ = 1 when x = x′ and is zero otherwise. The
implementation of the method requires knowledge of the nugget effect r. Estimating r from
the data Fn is a possible option (see, e.g., [13, Sect. 4]) that we do not pursue here: it raises
several issues, notably of robustness (note that both σ2 and r need to be estimated), which
are worth investigating further. However, the numerical results presented in Section D.2 in the
supplement indicate that the performance of ÎSEBLP (ηn) remains noticeably superior to that of
LOOCV even when r is severely misspecified.

5 Numerical experiments

5.1 Influence of the design Xn

This simple example illustrates the discussion at the end of Section 3.1. Here, the function f
depends on a single variable x ∈X = [0, 1] and is a realization of a GP: Yx ∼ GP(0, σ2K) with
σ = 1 and K(x, x′) = K3/2,θ0(x,x′) = ψ3/2,θ0(|x− x′|), where ψ3/2,θ corresponds to the isotropic
Matérn 3/2 kernel,

ψ3/2,θ(r) = (1 +
√

3 θ r) exp(−
√

3 θ r) . (5.1)

The predictor ηn is the BLUP for the model GP(0, σ2pK
(p)), with K(p)(x, x′) = K5/2,θp(x,x

′) =
ψ5/2,θp(|x− x′|) corresponding to the isotropic Matérn 5/2 kernel

ψ5/2,θ(r) =
[
1 +
√

5 θ r + (5/3) θ2 r2
]

exp(−
√

5 θ r) . (5.2)

We take θ0 = 5 and θp = 2 (the predictor thus assumes extra regularity and smoothness). We

compare the estimators ÎSELOO(ηn) and ÎSEBLP (ηn) for a particular realization of Yx and for
a family of n-point designs Xn(δ), with n = 10, ranging from designs composed of 5 pairs of
neighboring points to designs well spread over X : Xn(δ) = {0, 0.2, 0.4, 0.6, 0.8}∪{δ, 0.2+δ, 0.4+

δ, 0.6 + δ, 0.8 + δ}, δ ∈ [0.005, 0.1] (so that δ = mini 6=j |xi− xj |). The estimator ÎSEBLP (ηn) uses
the true model GP(0, σ2K).

The left panel of Figure 1 shows the realization of Yx defining f(x) (red solid line) and two
predictions ηn(x) corresponding to Xn(0.015) (triangles and dotted line in blue) and Xn(0.1)
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(circles and dotted line in green); the design points {0, 0.2, 0.4, 0.6, 0.8} (present in Xn(0.015)
and Xn(0.1)) are indicated by red stars. The right panel shows the evolution of the ratios

ÎSELOO(ηn)/ISE(ηn) (black dotted line with ◦) and ÎSEBLP (ηn)/ISE(ηn) (magenta dotted line
with +), in log scale, as functions of δ, for the particular realization of the left panel. The solid

line curves, black with O and magenta with ?, are respectively for E{ÎSELOO(ηn)}/IMSE(ηn) and

E{ÎSEBLP (ηn)}/IMSE(ηn).
When δ is small, prediction at a removed point xi is accurate due to the presence of another

design point nearby, and the LOO error ε−i is significantly smaller than a typical error εn(x) for

x ∈X . As a consequence, ÎSELOO(ηn) strongly underestimates ISE(ηn). Conversely, for designs
corresponding to large δ, removing one xi leaves a big hole in Xn and prediction at this xi is
inaccurate: ε−i is thus significantly larger than a typical εn(x) and ÎSELOO(ηn) overestimates

ISE(ηn). On the opposite, ÎSEBLP (ηn) gives an acceptable estimation of ISE(ηn) for all values of
δ considered.

Figure 1: Left: f(x) (—) and ηn(x) for the designs Xn(0.015) (· · · with ? and O) and Xn(0.1) (· · ·
with ? and ◦). Right: log10[ÎSELOO(ηn)/ISE(ηn)] (- - - with ◦) and log10[ÎSEBLP (ηn)/ISE(ηn)] (- - -

with +); log10[E{ÎSELOO(ηn)}/IMSE(ηn)] (— with O) and log10[E{ÎSEBLP (ηn)}/IMSE(ηn)] (— with ?)
as functions of δ.

Figure 2 is for the design Xn(0.1) = {0, 0.1, 0.2, . . . , 0.9} (the best among all Xn(δ) in terms

of IMSE(ηn)) and shows (in log scale) ÎSELOO(ηn), ÎSEBLP (ηn) and ISE(ηn) for the realization on
the left panel of Figure 1, together with their expected values, when θp, the range parameter in

the kernel K3/2,θp of the predictor, varies in [1, 10]. Estimation of ISE(ηn) by ÎSEBLP (ηn) is much

more accurate than with ÎSELOO(ηn) for all predictors considered. Note that the small negative

bias of ÎSEBLP (ηn) is not very sensitive to the smoothness of ηn for this example. Also note that

ÎSELOO(ηn) and ÎSEBLP (ηn) are both minimum for θp = 10 whereas ISE(ηn), the true ISE, is

minimum for θp = 1 (however, E{ISE(ηn)}, E{ÎSELOO(ηn)} and E{ÎSEBLP (ηn)} are respectively
minimum for θp ' 6.6, 6.7 and 5.9).

5.2 Robustness to the choice of K(e)

Here we consider numerical examples of construction of ÎSEBLP (ηn) involving different predictors
ηn, different data generating models GP(0, σ2K) and different assumed models GP(0, σ2eK

(e))
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Figure 2: log10[ÎSELOO(ηn)], log10[ÎSEBLP (ηn)] and log10[ISE(ηn)] for the particular realization on the

left panel of Figure 1, and log10[E{ÎSELOO(ηn)}], log10[E{ÎSEBLP (ηn)}] and log10[E{ISE(ηn)}], as func-
tions of θp ∈ [1, 10].

with K(e) 6= K, and compare the performances of ÎSEBLP (ηn) and ÎSELOO(ηn). We always use
isotropic kernels. In particular, K(e)(x,x′) = ψ(e)(θBLP‖x− x′‖) and we study the influence of
the choice of the range parameter θBLP, the inverse of a correlation length. The notation θBLP

is to highlight the fact that θBLP only influences the estimation of ISE(ηn) by ÎSEBLP (ηn).
We take X = [0, 1]2 and Xn (n = 100) is the 10×10 regular grid with coordinates (i−1)/9,

i = 1, . . . , 10; µ is the empirical measure on the first 210 points of the low-discrepancy Sobol’
sequence in X (which means that we consider a Quasi-Monte Carlo approximation of the ISE
for the uniform measure on X ). We generate n observations yn for the design Xn and the
model GP(0, σ2K), with σ2 = 1 (its value is irrelevant as it simple acts as a scaling factor) and
K(x,x′) = K3/2,θ0(x,x′) = ψ3/2,θ0(‖x−x′‖), the Matérn 3/2 kernel given by (5.1), where we set
θ0 = 10. With θ0 fixed, the expected ISE for this model, E{ISE(ηn)} = IMSE(ηn), only depends
on Xn, see (3.10).

In the first example below, ηn corresponds to a polynomial model that is not an interpolator.

5.2.1 Prediction with a non-interpolating polynomial model

The predictor ηn is obtained by polynomial model fitting: we (wrongly) assume that the data
yn are given by

yi = φ>(xi)α+ δi ,

where the error vector δ = (δ1, . . . , δn)> is normally distributed N (0, γ2In) and where each
component φ`(x) of φ(x) = [φ1(x), . . . , φm(x)]> is a multivariate polynomial in the d components
of x; see Section A in the supplement. The predictor is ηn(x) = φ>(x)α̂, with α̂ the posterior
mean of the model parameters and φ(x) a vector of polynomial functions of x. As this model
(wrongly) assumes the presence of i.i.d. observation errors with positive variance γ2, ηn is not
an interpolator.

We take γ2 = 0.1; φ(x) has dimension m = n/2 = 50 and each of its components has the
form ϕ`1(x1)ϕ`2(x2), where ϕi(·) denotes the Legendre polynomial of degree i, orthonormal for
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the uniform measure on [0, 1]. The indices `1 and `2 take the values{[
`1
`2

]
, ` = 1, . . . , 50

}
=

{
00110212032130423140532415062534160735264170845362
01012021302314032415034251605243617053624718054637

}
,

and the polynomial model is thus of total degree 9. We set a vague prior on the parameters α,
assuming that α ∼ N (0m,Λ) with Λ = diag{Λ1, . . . ,Λm} where Λ` = λ`1λ`2 , ` = 1, . . . , 50,
with `1, `2 as indicated above and λk = 103 × 2−k, k ≥ 0 (the prior on α is therefore not very
informative).

We construct ÎSEBLP (ηn) using the model GP(0, σ2eK
(e)), where K(e) = K3/2,θBLP

(K(e) thus

coincides with K for θBLP = θ0 = 10). For each value of θBLP we calculate E{ÎSEBLP (ηn)} and

MSE{ÎSEBLP (ηn)}, respectively given by (4.5) and (4.6).
The procedure is repeated M = 100 times, with a different vector yn[i] and thus a different

predictor ηn[i] each time, and we compute the empirical means Ẽ{ISE(ηn)} and Ẽ{ÎSEBLP (ηn)}
of the ISE(ηn[i]) and ÎSEBLP (ηn[i]), respectively, i = 1, . . . ,M , together with the empirical

standard deviations. We also compute M̃SE{ÎSEBLP (ηn)}, given by the empirical mean of the

squared errors [ISE(ηn[i])− ÎSEBLP (ηn[i])]2, and use their empirical standard deviation to build
confidence intervals.

The left panel of Figure 3 shows E{ISE(ηn)}, E{ÎSEBLP (ηn)}, Ẽ{ISE(ηn)} and Ẽ{ÎSEBLP (ηn)}
as functions of θBLP; the confidence bands on Ẽ{ISE(ηn)} and Ẽ{ÎSEBLP (ηn)} (two standard

deviations) are colored. The right panel shows MSE{ÎSEBLP (ηn)} and M̃SE{ÎSEBLP (ηn)} as

functions of θBLP, and the confidence band on M̃SE{ÎSEBLP (ηn)} (two standard deviations,
truncated to positive values) is colored. Notice the good agreement between empirical and

exact values for the mean and MSE of ÎSEBLP (ηn). Although not clearly visible on the plot,

MSE{ÎSEBLP (ηn)} is minimum for θBLP = θ0 = 10, in agreement with (4.7).

On the same data set, the estimator ÎSELOO(ηn) has an empirical mean and standard devia-
tion of approximately 3.6 and 2.5, respectively; its (exact) expected value is about 3.373. These

values are well outside the range shown on Figure 3-left. Conversely, ÎSEBLP (ηn) has a small
negative bias for θBLP around θ0 or smaller, and its positive bias becomes significant only when
θBLP is much larger than θ0.

Figure 3 shows that E{ÎSEBLP (ηn)} and MSE{ÎSEBLP (ηn)} are increasing functions of θBLP

for θBLP large enough; the independent limits (θBLP → +∞), obtained from the calculations of
Section 4.5, are given in Table 2 and are in good agreement with the values obtained numerically
for large θBLP (θBLP > 100, say). These values indicate that ÎSEBLP (ηn) gives a much more

precise estimation of ISE(ηn) than ÎSELOO(ηn) for all θBLP & 10−3. Note that E{ISE2(ηn)} (first

column of Table 2) is the MSE of the trivial estimator ÎSE(ηn) = 0 and is much smaller than

MSE{ÎSELOO(ηn)} (second column).
As the prior on the model parameters is rather vague, the construction almost coincides

with Least-Squares regression. Since the linear model contains an intercept (φ1(x) = 1 for
all x), the prediction wn(x)>1n associated with yn = 1n is almost one for all x: we have
|wn(x)>1n − 1| < 5 · 10−8 over X . Hence, in agreement with the flat-limit discussion in
Section 4.5, small values of θBLP do not cause severe numerical difficulties, and in Figure 3 we
could use values as small as θBLP = 10−3. When the prior on α is more informative, the range
for θBLP should be restricted to larger values: for example, when λk = 50× 2−k, E{ÎSEBLP (ηn)}
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Figure 3: Estimation of ISE(ηn) by ÎSEBLP (ηn) when ηn is a (non-interpolating) polynomial of total
degree 9 with 100 design points forming a regular grid in [0, 1]2; Yx ∼ GP(0,K3/2,10), K(e) = K3/2,θBLP

,
θBLP ∈ [0.001, 30].

Table 2: E{ISE(ηn)} and E{ISE2(ηn)} (first column); E{ÎSELOO(ηn)} and MSE{ÎSELOO(ηn)} (second

column); independent limits (θBLP → ∞) for E{ÎSEBLP (ηn)} and MSE{ÎSEBLP (ηn)} (third column).
The independent limits are identical for all choices of K(e) considered in the examples of Sections 5.2.2
and B in the supplement.

ISE(ηn) ÎSELOO(ηn) ÎSEBLP (ηn) (θBLP →∞)
Ex. of Section 5.2.1 E 0.418 3.373 0.672

MSE 0.181 12.785 0.082
Ex. of Sections 5.2.2 and B E 0.187 0.731 0.478

MSE 0.035 0.338 0.103

and MSE{ÎSEBLP (ηn)} behave qualitatively like in Figure 3 when θBLP & 0.015, but numerical
instability appears for smaller θBLP.

5.2.2 Linear prediction with a GP model

The predictor ηn is now the BLUP for the GP model GP(0, σ2pK
(p)), ηn(x) = k

(p)
n

>
(x)K

(p)
n

−1
yn,

where K(p)(x,x′) = K5/2,θp(x,x
′) = ψ5/2,θp(‖x − x′‖), see (5.2), with θp = 5; Xn, X and µ

are like in Section 5.2.1 and the data are still generated with GP(0, σ2K) where σ2 = 1 and
K = K3/2,θ0 with θ0 = 10, see (5.1).

We construct ÎSEBLP (ηn) for the model GP(0, σ2eK
(e)), using K(e) = K3/2,θBLP

with θBLP 6=
θ0, i.e., K(e) and K have the same regularity but different correlation lengths. Figure 4 presents
the same information as Figure 3 in this setting. Comparison of the two figures shows that
predictions by the BLUP for the model GP(0, σ2pK

(p)) are significantly more precise than with the

polynomial model of Section 5.2.1. Here, Ẽ{ISE(ηn)} and E{ISE(ηn)} are practically confounded

on the left panel; on the right panel, MSE{ÎSEBLP (ηn)} is again minimum for θBLP = θ0 = 10.

In view of the values of E{ÎSELOO(ηn)} and MSE{ÎSELOO(ηn)} indicated in Table 2, ÎSEBLP (ηn)
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performs significantly better than ÎSELOO(ηn) for the whole range of values of θBLP considered.
Note that the plots are for θBLP ≥ 0.05 and the numerical difficulties caused by the singularity

of the flat limit S
(e)
n (0) of the matrix S

(e)
n are already apparent for θBLP close to 0.05; see

Section 4.5.

Figure 4: Estimation of ISE(ηn) by ÎSEBLP (ηn) when ηn is the BLUP (simple-kriging predictor) for the
model GP(0,K5/2,5) on [0, 1]2; Yx ∼ GP(0,K3/2,10), K(e) = K3/2,θBLP

, θBLP ∈ [0.05, 20] (Xn is a regular
grid of 100 design points).

Figure 5 presents the same information as Figure 4 for the unbiased estimator ÎSEBLUP (ηn)

of Section 4.6. The left panel shows that ÎSEBLUP (ηn) is indeed unbiased when the model is

correct (i.e., for θBLP = 10), but remains biased otherwise (and is more biased than ÎSEBLP (ηn)
for large θBLP). Its MSE (right panel) is significantly larger (respectively, slightly smaller) than

that of ÎSEBLP (ηn) for large (respectively, small) θBLP.

Figure 5: Same as Figure 4 but for the unbiased estimator ÎSEBLUP (ηn) of Section 4.6.

The behavior of ÎSEBLP (ηn) is slightly different for small θBLP when ηn is the ordinary-
kriging predictor η̂n for the model GP(0, σ2pK

(p)). Here, the vector of weights ŵn(x) minimizes
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ρ2n(x) given by (3.2) for K = K(p) under the constraint ŵ>n (x)1n = 1, and is thus solution of(
K

(p)
n 1n

1>n 0

)(
ŵn(x)
λn

)
=

(
k
(p)
n (x)

1

)
,

where λn is the Lagrange coefficient for the constraint. Denoting by Kn the (n+1)×(n+1) matrix

on the left-hand side and M = K
−1
n , using block-matrix inversion we get ε−i = Mi,1:nyn/Mi,i for

i = 1, . . . , n, and Rn = M Dn in (3.1), with Dn = diag{1/Mi,i, i = 1, . . . , n}. As ŵ>n (x)1n = 1,

R>n 1n = 0n and S
(e)
n and b

(e)
n (x) respectively tend to the null matrix and null vector when

θBLP → 0. In agreement with the flat-limit discussion in Section 4.5, when θBLP is small we
observe a more stable behavior for ÎSEBLP (ηn) on Figure 6 for the ordinary kriging predictor η̂n
than on Figure 4 for the BLUP ηn.

Figure 6: Same as Figure 4 but for the ordinary-kriging predictor η̂n for the model GP(0,K5/2,5).

In Section B of the supplement, we consider the situation where K(e) and K have different
regularities. We still use K = K3/2,10 and ηn is the simple-kriging predictor for the model

GP(0,K5/2,5), but the construction of ÎSEBLP (ηn) relies on K(e)(x,x′) = ψ(e)(‖x−x′‖), where we

consider different ψ(e): ψ1/2,θBLP
(r) = exp(−θBLP r), ψ5/2,θBLP

(r) given by (5.2), ψIM,θBLP
(r) =

(1 + θ2BLP r
2)−1 and ψ∞,θBLP

(r) = exp(−θ2BLP r
2), corresponding respectively to the Matérn 1/2,

Matérn 5/2, inverse multiquadric and Gaussian kernel. Our conclusion is that the choice of K(e)

is not crucial, provided it is regular enough (possibly more regular than K) and θBLP is not
excessively small.

5.3 An environmental model

This example uses the model of [5] that describes the pollutant spill caused by a chemical
accident. We use the implementation given at https://www.sfu.ca/~ssurjano/environ.html,
with parameters set at the values M = 10, D = 0.07, L = 1.505 and τ = 30.1525, as on the
figure shown there. The space-time design variables are taken in X = [0, 3] × [1, 60], which
we renormalize to [0, 1]2. The function varies approximately between 0 and 70 over X , with a
rather sharp peak at the center of X .
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As the function is fixed, we use random designs to provide a statistical comparison between
methods operating in various conditions. We generate random n-point designs in [0, 1]2, with n =
200, using the relaxed greedy-packing algorithm of [19]. The construction uses x1 = (1/2, 1/2)>

and then xk+1 = αkxi + (1 − αk)x∗ for k ≥ 1, where x∗ ∈ Arg maxx∈X minxj∈Xk
‖x − xj‖,

xi ∈ {x` ∈ Xk : ‖x∗ − x`‖ = minxj∈Xk
‖x∗ − xj‖}, and the αk are independently uniformly

distributed in [0, a], 0 ≤ a < 1. To make the method implementable, we select x∗ within a
finite subset XN of X : XN corresponds to the first N = 212 Sobol’ points in [0, 1]2. The
same points are used to approximate integrals; i.e., µ is the uniform measure on XN . From
[19, Th. 3.6], the packing (respectively, covering) efficiencies of such Xn with respect to optimal
packing (respectively, covering) designs in XN equal at least (1− a)/2 for any n ≤ N . We take
a = 0.2, which yields efficiencies at least 40%.

The predictor for which we estimate the ISE is intentionally not well adapted to this situation:
ηn is the BLUP for the model GP(0, σ2pK

(p)) with K(p) = K3/2,θp , see (5.1), i.e., ηn is the simple-
kriging predictor for that model. (The ordinary-kriging predictor would be would be a better

choice, as the mean of f over XN is about 9.5.) The estimator ÎSEBLP (ηn) uses the kernel
K(e)(x,x′) = ψ5/2,θBLP

(‖x− x′‖), see (5.2), and different values of θBLP are considered.

We first set θp = 1 in K(p), which provides smooth predictions ηn for designs Xn well spread

over X . The left panel of Figure 7 is for a single (typical) design Xn and shows ÎSEBLP (ηn)/ωn as
a function of θBLP, with ωn the empirical variance of the f(xi), xi ∈ Xn. Values of ISE(ηn)/ωn
and ÎSELOO(ηn)/ωn (not depending on θBLP) are also shown: ÎSELOO(ηn) provides a severe

overestimation of ISE(ηn); ÎSEBLP (ηn) is significantly more accurate for the range considered
for θBLP. The vertical line indicates the value θ̂LOO, the LOOCV estimator of θ that minimizes
ÎSELOO(η∗n), with η∗n the BLUP for the model GP(0, σ2K5/2,θ); see (3.19).

Here, (1/n)
∑n

i=1 yi ' 9.59 suggesting the use of a GP model with nonzero mean for the

construction of ÎSEBLP (ηn). However, the weights wn(x) of the predictor ηn satisfy
∫
X [1 −

w>n (x)1n]2 µ(dx) ' 2 · 10−8, and due to the robustness of ÎSEBLP (ηn) to the presence of a
non-zero constant trend when w>n (x)1n ≈ 1 for all x (see Section E.2 in the supplement), the
correction of Section E is not required.

On the right panel of Figure 7, to confirm that the results above are not due to a particularly
favorable choice of Xn we consider 100 random designs (all with packing and covering efficiencies

at least 40%). We have seen in Section 5.2 that the estimator ÎSEBLP (ηn) is not very sensitive
to the choice of K(e), suggesting that the precise data fitting of a GP model GP(0, σ2eK

(e))
is not needed: we use only the isotropic kernel K(e)(x,x′) = ψ5/2,θBLP

(‖x − x′‖), although
other, non-isotropic, kernels may be more suitable; θBLP is chosen by LOOCV estimation rather
than maximum likelihood due the superior robustness of LOOCV to model misspecification,
see, e.g., [1], and we take θBLP = min{max{θ̂LOO, 5}, 50} (note that θ̂LOO is different for each

Xn) to compute ÎSEBLP (ηn). The maximum of
∫
X [1 − w>n (x)1n]2 µ(dx) over the 100 designs

considered is less than 6 · 10−8 and we ignore again the presence of a nonzero mean. The figure
presents boxplots of the normalized ISE(ηn) (divided by the variance ωn of the observations f(xi),

xi ∈ Xn) and of the normalized estimates ÎSELOO(ηn) and ÎSEBLP (ηn). Note the much better

performance of ÎSELOO(ηn) (although significantly worse than that of ÎSEBLP (ηn)) compared
to the example of Section 5.2.1. The computational time3 for the construction of ηn(x) for a

3Computations are in Matlab, on a PC with a clock speed of 2.5 GHz and 32 GB RAM.
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given Xn and all x ∈ XN is about 0.04 s and the calculation of ÎSEBLP (ηn) takes about 0.09 s
(average values over 100 repetitions).

Figure 7: Environmental model: ηn is the BLUP for the model GP(0, σ2K3/2,1) and K(e)(x,x′) =

ψ5/2,θBLP
(‖x − x′‖). Left: ISE(ηn)/ωn, ÎSELOO(ηn)/ωn and ÎSEBLP (ηn)/ωn as functions of θBLP, with

ωn the empirical variance of the f(xi), for one random design having packing and covering efficiencies at

least 40%; the value θ̂LOO that minimizes ÎSELOO(ηn) with ηn the BLUP for the model GP(0, σ2K5/2,θ)

is indicated by a vertical line. Right: boxplots of ISE(ηn)/ωn, ÎSELOO(ηn)/ωn and ÎSEBLP (ηn)/ωn, for

100 random designs having packing and covering efficiencies at least 40% (θBLP = θ̂LOO in ÎSEBLP (ηn)).

We use now a predictor with θp = 1.5546/[2 PR(Xn)], with PR(Xn) = (1/2) minxi 6=xj ‖xi −
xj‖ the packing radius of Xn (so that ψ3/2,θp [2 PR(Xn)] ' 0.25, corresponding to a model
with rather weak correlation); the shorter correlation length induces a slightly inflated value of
ISE(ηn) compared to previous case with θp = 1. Figure 8 is the counterpart of Figure 7 for this
new situation. On the left panel, the design is the same as in the left panel of Figure 7, we
have θp ' 32.8,

∫
X [1−w>n (x)1n]2 µ(dx) ' 0.09 and the performance of ÎSEBLP (ηn) deteriorates

compared with Figure 7 when the nonzero mean is ignored (red curve with diamonds). For all

values of θBLP considered, ÎSEBLP (ηn) becomes significantly closer to ISE(ηn) when the trend is
taken into account via the approach in Section E of the supplement (magenta curve with circles):
we assume the model GP(τ, σ2K5/2,θBLP

), estimate ISE0(ηn) for centered data as indicated in

(E.2), and then add I(τ̂n); see Section E.2. The vertical lines indicate the values of θ̂LOO for
the two models GP(0, σ2K5/2,θ) and GP(τ, σ2K5/2,θ), i.e., with and without zero mean: in the

former case, θ̂LOO minimizes ÎSELOO(η∗n) with η∗n the BLUP (the simple kriging predictor) for

the model GP(0, σ2K5/2,θ); in the second case θ̂LOO minimizes ÎSELOO(η̂n) with η̂n the ordinary
kriging predictor for the model GP(τ, σ2K5/2,θ) — see Section 5.2.2 for the expression of the
LOO residuals ε−i in this model.

For the right panel of Figure 8 we use the same 100 random designs as on the right panel
of Figure 7 (which gives θp = 1.5546/[2 PR(Xn)] ∈ (31, 35) for the predictor ηn). As before,

we use θBLP = min{max{θ̂LOO, 5}, 50} to compute ÎSEBLP (ηn), where θ̂LOO minimizes either

ÎSELOO(η∗n) or ÎSELOO(η̂n) depending whether we assume a GP with zero mean or not.
Here 0.068 <

∫
X [1−w>n (x)1n]2 µ(dx) < 0.112, which is not negligible contrary to previous

case with θp = 1. When the trend is ignored (third boxplot), ÎSEBLP (ηn) performs already much
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Figure 8: Same as in Figure 7, but ηn is the BLUP for the model GP(0, σ2
pK3/2,θp) with θp =

1.5546/[2 PR(Xn)]. Two versions of ÎSEBLP (ηn) are considered: one that ignores the nonzero trend,
the other that uses the method in Section E of the supplement. On the left panel, the vertical lines
indicate the values of θ̂LOO for the models GP(0,K5/2,θ) (♦- - -♦) and GP(τ,K5/2,θ) (◦- - -◦).

better than ÎSELOO(ηn) (second boxplot); performance is further improved when we apply the
correction proposed in Section E of the supplement to account for the nonzero mean of Yx, see
the fourth boxplot. As the left panel of Figure 8 suggests, better performance could be obtained
by choosing a smaller θBLP. However, optimization with respect to θBLP is not feasible in a real
practical situation as ISE(ηn) is unknown.

We conclude this section by a quick consideration of the problem of model selection. We first
highlight that a precise estimator of ISE(ηn) is not an indispensable tool for selecting a predictor

from a given class. Indeed, numerical experiments indicate that although ÎSELOO(ηn) is often
a poor estimate of ISE(ηn), showing an important positive bias, the predictor that minimizes
this estimate has often a small ISE: it is the stability of the precision of the ISE estimate when
ηn varies in the class considered that is important, not the absolute precision itself. Hence,
although the better performance of ÎSEBLP (ηn) as an estimator of ISE(ηn) is an invitation to

use ÎSEBLP (ηn) for model selection, the gain may be marginal.
As an illustration, Figure 9 shows, for the same design Xn as on the left panels of Figures 7

and 8, the evolution of ISE(ηn)/ωn, ÎSELOO(ηn)/ωn and ÎSEBLP (ηn)/ωn as functions of θp when
ηn is the BLUP for the model GP(0, σ2pK3/2,θp) (ωn is the variance of the f(xi) for xi ∈ Xn

and ÎSEBLP (ηn) uses the correction of Section E of the supplement, with θBLP = θ̂LOO for the

model GP(τ, σ2K5/2,θ)). The estimation of ISE(ηn) by ÎSEBLP (ηn) is much more precise than by

ÎSELOO(ηn) for all values of θp considered, but the optimal (minimizing) θp for ÎSELOO(ηn) and

ÎSEBLP (ηn) are rather close, with only a slight advantage to the latter (the optimal θp being
closer to the value minimizing the true ISE, ISE(ηn)).

This is confirmed by the results obtained for 100 random designs. We select ηn[θp], the BLUP
for the model GP(0, σ2K3/2,θp), among the 46 predictors associated with θp = 5, 6, . . . , 50, by

minimization of ÎSELOO(ηn[θp]) or ÎSEBLP (ηn[θp]). The first row of Table 3 gives, for both
estimators, and also for the selection based on the oracle ISE(ηn[θp]), the empirical mean of
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Figure 9: ISE(ηn)/ωn, ÎSELOO(ηn)/ωn and ÎSEBLP (ηn)/ωn, for same design as on the left panels of

Figs. 7 and 8, as functions of θp ∈ [5, 50] (in ÎSEBLP (ηn), θBLP = θ̂LOO for the model GP(τ,K5/2,θ)).

ISE(ηn[θ
(i)
p ])/ωn over the 100 designs, with θ

(i)
p the value associated with the smallest estimated

ISE for the i-th design. To appreciate the significance of the numerical values in the table, we also
computed the true ISE for the trivial predictor given by ηn = y>n 1n/n, i.e., the empirical mean of
the observations, and we indicate in the table (last column) the value (1/100)

∑100
i=1 ISE(ηn)/ωn.

The estimator ÎSEBLP (ηn) uses the trend-correction approach of Section E in the supplement
for the model GP(τ, σ2K5/2,θBLP

) and θBLP = θ̂LOO for this model.

We can see that ÎSEBLP (ηn) performs slightly better than ÎSELOO(ηn) — but ÎSELOO(ηn)
performs surprisingly well if we consider its strong overestimation of the true ISE (it turns out
that both estimators very rarely select the same model as the oracle that uses ISE(ηn[θp]); see
also Figure 1 of Section 5.1 for another illustration).

Table 3: (1/100)
∑100
i=1 ISE(ηn[θ

(i)
p ])/ωn.

ISE estimator oracle ISE(ηn) ÎSELOO(ηn) ÎSEBLP (ηn) ISE(ηn)

Ex. of Section 5.3 0.197 0.238 0.224 0.775

Ex. of Section 5.4 4.13 ·10−3 4.47 ·10−3 4.23 ·10−3 0.537

5.4 The piston model

The example concerns a simplified version of a 7-dimensional piston model that describes the
motion of a piston within a cylinder, see https://www.sfu.ca/~ssurjano/piston.html, with
the seven design variables x1 = M ∈ [30, 60], x2 = S ∈ [0.005, 0.020], x3 = V0 ∈ [0.002, 0.010],
x4 = k ∈ [1000, 5000], x5 = P0 ∈ [90000, 110000], x6 = Ta ∈ [290, 296] and x7 = T0 ∈ [340, 360].
As the screening analysis in [15] indicates that only the first four variables have a significant
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influence on the model response, we consider a 4-dimensional reduced version of the model,
where the input variables xi for i = 5, 6, 7 are set to the mid-point of the above intervals. The
variables x = (x1, . . . , x4) are renormalized in X = [0, 1]4, we replace X by the finite set XN

given by the first N = 216 Sobol’ points in X and take µ equal to the empirical measure on
XN . We then generate random n-point designs in X (with n = 50), using the same greedy-
packing algorithm as in Section 5.3, all having packing and covering efficiencies at least 40%.
The predictor ηn is again the BLUP for the model GP(0, σ2pK3/2,θp); as the function f is fairly
smooth, we take θp = 1.

The left panel of Figure 10 presents ÎSEBLP (ηn) as functions of θBLP, together with ISE(ηn)

and ÎSELOO(ηn), for a single design Xn. For the red curve with diamonds, the model assumed
is GP(0, σ2eK

(e)) with K(e) = K5/2,θBLP
. We have

∫
X [1 − w>n (x)1n]2 µ(dx) ' 0.11 · 10−3. For

large values of θBLP performance slightly improves when we use the model GP(τ, σ2K5/2,θBLP
)

with the correction of Section E in the supplement (magenta curve with circles), but the reverse
is true for small θBLP, in particular for θBLP = θ̂LOO.

This is confirmed by the right panel of Figure 10, which displays boxplots obtained for
100 random designs. We have 0.07 · 10−3 <

∫
X [1 − w>n (x)1n]2 µ(dx) < 0.14 · 10−3, and the

trend-correction of Section E is not quite necessary: on the opposite, ÎSEBLP (ηn) shows a signif-
icantly stronger variability for the model GP(τ, σ2K5/2,θBLP

) which accounts for the presence of

a nonzero mean than for the model GP(0, σ2K5/2,θBLP
) (ÎSEBLP (ηn) uses θBLP = θ̂LOO for the

model considered). Nevertheless, both estimators perform much better than ÎSELOO(ηn). Note
the negligible variability of ISE(ηn) across designs due to the strong regularity of f .

For a given Xn, the computational time of the construction of ηn(x) for all x ∈XN is about

0.18 s and the calculation of ÎSEBLP (ηn) takes about 0.35 s (average values over 100 repetitions).

Figure 10: Same as in Figure 8 for the piston model, with ηn the BLUP for GP(0, σ2K3/2,1). On the

left panel, the values of θ̂LOO for the models GP(0,K5/2,θ) (♦- - -♦) and GP(τ,K5/2,θ) (◦- - -◦), indicated
by vertical lines, are practically confounded.

The performance of ÎSELOO(ηn) and ÎSEBLP (ηn) (based on the model GP(0,K
5/2,θ̂LOO

)) for

model selection is summarized in the second row of Table 3. As in Section 5.3, we select ηn[θp] in
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a finite family: ηn[θp] is the BLUP for the model GP(0, σ2K3/2,θp) with θp ∈ {0.01, 0.02, . . . , 0.5}
(50 elements). As for the example of Section 5.3, the predictors selected with ÎSEBLP (ηn) have,

on average, a slightly smaller ISE than those selected with ÎSELOO(ηn).

6 Conclusions and further developments

The paper proposes a method that set weights on LOO squared residuals when estimating the
ISE of a linear predictor ηn. The resulting ISE estimator ÎSEBLP (ηn) is more precise than
usual (unweighted) LOOCV, sometimes considerably so. The dependence of the weights on
the sampling design gives the estimator a certain robustness to the design configuration, unlike
LOOCV. On the downside, the method is not as universal as LOOCV: it is limited to ISE
estimation for linear predictors and relies on a GP model (or a mixture of GP models) for the
function that the predictor approximates. The numerical examples presented indicate reasonable
robustness with respect to the choice of the kernel K(e) of the assumed GP model.

Here we have only considered LOO residuals, but the results in [11] open the way to extension
to multiple-fold CV. There, the i-th LOO residual ε−i is replaced by a vector of residuals εIi
at the design points XIi = {xj , j ∈ Ii} with Ii ⊂ {1, . . . , n}, for which only the other points

in Xn \XIi are used for prediction. The weighted ISE estimator ÎSEBLP (ηn) for such multiple-
fold CV would rely on the construction of the best linear estimator of ε2n(x) based on squared
residuals ε�2Ii for all Ii considered. Under a GP model assumption, the εIi are Gaussian, and
the expressions given in [11] can be used to calculate the expectations needed to compute

ÎSEBLP (ηn), following the same lines as in Section 4.1. When the sets Ii form a partition of
{1, . . . , n}, the concatenation of the εIi forms a vector of length n, which entails not major
changes compared with the developments in Section 4; however, when the concatenation forms
a vector of length m > n, the associated matrix Sm is singular and some adaptation becomes
necessary.

One may note that when Yx ∼ GP(0, σ2K), E{ISE(ηn)} = σ2Jn, see (3.10). This observation
prompts us to estimate ISE(ηn) by σ̂2Jn, with σ̂2 an estimator of the process variance σ2. In
particular, assuming that the data are generated with the model GP(0, σ2eK

(e)), we may use the

maximum-likelihood estimator σ̂2ML = (1/n)y>nK
(e)
n

−1
yn, or the LOO estimator,

σ̂2LOO =
1

n

n∑
i=1

M
(e)
ii ε

2
−i =

1

n
y>n

(
n∑
i=1

M
(e)
·i M

(e)
i·

M
(e)
ii

)
yn =

1

n
y>nM(e)D(e)

n M(e)yn ,

where M and Dn are defined in Section 3.2; see, e.g., [6, 1, 14]. Moreover, since E{ISE(η∗n)} =

σ2J∗n when Yx ∼ GP(0, σ2K), exploitation of the expression (4.4) for ÎSEBLP (η∗n) suggests that
we could also estimate σ2 by the best linear estimator based on squared LOO residuals, σ̂2BLP =

ÎSEBLP (η∗n)/J
(e)
n

∗
(or the unbiased version σ̂2BLUP = ÎSEBLUP (η∗n)/J

(e)
n

∗
). For lack of space, we

have not reported here the numerical results obtained with the ISE estimators σ̂2MLJn, σ̂2LOOJn
and σ̂2BLPJn, nor have we presented a comparative study of the performances of σ̂2ML, σ̂2LOO
and σ̂2BLP as estimators of σ2 (one may refer to [1] for a comparison between σ̂2ML and σ̂2LOO)
and we content ourselves with delivering the raw conclusion of our observations: σ̂2BLP is often

a valid alternative to σ̂2ML and σ̂2LOO (in the same way as ÎSEBLP (ηn) is a valid alternative to

ÎSELOO(ηn)), but the associated ISE estimators are generally not competitive compared with

ÎSEBLP (ηn), even if they sometimes perform significantly better than ÎSELOO(ηn).
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Finally, we have presented some preliminary, but promising, results concerning the applica-
tion of our ISE estimator ÎSEBLP (ηn) to model selection, in particular to the selection of a GP
model when ηn is the BLUP for GP(0, σ2pK

(p)). In that case, if we take K(p) and K(e) in the same
family, the method can be iterated, following the same fixed-point principle as for iteratively
reweighted least-squares (see, e.g., [12]): the first kernel K1 can be initialized through selection
by LOOCV; then, at each iteration j ≥ 1, model selection by minimization of the estimator
ÎSEBLP (ηn[K(p)]) constructed with K(e) = Kj , yields the kernel Kj+1 to be used to calculate

ÎSEBLP (ηn[K(p)]) at next iteration. We do not expand on this iterative approach here, although
it would be worth exploring further.

The limitations of the method are those inherent in the use of GP models for function
approximation. In situations where the predictor ηn under consideration performs well enough,
finding an appropriate GP model for f seems to be a feasible task, making ÎSEBLP (ηn) a useful
tool for estimating ISE(ηn). However, there are situations where ηn performs poorly and where
it is difficult to find a suitable GP model for f ; in particular, the design Xn may be too
sparse to detect the variability of f (which can happen especially when d is large). If ηn is
very inaccurate but has sufficient variability, it is possible that the LOO residuals are large
enough for the inaccuracy to be detected by the high value of ÎSELOO(ηn) (and possibly of

ÎSEBLP (ηn)). However, if ηn is much smoother than f , it may produce very small LOO residuals

and ÎSELOO(ηn) may then severely underestimate ISE(ηn) — and ÎSEBLP (ηn) will not do any
better, the principle of LOOCV itself being ineffective. A simple illustrative example (with
d = 1) is presented in Section G of the supplement. In this case, only the use of an independent
test set can help reveal the poor performance of ηn (and, as proposed in [8, 18], ISE estimation
can rely on the BLP of the squared errors ε2n(x) based on the squared test residuals). The

Matlab code of a function that calculates ÎSELOO(ηn), ÎSEBLP (ηn) and ÎSEBLUP (ηn) for a linear
predictor ηn is given in Section H of the supplement.
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[2] S. Barthelmé, P.-O. Amblard, N. Tremblay, and K. Usevich, Gaussian process
regression in the flat limit, The Annals of Statistics, 51 (2023), pp. 2471–2505.
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Appendix: supplementary material

A A polynomial regression model

The model assumes that the data yn are given

yi = φ>(xi)α+ δi ,

where the error vector δ = (δ1, . . . , δn)> is normally distributed N (0,Ωn) and where each
component φ`(x) of φ(x) = [φ1(x), . . . , φm(x)]> is a multivariate polynomial in the d components
of x. We set a normal prior on α, and assume that α ∼ N (0m,Λ) with Λ = diag{Λ1, . . . ,Λm}.
The posterior mean of α under these assumptions is α̂ = (Φ>Ω−1n Φ + Λ−1)−1Φ>Ω−1n yn, where
Φ is the n×m matrix with i-th row equal to φ>(xi), i = 1, . . . , n. The prediction at any given
x is then

ηn(x) = φ>(x)α̂ = φ>(x)(Φ>Ω−1n Φ + Λ−1)−1Φ>Ω−1n yn .

Straightforward matrix manipulation shows that

ηn(x) = φ>(x)ΛΦ>(ΦΛΦ> + Ωn)−1yn .

Take Ωn = γ2 In, with In the n-dimensional identity matrix. Then, denoting K
(p)
n = ΦΛΦ> +

γ2 In and k
(p)
n (x) = ΦΛφ(x), we get ηn(x) = [k

(p)
n (x)]>K

(p)
n

−1
yn; that is, ηn is the BLUP for a

GP model with a kernel with nugget effect, defined by K(p)(x,x′) = Kφ(x,x′) + γ2δx,x′ , where
δx,x′ = 1 when x = x′ and is zero otherwise and

Kφ(x,x′) =

m∑
`=1

Λ`φ`(x)φ`(x
′) . (A.1)

Unless γ2 = 0 (and m ≥ n), the predictor ηn is not an interpolator. The position of i in
{1, . . . , n} is irrelevant to compute the LOO error ε−i = yi−ηn\i(xi), and one may thus consider

the case i = n. The i-th row of K
(p)
n

−1
= (Kφ

n + γ2In)−1 then equals{
(Kφ

n + γ2In)−1
}
i·

=
(
−

[k
(p)
n\i(xi)]

>(Kφ
n\i+γ

2In−1)−1

Ai
1
Ai

)
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with Ai = K(p)(xi,xi) − [k
(p)
n\i(xi)]

>(Kφ
n\i + γ2In−1)

−1k
(p)
n\i(xi). We can then identify the i-th

row r>i of the matrix Rn for the construction of ε−i in (3.1):

ε−i = yi − ηn\i(xi) = yi − [k
(p)
n\i(xi)]

>(Kφ
n\i + γ2In−1)

−1yn\i

=

{
(K

(p)
n )−1

}
i·

yn{
(K

(p)
n )−1

}
ii

= r>i yn .

In the example of Section 5.2.1, the polynomial model is constructed by tensorization of
univariate polynomials. The index ` of a component φ`(x) of φ(x) is in fact a multiindex
` = {`1, . . . , `d}, with φ`(x) =

∏d
i=1 ϕ`i(xi) for x = (x1, . . . , xd)

>. The degree of the ϕk increases

with k; a scalar λk is attached to each of them, and Λ` =
∏d
i=1 λ`i with λk decreasing with k in

order to give more importance to lower degree polynomials. Only the terms corresponding to the
m largest Λ` is kept to form the kernel (A.1). The construction used below relies on Legendre
polynomials, orthonormal for the uniform measure on [0, 1]: ϕ0(x) = 1, ϕ1(x) =

√
3(2x − 1),

ϕ2 =
√

5(6x2 − 6x + 1), ϕ3(x) =
√

7(20x3 − 30x2 + 12x − 1). . . As ϕk has degree k, setting

λk = t−k for some t > 1 gives Λ` = t−
∑d
i=1 `i and thus implies that the terms selected in (A.1)

are among those with lowest total degree. One may refer to [2] for implementation details.

B Robustness of ÎSEBLP (ηn) to the choice of K(e): K(e) and K

have different regularities

This is a continuation of Section 5.2.2. We still use K = K3/2,10 and ηn is the simple-kriging

predictor for the model GP(0,K5/2,5), but the construction of ÎSEBLP (ηn) relies on K(e)(x,x′) =

ψ(e)(‖x− x′‖), where we consider different ψ(e):

ψ1/2,θBLP
(r) = exp(−θBLP r) ,

ψ5/2,θBLP
(r) =

[
1 +
√

5 θBLP r + (5/3) θ2BLP r
2
]

exp(−
√

5 θBLP r) , (B.1)

ψIM,θBLP
(r) = (1 + θ2BLP r

2)−1 , (B.2)

ψ∞,θBLP
(r) = exp(−θ2BLP r

2) ,

corresponding respectively to the Matérn 1/2, Matérn 5/2, inverse multiquadric and Gaussian
kernel.

Figure 11 shows how ÎSEBLP (ηn) behaves when θBLP varies in the four kernelsK(e) considered
(the behavior for the Matérn 3/2 kernel K3/2,θBLP

has already been illustrated in Figure 4).

Unsurprisingly, the more regular K(e) is, the stronger is the numerical instability for small θBLP.
The independent limits (for θBLP → +∞) are nevertheless practically identical for the four
choices of K(e) (see Table 2). The choice of K(e) does not appear to be essential, provided it is
regular enough (possibly more regular than K) and θBLP is not excessively small. For each kernel

considered, there is a reasonably large range of values of θBLP such that ÎSEBLP (ηn) provides an

accurate estimate of ISE(ηn) (compare with the values of E{ÎSELOO(ηn)} and MSE{ÎSELOO(ηn)}
given in Table 2), the most stable performance being achieved for K(e) = K5/2,θBLP

.
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Figure 11: Performance of ÎSEBLP (ηn) when ηn is the simple-kriging predictor for the model
GP(0,K5/2,5) on [0, 1]2; Yx ∼ GP(0,K3/2,10), (Xn is a regular grid of 100 design points). From top

to bottom: ψ(e) = ψ1/2,θBLP
, ψ5/2,θBLP

, ψIM,θBLP
and ψ∞,θBLP

. Empirical values for 100 repetitions are in
dotted lines.
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C Average performance of ÎSELOO(ηn), ÎSEBLP (ηn) and ÎSEBLUP (ηn)
for GP realizations with d ∈ {4, 6, 8}

In this section we present the values of E{ISE(ηn)}, E{ÎSE(ηn)} and MSE{ÎSE(ηn)} for three dif-

ferent ISE estimators, ÎSELOO(ηn) (2.5), ÎSEBLP (ηn) (4.2) and its unbiased version ÎSEBLUP (ηn)
of Section 4.6, when f is the realization of a GP. The design space X is the hypercube [0, 1]d,
with d ∈ {4, 6, 8}, and we consider designs Xn given by the first n points of a scrambled Sobol’
sequence in X , with n ∈ {10 d, 20 d, 50 d, 100 d, 200 d}. The measure µ is uniform on set XN

given by the first N = 213+bd/2c Sobol’ points in X .
We suppose that the data are generated with the model GP(0, σ2K) where σ2 = 1 and

K(x,x′) = ψ3/2,2(‖x − x′‖), see (5.1). The predictor ηn is the BLUP η∗n for the kernel

K(p)(x,x′) = ψ5/2,θp(‖x − x′‖), see (B.1) and ÎSEBLP (ηn) and ÎSEBLUP (ηn) assume the model

GP(0, σ2e ,K
(e)) with K(e)(x,x′) = ψIM,θBLP

(‖x − x′‖), see (B.2). As we do not simulate data
(we calculate exact average performance), we cannot estimate θp and θBLP from yn. We thus
adapt their choice to the design, following the suggestion in [3]: θp (respectively, θBLP) is such
that ψ5/2,θp(Dn) = 0.25 (respectively, ψIM,θBLP

(Dn) = 0.25), with Dn = Dn[k] the largest of the
distances from the N point in XN to their k-th nearest neighbor in Xn. It ensures that for
every point x in XN there exist at least k points xi in Xn such that ψ5/2,θp(‖x−xi‖) ≥ 0.25 (re-
spectively, ψIM,θBLP

(‖x− xi‖) ≥ 0.25). This implies that we assume more regularity for smaller
designs: it is indeed illusory to pretend to model a highly variable function if Xn is very sparse
(see Section G for an illustration). The choice of k is not critical and we use k = 5.

The left-hand side of Figure 12 shows that ÎSEBLUP (ηn) is slightly closer than ÎSEBLP (ηn)
to E{ISE(ηn)} for n = 10 d and n = 20 d, but the difference is not visible for larger n. On

the right-hand side the plots of MSE{ÎSEBLP (ηn)} and MSE{ÎSEBLUP (ηn)} are practically
confounded. (As the calculation of var{ISE(ηn)} requires the computation of double inte-
gral (a double sum in this example), see (3.11) and (3.14), we omit the term var{ISE(ηn)}
is the calculation of MSE{ÎSE(ηn)}, see (3.9): our plots of MSE{ÎSE(ηn)} thus present in fact

MSE{ÎSE(ηn)} − var{ISE(ηn)}.) This suggests that there is little point in using ÎSEBLUP (ηn)

rather than the simpler estimator ÎSEBLP (ηn). ÎSELOO(ηn) overestimates ISE(ηn) is all the cases
considered.

To show the importance of an appropriate choice for the kernel K(e), we keep the same K and
K(p) as before (with θp thus adapted to the design via the rule ψ5/2,θp(Dn[5]) = 0.25) but use a
fixed θBLP independently of Xn. We first set θBLP = 1 (top row of Figure 13): the model used is

not flexible enough and ÎSEBLP (ηn) and ÎSEBLUP (ηn) severely overestimate ISE(ηn) (ÎSELOO(ηn)
is the same as in the top row of Figure 12). When θBLP = 20 (second row of Figure 13),

performance deteriorates compared to Figure 13-top but is similar to that of ÎSELOO(ηn). A
further increase in θBLP leads to the independent limit behavior studied in Section 4.5, here
with slightly poorer performance than ÎSELOO(ηn). A rather general observation is that a value

ÎSEBLP (ηn) larger than ÎSELOO(ηn) indicates a bad choice of K(e).
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Figure 12: Performance of ÎSELOO(ηn), ÎSEBLP (ηn) and ÎSEBLUP (ηn) when Yx ∼ GP(0,K3/2,2); ηn is

the BLUP for K(p)(x,x′) = ψ5/2,θp(‖x−x′‖); ÎSEBLP (ηn) and ÎSEBLUP (ηn) use the kernel K(e)(x,x′) =
ψIM,θBLP(‖x− x′‖). From top to bottom: d = 4, 6, 8.

D Behavior for random functions that are not GP realizations

The computation of ISE(ηn) requires the evaluation of f on a large set of points XN (we have
used N = 210 Sobol’ points in Sections 5.2 and B), which is restrictive if we want to generate f
as the realization of a GP (we need to manipulate N × N matrices). In this section we follow
a different route and (i) simulate a GP on a set Zm of small size m, then (ii) construct fm as
the BLUP, for another GP model, on the design Zm. The evaluation of fm on XN then only
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Figure 13: Same as Figure 12 but with θBLP = 1 (top row) and θBLP = 20 (second row): ÎSEBLP (ηn) >

ÎSELOO(ηn) is a sign of a poor choice of θBLP.
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involves matrices of size m × N . As Figure 14 illustrates in the case d = 1, the complexity of
the functions fm can be controlled by the value of m.

Figure 14: One realization of a random function fm (—) given by the BLUP for a GP simulation at the
design points Zm (◦); prediction ηn of fm (· · · ) based on evaluations of fm at the design points Xn (?).
Left: m = n = 10; right: n = 10, m = 20 (Xn is identical on both sides).

D.1 Simulations with various d and n

The design space is always the hypercube X = [0, 1]d and the design Xn is given by the first
n points of a scrambled Sobol’ sequence in X . As in Section C, the measure µ is uniform on
set XN given by the first N = 213+bd/2c Sobol’ points in X . The design Zm corresponds to the
first m points of another scrambled Sobol’ sequence in X (Zm is changed for each simulation
of a random function). Data simulation on Zm is with the model GP(0, σ2K) where σ2 = 1 and
K(x,x′) = ψ3/2,50(‖x − x′‖), see (5.1); fm is the BLUP for K(x,x′) = ψ3/2,θ0(‖x − x′‖) based
on the data generated on Zm. As in Section C, the predictor ηn whose ISE we want to estimate
is the BLUP for K(p)(x,x′) = ψ5/2,θp(‖x−x′‖), see (B.1), ÎSEBLP (ηn) and ÎSEBLUP (ηn) assume

the model GP(0, σ2e ,K
(e)) with K(e)(x,x′) = ψIM,θBLP

(‖x − x′‖), see (B.2). The value of θ0 is
chosen as in Section C and satisfies ψ3/2,θ0(Dn[k]) = 0.25 (with k = 5); θp and θBLP are given

by the LOO estimates θ̂LOO for the corresponding models: θp minimizes ÎSELOO(η∗n) for the
BLUP η∗n associated with the model GP(0, σ2K5/2,θ) and θBLP does the same for the model
GP(0, σ2KIM,θ). Figure 14 gives an illustration for d = 1 and shows a realization of fm with the
predictor ηn for n = 10 with m = 10 (left) and m = 20 (right).

Figure 15 presents boxplots of ISE(ηn), ÎSELOO(ηn), ÎSEBLP (ηn) and ÎSEBLUP (ηn) for differ-
ent d and (small) designs of size n = 10 d (see [1]), obtained from 100 realizations of random
fm generated as indicated above, with m = n. Therefore, m = 10 d, and the construction
used makes fm easier to approximate as d increases, hence the observation of decreasing values
of ISE(ηn) with d. For all values of d considered, estimation of ISE(ηn) is more precise with

ÎSEBLP (ηn) and ÎSEBLUP (ηn) (both behave similarly) than with ÎSELOO(ηn), but this superi-

ority tends to vanish as d increases. The complexity of the evaluation of ÎSEBLP (ηn) is of the
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order O(Nn3), see Section 4.1, and it grows similarly for ÎSEBLUP (ηn). For d = 4, n = 200

and N = 215, the average computational time4 for the joint evaluations of ÎSEBLP (ηn) and

ÎSEBLUP (ηn) is about 0.7 s (for 100 repetitions, with standard deviation ' 0.017).

Figure 15: Boxplots of ISE(ηn), ÎSELOO(ηn), ÎSEBLP (ηn) and ÎSEBLUP (ηn) for random functions fm
(100 realizations) and Sobol’ designs Xn with m = n = 10 d. From top to bottom and left to right:
d = 2, 4, 6, 8.

We take now m = 5n, making the functions fm much more complex than above where we
had m = n. Let us consider the case d = 4 (with still n = 10 d). The same predictor ηn (i.e., the
BLUP for K5/2,θp with θp = θ̂LOO) now performs very poorly: compare the boxplots of ISE(ηn)
on the left panel of Figure 16 and on the top-right panel of Figure 15. In fact, ηn performs even
worse than the simple empirical mean (i.e., ηn = 1>nyn/n), whose performance is shown on the

right panel of Figure 16. The three ISE estimators ÎSELOO(ηn), ÎSEBLP (ηn) and ÎSEBLUP (ηn)
are capable to uncover this poor performance of ηn.

4Computations are in Matlab, on a PC with a clock speed of 2.5 GHz and 32 GB RAM.
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Figure 16: Same as Figure 15-top-right but for random functions fm with m = 200 and a Sobol’ design
Xn with n = 40 in [0, 1]4. Left: ηn is the BLUP for K5/2,θp with θp estimated by LOOCV; right: ηn is

the empirical mean ηn = 1>
nyn/n.

On the contrary, if we keep m = 10 d and increase n, ISE(ηn) decreases and is difficult to
estimate accurately (in terms of relative precision). Figure 17 is for d = 4, m = 40 and n = 400.
On the left panel, θBLP = θ̂LOO (which gives θBLP ∈ (1.55, 2.25) with an average value ' 1.94
for the 100 realizations); on the right panel, θBLP is chosen with the rule of Section C, i.e.,
ψIM,θBLP

(Dn[5]) = 0.25 (which gives θBLP ' 3.8). We can notice slightly better performance

for ÎSEBLP (ηn) and ÎSEBLUP (ηn) on the right-hand panel, but the main observation concerns
the low sensitivity to the choice of K(e) and the relevance of the rule of Section C (for which,
moreover, no numerical optimization with respect to θBLP is required).

Figure 17: Same as Figure 15-top-right (random functions fm with m = 40) but with Xn a Sobol’ design

with n = 400 points in [0, 1]4. Left: θBLP = θ̂LOO (and θBLP ∈ (1.55, 2.25)); right: θBLP ' 3.8 satisfies

ψIM,θBLP(Dn[5]) = 0.25. ISE(ηn) and ÎSELOO(ηn) are the same on both panels.
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D.2 Noisy observations

We consider the same experimental framework as in Section D.1 when d = 4, with m = n =
10 d = 40, but the observations yn are now given by y(xi) = fm(xi) + ζi, i = 1, . . . , n, where
the measurement errors ζi are i.i.d. N (0, γ2). Following Section 4.7, for the construction of

ÎSEBLP (ηn) (and ÎSEBLUP (ηn)) we assume that the data obey the model Yx ∼ GP(0, σ2K
′(e)

r(e)
),

where K
′(e)
r (x,x′) = K(e)(x,x′) + r δx,x′ = ψIM,θBLP

(‖x − x′‖) + r δx,x′ with δx,x′ = 1 when
x = x′ and is zero otherwise. We do not attempt to estimate r(e) from the data, but rather
investigate the dependence of performance on the choice of r(e). The construction of fm is
based on GP’s with variance σ2 = 1 (see Section D.1), and we have set a fairly high noise level
γ = 0.25. The predictor ηn is now the BLUP for the kernel K(p)(x,x′) = ψ5/2,θp(‖x − x′‖) +

γ2 δx,x′ ; θp (respectively, θBLP) is obtained by minimization of ÎSELOO(η∗n), with η∗n the BLUP

for GP(0,K(p)) (respectively, for GP(0,K
′(e)
r )).

Figure 18 shows boxplots of ISE(ηn), ÎSELOO(ηn), ÎSEBLP (ηn) and ÎSEBLUP (ηn) for 100
random functions fm and noise realizations, for four different r(e): r(e) = γ2 = 0.0625 (top left),
which can be considered as a natural choice in the present context; a severely underestimated
value r(e) = γ2/10 (top right); and two overestimated values, r(e) = 5 γ2 and r(e) = 10 γ2 (second
row). Unsurprisingly, the best performance is obtained for r(e) close to γ2, but using a (much)
smaller value has little effect; performance deteriorates when r(e) becomes much larger than γ2,
but remains acceptable (and superior to that of ÎSELOO(ηn)).

D.3 Unreliable estimation of quantiles and conditional values-at-risk

The method proposed in the paper provides an estimate ε̂2n(x) of ε2n(x) at any x, and in all

the examples presented, ISE(ηn) has been estimated by the empirical mean (1/N)
∑N

i=1 ε̂
2
n(x(i))

calculated for N points x(i) distributed with µ. One may thus think of using the N estimates

ε̂2n(x(i)) to compute an empirical quantile (or value-at-risk) Qα and conditional value at risk
CVaRα (see, e.g. [4] and the references therein) at a given level α. However, the errors ε2n(x)

as well as the estimates ε̂2n(x) are correlated5, and the distributions of ε2n(x) and ε̂2n(x) may
significantly differ. The following example provides an illustration.

The framework is as in Section D.1 for d = 4, with m = n = 10 d = 40 and N = 215. The

left panel of Figure 19 presents a scatter plot of (ε̂2nBLP (x(i)), ε2n(x(i))) for one random fm, with
a red solid line showing the first diagonal. There are more small squared errors ε2n(x(i)) than

small squared errors ε̂2nBLP (x(i)), but some ε2n(x(i)) are much larger than ε̂2nBLP (x(i)). The right
panel shows, for the same simulation, the empirical c.d.f. FT of the 215 true squared prediction
errors ε2n(x(i)) (red solid line) and the empirical c.d.f. FBLP and FBLUP of the BLP and BLUP

estimates ε̂2nBLP (x(i)) and ε̂2nBLUP (x(i)) of Sections 4.1 and 4.6, respectively in blue solid line
and green dashed line. The behavior observed is typical: FBLP (t) and FBLUP (t) are very close;

FT (t) is larger than FBLP (t) and FBLUP (t) for small t but is smaller for large t as ε̂2nBLP (x)

and ε̂2nBLUP (x) tend to smooth ε2n(x).

5With the notation of Section 3.1, under the assumption Yx ∼ GP(0, σ2K), cov{ε2n(x), ε2n(x′)} = 2σ4 ρ4n(x,x′)

and cov{ε̂2n(x), ε̂2n(x′)} = 2σ4 β>(x)(R>nKnRn)�2β(x′) with β(x) given by (4.1) for ε̂2nBLP (x) (Section 4.1) and

by (4.8) for the unbiased version ε̂2nBLUP (x) (Section 4.6).
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Figure 18: Same as Figure 15-top-right (random functions fm with d = 4 and m = n = 40) but with
noisy observations with standard deviation γ = 0.25. First row: r(e) = γ2 (left) and r(e) = 0.1 γ2 (right);

second row: r(e) = 5 γ2 (left) and r(e) = 10 γ2 (right). ISE(ηn) and ÎSELOO(ηn) are the same on all
panels.

Figure 20 shows boxplots of Qα (left) CVaRα (right) for the true squared prediction errors

ε2n(x(i)) and the BLP and BLUP estimates ε̂2nBLP (x(i)) and ε̂2nBLUP (x(i)) for α = 0.95 (top
row) and α = 0.5 (bottom row), for 100 random functions fm. In agreement with Figure 19-
right, we observe that Qα is strongly underestimated (respectively, overestimated) for α = 0.95

(respectively, α = 0.5). The presence of squared errors ε2n(x(i)) much larger than ε̂2nBLP (x(i))
explains that CVaRα is underestimated for both values of α (however, performance improves

when α decreases, as CVaRα → ISE(ηn) when α→ 0). The information that the ε̂2nBLP (x(i)) and

ε̂2nBLUP (x(i)) provide on the tail distribution of the squared prediction errors ε2n(x) is therefore
very unreliable. We have observed similar disappointing behavior with other examples.
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Figure 19: Left: scatter plot of (ε̂2nBLP (x(i)), ε2n(x(i))) for one random fm. Right: empirical c.d.f.

of the true squared errors ε2n(x(i)) (—) and of their BLP and BLUP estimates ε̂2nBLP (x(i)) (—) and

ε̂2nBLUP (x(i)) (· · · ), for the same random fm.

E GP with parameterized mean

The developments of Section 4 assumed that f is the realization of GP with zero mean. Here we
show how to estimate the ISE of a given linear predictor ηn(·) = w>n (·)yn when this assumption
is relaxed.

E.1 Universal kriging model

Consider the framework of universal kriging, and assume that f is the realization of a GP
Yx ∼ GP(τ>h(x), σ2K), with h(x) = [h1(x), . . . , hp(x)]> a vector of p known functions on X
and τ a vector of unknown parameters. We then have

ISE(ηn) =

∫
X

[Yx −w>n (x)yn]2 µ(dx)

=

∫
X

[
Zx + τ>h(x)−w>n (x)(zn + Hnτ )

]2
µ(dx) ,

where Zx = Yx − τ>h(x) ∼ GP(0, σ2K), Hn is the n× p matrix with i-th row equal to h>(xi),
and zn = yn −Hnτ . This gives

ISE(ηn) = ISE0(ηn) + I(τ ) + 2 In(τ ) , (E.1)

where

ISE0(ηn) =

∫
X

[Zx −w>n (x)zn]2 µ(dx) , (E.2)

I(τ ) =

∫
X

{
τ>
[
h(x)−H>nwn(x)

]}2
µ(dx) ,

In(τ ) =

∫
X

[Zx −w>n (x)zn]
{
τ>
[
h(x)−H>nwn(x)

]}
µ(dx) .
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Figure 20: Boxplots of the quantiles Qα (left) conditional value-at-risk CVaRα (right) for the ε2n(x(i))

and their estimates ε̂2n(x(i)) (the ε2n(x(i)) and ε̂2n(x(i)) are the same as in the top-right panel of Figure 15);
top row: α = 0.95; bottom row: α = 0.5.

In (E.1), ISE0(ηn) is the ISE for the centered GP model Zx ∼ GP(0, σ2K), which can be estimated
with the method presented in Section 4, I(τ ) is a constant and In(τ ) has zero mean.

A simple approach to estimate ISE(ηn), assuming a kernel K(e), is therefore as follows.

(i) Estimate the parametric trend, using for example the BLUE for τ given by

τ̂n = (H>nK(e)
n

−1
Hn)−1H>nK(e)

n

−1
yn . (E.3)

(ii) Remove Hnτ̂
n from the observations yn and estimate ISE0(ηn) (E.2) for these centered

observations zn under the assumption Zx ∼ GP(0, σ2eK
(e));

(iii) Add I(τ̂n) to the estimated ISE.

This approach neglects the error due to the estimation of τ , which is acceptable when p� n;
other approaches, more accurate, could certainly be developed, at the expense of increased
complexity. A direct application of the approach of Section 4.1 through the calculation of
E{ε2(x)ε2−i} and E{ε2−i(x)ε2−j} for the model Yx ∼ GP(τ>h(x), σ2K) would also be possible.

However, these expressions depend explicitly on τ and σ2, whereas the estimation of ISE0(ηn)
by (4.2) does not require the construction of an estimator of σ2.
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E.2 Ordinary kriging model

The model Yx ∼ GP(τ, σ2K) with τ ∈ R and h(x) ≡ 1 (ordinary kriging) is frequently used. In
this case we get τ̂n = (1>nK−1n yn)/(1>nK−1n 1n) and I(τ) = τ2

∫
X [1−w>n (x)1n]2 µ(dx).

If ηn is such that w>n (x)1n = 1 for all x, then any translation of the observations leaves the
ISE invariant (since the prediction ηn itself is invariant) and the LOO residuals ε−i are invariant

too. We have ISE(ηn) =
∫
X [Zx − w>n (x)zn]2 µ(dx) and ÎSEBLP (ηn) can be calculated for a

centered GP(0, σ2eK
(e)) without centering the observations. The case of the ordinary kriging

predictor is a typical example. More generally, denote by Eτ{·} and MSEτ{·} the expectation

and MSE under the model GP(τ, σ2K). Direct calculation shows that, when ÎSEBLP (ηn) is
calculated for GP(0, σ2eK

(e)) (i.e., assuming that τ = 0), we have

Eτ{ÎSEBLP (ηn)} = E0{ÎSEBLP (ηn)}+ τ2 (1>nRn)�2S−1n bn ,

where E0{ÎSEBLP (ηn)} is given by (4.5), Rn is the matrix in (3.1) and Sn and bn are respectively
given by (3.5) and (3.12). We obtain similarly

MSEτ{ÎSEBLP (ηn)} = MSE0{ÎSEBLP (ηn)}+ τ2Cn ,

where MSE0{ÎSEBLP (ηn)} is given by (4.6) and Cn tends to zero when
∫
X [1−w>n (x)1n]2 µ(dx)

and ‖R>n 1n‖ tend to zero. This indicates that the performance of ÎSEBLP (ηn) constructed under
the assumption τ = 0 is preserved when τ is small or when the predictor ηn is such that, for all n
and Xn, w>n (x)1n ≈ 1 for all x; see Section 5.3 for an example. Similar developments show that

ÎSEBLP (ηn) calculated for GP(0, σ2eK
(e)) behaves similarly when the true data generating model

is GP(τ>h(x), σ2K) or GP(0, σ2K) provided that the predictor ηn satisfies H>nwn(x) ≈ h(x)
for all x. The correction of Section E.1 can be applied otherwise.

F Mixtures of GP models

In the construction of ÎSEBLP (ηn), instead of assuming that f is the realization of a unique GP,
Yx ∼ GP(0, σ2eK

(e)), we may consider a mixture of GP; that is, consider a family {Kt}t=1,...,T

of T different kernels (stationary or not, with different regularities. . . ) and assume that Yx|s ∼
GP(0, σ2eKs), with Prob{s = t} = νt. (The infinite mixture model could be considered as well
but is computationally more difficult to handle.) All expectations under this finite mixture
model can be decomposed as

E{X} =

T∑
t=1

νtE{X|Yx ∼ GP(0, σ2eKt)} .

This gives for instance E{ε2(x)} = σ2
∑T

t=1 νtρ
2
n,t(x) where ρ2n,t(x) is given by (3.2) with K =

Kt, and with obvious notation E{εLOOε>LOO} = σ2RT
n

(∑T
t=1 νtKn,t

)
Rn, E{εLOOεn(x)} =

σ2RT
n

∑T
t=1 νttn,t(x), etc. Developments similar to those of Section 4 then yield the expressions

of ÎSEBLP (ηn) and ÎSEBLUP (ηn). The weights ν = (ν1, . . . , νT )> can be adjusted to the data
yn, as in Bayesian Model Averaging (BMA), see [3] (with a proposition concerning the choice
of prior weights in Section 5 of the same paper).
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Since a mixture ηn(·) =
∑T

t=1 νt ηn,t(·) of kriging predictors obtained by BMA with fixed

weights (i.e., not depending on yn) remains linear in yn, ISE estimation by ÎSEBLP (·) can
also be applied to such mixture models. When the weights satisfy ν>1T = 1, then, with the
notation of Section 3, the i-th LOO error becomes ε−i =

∑T
t=1 νt

[
yi − ηn\i,t(xi)

]
=
∑T

t=1 νt ε−i,t
and the squared LOO errors ε�2LOO are quadratic in ν. Denoting ELOO the T × n matrix with

{ELOO}t,i = ε−i,t, any ISE estimator of the form ÎSE(ηn[ν]) = γ>ε�2LOO (thus in particular

ÎSEBLP (ηn[ν]) and ÎSEBLUP (ηn[ν])) can be written as

ÎSE(ηn) = ν>ELOOΓE>LOOν ,

where Γ = diag{γi, i = 1, . . . , n}. Minimization of ÎSE(ηn[ν]) with respect to ν under the

constraint ν>1T = 1 yields the optimal predictor ηn[ν∗] (in the sense of ÎSE(·)) with

ν∗ =
(ELOOΓE>LOO)−11T

1>T (ELOOΓE>LOO)−11T
.

It is tempting to iterate the process, as suggested in Section 6 of the paper for model selec-
tion: indeed, the optimal weights ν∗ could be used to define a mixture of GP models for the
construction of ÎSE(ηn[ν]), whose optimization would lead to an updated optimal ν∗.

G A 1-d example of poor performance due to a bad design

This simple example illustrates a limitation of the method described in the last paragraph of
the conclusion section: due to design sparsity, when the predictor is much smoother than f ,
the LOO squared residuals ε2−i can be very small and ÎSELOO(ηn) and ÎSEBLP (ηn) may severely
underestimate ISE(ηn), so that the inaccuracy of ηn can remain undetected. The problem of
too sparse a design relative to the variability of f is more serious in high dimensions, but this
one-dimensional case already gives a picture of the possible situation.

Here f(x) =
∑5

i=1 ψ3/2,20(|x−zi|) with {z1, . . . , z5} = {0, 0.2, 0.4, 0.6, 0.8, 1} and ψ3/2,θ given
by (5.1); Xn corresponds to the first n points of a scrambled Sobol’ sequence in [0, 1]. The

predictor ηn and ÎSEBLP (·) are constructed as in Section D.1, i.e., respectively with the kernels
K(p)(x,x′) = ψ5/2,θp(‖x − x′‖) and K(e)(x,x′) = ψIM,θBLP

(‖x − x′‖) given by (B.1) and (B.2);
θp and θBLP satisfy ψ5/2,θp(Dn[5]) = 0.25 and ψIM,θBLP

(Dn[5]) = 0.25, see Section C. Figure 21
shows f(x) and ηn(x), x ∈ [0, 1], for n = 5 (left) and n = 15 (right).

In the first case, with n = 5 (Dn[5] = 0.9750, θp ' 1.63 and θBLP ' 1.78), ηn is very smooth,

maxi ε
2
−i ' 0.0771, ÎSELOO(ηn) ' 0.029 and ÎSEBLP (ηn) ' 3.26 10−4, whereas ISE(ηn) ' 0.125.

At the same time, the predictor ηn given by the empirical mean, ηn = 1>nyn/n, has larger

estimated ISE: ÎSELOO(ηn) ' 0.095 and ÎSEBLP (ηn) ' 0.061. The inaccuracy of ηn thus remains
undetected (the true ISE is ISE(ηn) ' 0.0731, showing that ηn is indeed worse than ηn). It would
be easily revealed by additional evaluations of f on a set of test points zi (unless by bad luck
the zi are such that ηn(zi) ≈ f(zi)).

The situation improves with the use of a richer design. When n = 15, (with Dn[5] = 0.267,
θp ' 5.97 and θBLP ' 6.49), ηn is much closer to f although maxi ε

2
−i ' 0.305 is much larger

than before. We have now ÎSELOO(ηn) ' 0.1073, ÎSEBLP (ηn) ' 0.0053 and ISE(ηn) ' 0.0097;

ÎSEBLP (ηn) thus underestimates ISE(ηn) by a factor of 2, but ÎSELOO(ηn) overestimates it by a
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factor of 10. For the empirical mean ηn = 1>nyn/n, we obtain ÎSELOO(ηn) ' 0.0758, suggesting a

better prediction of f by ηn than by ηn, whereas ÎSEBLP (ηn) ' 0.0610 > ÎSEBLP (ηn) ' 0.0053,
indicating that ηn is a better predictor than ηn (and indeed, ISE(ηn) ' 0.0625 > ISE(ηn) '
0.0097).

Figure 21: f and its interpolator ηn for n = 5 (left) and n = 15 (right).

H Matlab code for calculating ÎSEBLP (ηn) and ÎSEBLUP (ηn)

function [ ise_BLP,ise_BLP_unbiased,ise_LOOCV,BLUE ] = ...

ISE_WLOO_BLP( yn,Xn,Rn,Xtest,Mu,WnN,Kn_BLP,knx_BLP,nugget,constant_term )

% function [ ise_BLP,ise_BLP_unbiased,ise_LOOCV,BLUE ] = ...

% ISE_WLOO_BLP( yn,Xn,Rn,Xtest,Mu,WnN,Kn_BLP,knx_BLP,nugget,constant_term )

% Xn = d*n matrix of design points

% yn = n (column) vector of observations

% Rn = n*n matrix such that LOO errors = Rn’*yn for the predictor evaluated

% Xtest = d*N matrix of test points (the ISE is estimated by the empirical

% mean on Xtest)

% Mu = 1*N row vector of weights (with sum = 1) defining the measure on Xtest

% WnN = n*N matrix, whose ith column is the vector of weights at the ith

% test point for the predictor evaluated (predictions over Xtest are

% given by yn’*WnN)

% Kn_BLP = n*n kernel matrix, with the kernel used for ise_BLP estimation

% knx_BLP = n*N kernel matrix for the n design points and N test points

% nugget = nugget parameter (presence of an additive noise with variance

% nugget*s2, with s2 the GP variance)

% ise_BLP = ISE estimated by construction of the BLP

% ise_BLP_unbiased = unbiased version of the above

% ise_LOOCV = classical LOOCV estimate (sum of squares of LOO errors)/n

% if constant_term == 1, the construction assumes that there is a constant
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% term in the model and estimates it to correct the ISE estimation

% BLUE = estimator of the constant term in the location model

[~,n]=size(Xn);

BLUE=NaN;

LOO_errors=Rn’*yn;

LOO_errors_squared=LOO_errors.^2;

ise_LOOCV=mean(LOO_errors_squared); % standard LOO ISE estimator

% squared error for the predictor and assumed model (as if no trend)

rhon2_12=1+nugget-2*sum(WnN.*knx_BLP,1)+sum(WnN.*(Kn_BLP*WnN),1);

tn_12=knx_BLP-Kn_BLP*WnN;

un=ones(n,1); Knm1un=Kn_BLP\un;

if constant_term == 1

% include a constant term in the model for the BLP estimator

constant=yn’*Knm1un/(un’*Knm1un); % = BLUE of the constant

BLUE=constant;

% remove the constant, shift the observations, and proceed as for a

% model with zero mean, add a suitable constant to the estimated ISE

yn=yn-constant*un;

LOO_errors=Rn’*yn;

LOO_errors_squared=LOO_errors.^2;

ISE_add_constant=constant^2*mean((un’*WnN-1).^2);

end

Qdum=Rn’*Kn_BLP*Rn;

um=diag(Qdum);

cm=um*rhon2_12+2*(Rn’*tn_12).^2;

Sm=um*um’+2*Qdum.^2;

% weights for the BLP

wLOO=(Sm\cm);

% weights for the BLUP

wLOO_unbiased=Sm\(cm+um*(rhon2_12-um’*wLOO)/(um’*(Sm\um)));

error2_WLOOCV=LOO_errors_squared’*wLOO; error2_WLOOCV=max(error2_WLOOCV,0);

error2_WLOOCV_unbiased=LOO_errors_squared’*wLOO_unbiased;

error2_WLOOCV_unbiased=max(error2_WLOOCV_unbiased,0);

ise_BLP=sum(Mu.*error2_WLOOCV);

ise_BLP_unbiased=sum(Mu.*error2_WLOOCV_unbiased);

if constant_term==1

ise_BLP=ise_BLP+ISE_add_constant;

ise_BLP_unbiased=ise_BLP_unbiased+ISE_add_constant;

end

end

References

[1] J. Loeppky, J. Sacks, and W. Welch, Choosing the sample size of a computer ex-

45



periment: a practical guide, Journal of the American Statistical Association, 51 (2009),
pp. 366–376.

[2] L. Pronzato, Sensitivity analysis via Karhunen-Loève expansion of a random field model:
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