Continuous-time optimal control for trajectory planning under uncertainty - Archive ouverte HAL
Pré-Publication, Document De Travail (Working Paper) Année : 2024

Continuous-time optimal control for trajectory planning under uncertainty

Ange Valli
  • Fonction : Auteur
  • PersonId : 1293100
  • IdHAL : ange-valli
Shangyuan Zhang
  • Fonction : Auteur
  • PersonId : 1394728
Abdel Lisser

Résumé

This paper presents a continuous-time optimal control framework for the generation of reference trajectories in driving scenarios with uncertainty. A previous work presented a discrete-time stochastic generator for autonomous vehicles; those results are extended to continuous time to ensure the robustness of the generator in a real-time setting. We show that the stochastic model in continuous time can capture the uncertainty of information by producing better results, limiting the risk of violating the problem's constraints compared to a discrete approach. Dynamic solvers provide faster computation and the continuous-time model is more robust to a wider variety of driving scenarios than the discrete-time model, as it can handle further time horizons, which allows trajectory planning outside the framework of urban driving scenarios.
Fichier principal
Vignette du fichier
main.pdf (783.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04621787 , version 1 (24-06-2024)

Licence

Identifiants

Citer

Ange Valli, Shangyuan Zhang, Abdel Lisser. Continuous-time optimal control for trajectory planning under uncertainty. 2024. ⟨hal-04621787⟩
92 Consultations
42 Téléchargements

Altmetric

Partager

More