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Abstract. This paper presents a continuous-time optimal control frame-
work for the generation of reference trajectories in driving scenarios with
uncertainty. A previous work [1] presented a discrete-time stochastic gen-
erator for autonomous vehicles; those results are extended to continuous
time to ensure the robustness of the generator in a real-time setting.
We show that the stochastic model in continuous time can capture the
uncertainty of information by producing better results, limiting the risk
of violating the problem’s constraints compared to a discrete approach.
Dynamic solvers provide faster computation and the continuous-time
model is more robust to a wider variety of driving scenarios than the
discrete-time model, as it can handle further time horizons, which allows
trajectory planning outside the framework of urban driving scenarios.

Keywords: Vehicle autonomous systems, Trajectory planning, Urban driving
scenarios, Chance-constrained optimization, Continuous-time optimal control,
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1 Introduction

The development of autonomous vehicles is a core research interest in the au-
tomotive industry and aims to meet the numerous challenges of the transport
sector. Autonomous vehicle decision-making problems represent a vast research
field and trajectory planning is one of its intrinsic components. The constraints
over the dynamics of the vehicle must consider the safety, performance and com-
fort of the passenger in the proposed solutions.

The simulations of autonomous vehicles cannot reproduce the complexity
of a real-life environment with the range of possibilities of unexpected events.
Furthermore, complex systems embed complex components interacting between
themselves and each of them can be responsible for a drawback in the nominal
functioning. The noise of a sensor, a false measurement due to weather conditions
or a technical failure can affect the safeness of the user.

Therefore, a stochastic component in the model can be a way for the software
to anticipate errors due to hardware components and unpredictable events in
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the environment. Safety is a significant concern in autonomous vehicles and
the capacity to model the mistakes in various driving scenarios addresses this
issue. As one cannot design all real-life scenarios for anticipation, simulators
must accurately reproduce the most common situations from road traffic. In
trajectory planning, a reference trajectory is used as a benchmark to compare
with the simulated path of the vehicle.

This paper proposes a continuous-time optimal control problem for gener-
ating reference trajectories addressed to autonomous vehicles. The following
parts are divided as follows: Section 2 depicts an overview of the literature,
tackling the current challenges in trajectory planning and optimal control prob-
lems, Section 3 emphasises the continuous-time optimal control problem with
chance constraints and Section 4 is a comparison of different configurations and
their performances. It shows the continuous-time model performs better than
the discrete-time model, as it computes faster and the solver finds solutions for
trajectory planning over far horizons, which are helpful on high-speed driving
scenarios. Finally, Section 5 concludes our study and opens it to further research.

2 Related Work

The trajectory planning problem for autonomous and semi-autonomous vehicles
has been studied through various frameworks as the interest in this problem
grew within several research fields.

Optimal control with constraints has been adopted since 2010 [2] as it enables
obtaining a model considering the bounds of the environment and measuring
the level of threats depending on the vehicle’s current state. Various models
have been developed for modelling vehicles, among them the unicycle and 4-
wheeled models, which are broadly studied nowadays in both robotics [3] [4] and
autonomous vehicles [5] researches. Extending advances in robotics research to
autonomous vehicles opened several aspects of research, such as guidance [6] and
trajectory predictions [7]. Those aspects deal with the challenges of road traffic
for the navigation of vehicles in real-life conditions.

In particular, safety constitutes one of the main concerns of intelligent vehicle
navigation [8] and new researches are carried out with the adoption of several new
approaches. The complexity of the environment of real-life navigation involves
considering uncertainties, often treated by including a stochastic component in
the modelling. Recent research in the literature [9] [10] [11] describes it. This
line of research is motivated by the desire to have a model that can capture this
stochastic component and include it in the vehicle’s control to assess the safety
level more precisely and address the vehicle’s performance. The overview [12]
describes several approaches explored in the literature: game theory, probability,
Partially Observable Markov Decision Processes (POMDP) and learning. Var-
ious research fields show pros and cons when dealing with autonomous vehicle
problems.

Neural networks have been used to capture information with the most recent
approach based on deep reinforcement learning [13], allowing the neural network



Continuous-time optimal control for trajectory planning under uncertainty 3

to model the uncertainty of the environment and constraints. While this ap-
proach captures much information, the computational cost is high. Using deep
learning methods to fit real-life contexts is a tough challenge. In autonomous
vehicles, embedded systems are used to learn about the environment, but the
computation cost can be too high to handle. Therefore, tackling the problem
of simulating a driving scenario and performing trajectory planning in real-life
conditions should consider those hardware constraints, better handled by other
simulation methods.

Optimisation methods with chance constraints are advantageous as the model
is sufficiently robust for giving a feasible solution and respecting a good level of
approximation. Recent research [9] [1] presents advances in modelling uncer-
tainty using this framework. The article [9] proposes a Gaussian mixture model
for uncertainty, allowing convexity properties over the chance constraints to en-
sure tractability. The authors present simulations with multimodal uncertain
obstacles for the trajectory planning of the vehicle, with general polyhedral ge-
ometric forms. Previous work in [1] deals with a constrained non-linear opti-
misation problem for generating reference trajectories, with scenarios including
an ego vehicle to control and a third-party target vehicle. In both works, the
optimisation problems are formulated in discrete time.

In most cases, as stated in the introduction of [14], discrete-time models are
derived from approximations of continuous-time models. The interest in tack-
ling discrete-time optimal control problems is to adapt to real-world applications,
where numerical sensors are widely used compared to analog sensors. Further-
more, some stability results are guaranteed in discrete-time and do not hold for
continuous-time edge cases, so it guarantees better stability in the control of sys-
tems. Ensuring the stability of some continuous-time frameworks is challenging.
Still, they are more representative of real-life settings than discrete-time models,
so the choice of model should be addressed regarding the context of the problem
tackled.

3 Problem Formulation

3.1 Driving scenario

This section presents a generalisation in continuous time from the previous work
in [1]. We consider driving scenarios providing information about the trajectory
of the vehicles and their environments. This includes other vehicles on the roads
and potential obstacles, such as pedestrians. All driving scenarios are defined for
a given time horizon.

The prerequisites we consider to be known from the environment to define a
driving scenario are the following :

– As in discrete-time, if we consider n vehicles on the road, for i ∈ [|1, n|],
the trajectory of the ith vehicle at time t is represented by its Cartesian
coordinates Xi(t), Yi(t).
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– The centre lane of the road is a continuous curve represented by its Cartesian
coordinates (x,C(x))x∈R+ .

– Likewise, the boundaries of the road are represented by (x,B(x))x∈R+ .
– We define a maximum speed allowed by regulations on the road, denoted by

vmax.

Those elements are the minimum amount of information needed to define
a driving scenario. Nonetheless, the reference trajectory needs slightly more in-
put. As in the discrete-time case in [1], some additional constraints are also
considered:

– The initial state of the ego vehicle to control: z0.
– A predefined waypoint for anticipating the next actions to undertake. This

can take into account lane change, overtaking or steady driving. Our study
considers waypoints defined from the centre lane only for simplicity. See
Remark 1.

– An optimality criterion to define, here represented by a cost function.
– Additional constraints of the vehicle for considering the passenger’s comfort.

Those constraints are both cinematic and dynamic.

3.2 Optimal control problem

Let’s recall the formulation of the optimal control problem as in [1] :

– z(t) the control states variable, with z(t) ∈ Z and Z the feasible set of states.
zinit and zterm are initial and terminal states of the system ;

– u(t) the optimal control input, with u(t) ∈ U and U the feasible set of control
inputs ;

– t0 and tn are initial and final time ;
– ℓ(·) the objective function to minimise ;
– f(·) the function designing the system dynamics of the control state z(t) ;
– c(·) is the inequality constraint function.

The optimal control problem is then given by :

min
z(·),u(·)

∫ tn

t0

ℓ(z(t), u(t))dt

s.t. ż(t) = f(z(t), u(t)),

c(z(t), u(t)) ≤ 0,

z (t0) = zinit, z (tn) = zterm,

z(t) ∈ Z, u(t) ∈ U .

(1)

Continuous-time optimal control problems can be solved by discretising the
integral form of the problem, as it has been done in [1]. In this study, our goal
is to show the performances of dynamic simultaneous control on the reference
trajectory generation, compared to the discretised version of the problem which
is solved as a constrained non-linear optimisation problem.
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3.3 Modelling a reference trajectory generator

The choices for modelling the vehicle align with the discrete-time problem tack-
led in [1]. The unicycle kinematic model gives the following state of the ego
vehicle at time t:

zt = [xt, yt, θT , vT ]
T

where xt is the longitudinal position, yt is the lateral position, θt is the heading
angle of the vehicle and vt is the linear speed. The control input at time t is
given by

ut = [at, ωt]

where at is the linear acceleration and ωt is the angular velocity. The ego vehicle’s
control-state relationship is given by :

dzt
dt

= f(zt, ut) (2)

where f(zt, ut) = [vt cos(θt), vt sin(θt), ωt, at]
T . The optimal control problem

proposed for the reference trajectory generation is the following :

min
u,z

∫ T

0

wg ∗D2
t (xt, yt) +wv ∗ (vr − vt)

2 +wa ∗ a2t

+wω ∗ ω2
t +wj ∗

(
dat
dt

)2

+wh ∗H(θt)
2

+wp ∗ P (xtgt
t , ytgtt , xt, yt) dt (3)

s.t.
dzt
dt

= f(zt, ut) dt, (3a)

L(xt, yt) <= 0, (3b)

|vt| ≤ vmax, (3c)

|ωt| ≤ ωmax, (3d)

|at| ≤ amax, (3e)∣∣∣∣datdt

∣∣∣∣≤ jmax, (3f)

K(xtgt
t , ytgtt , xt, yt) ≥ dmin (3g)

With u and z vectors representing the input control and the system’s state,
respectively.

The objective function (3) comprises a sum of weighted quantities with terms
to control the ego vehicle. The weights are chosen as a trade-off between the
comfort and security of the passenger and speedness of the vehicle.

– D2
t (xt, yt) is the distance to the waypoint at instant t. This term is respon-

sible for controlling the vehicle on the centre line.
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– (vr − vt)
2 is the L2-distance to the recommended speed value vr, considered

as a known input parameter.
– a2t and ω2

t are penalisation terms for the components of the control input ut,
so the values do not become too large, which can make the control unstable.

–
(
dat

dt

)2
is the jerk term. Minimising this quantity allows the vehicle to perform

smooth accelerations, which does not make the journey uncomfortable for
the passenger.

– H(θt)
2 is the distance between the heading angle of the vehicle and the

degree of curvature of the centre lane, known as a waypoint.
– P (xtgt

t , ytgtt , xt, yt) is a potential field function useful to regulate the speed of
the ego vehicle towards its distance to the target vehicle. This term models
the vehicle’s Adaptive Cruise Control (ACC) [15] feature.

Remark 1. The waypoints (xwaypoint
t , ywaypoint

t , θwaypoint
t )t≥0 are derived from

the center lane coordinates directly. Waypoint planning challenges are not tack-
led in our study.

The constraints cover several aspects of the modelling:

– The constraint (3a) is the control-state relationship (2) derived from the
unicycle kinematic model.

– L(xt, yt) is the distance between the coordinates of the ego vehicle and the
limits of the road defined in constraint (3b). It guarantees the vehicle will
stay within the boundaries of the environment.

– The constraint (3c) is the maximum linear speed limit of the vehicle
– The constraint (3d) is the maximum angular speed limit of the vehicle
– The constraint (3e) is the maximum linear acceleration limit of the vehicle
– The constraint (3f) is the maximum jerk limit of the vehicle. Even if this

term represents comfort for the passenger, a value that is too large could
also be dangerous for both the passenger and the vehicle.

– K(xtgt
t , ytgtt , xt, yt) is the distance between ego and target vehicles defined

in constraint (3g). To prevent collisions, it guarantees a minimum distance
dmin between vehicles to prevent collisions.

3.4 Stochastic model

Our stochastic model corresponds to its discrete-time equivalent [1]. Let’s sup-
pose (xtgt

t ) and ytgtt are sampled from Gaussian processes such as :

xtgt
t ∼ N (µxt

, σxt
) (4)

ytgtt ∼ N (µyt
, σyt

) (5)

Then, the results from [1] hold. We derive our stochastic model from the
deterministic model with a modified constraint (3g). Let K(x1, x2, x3, x4) =
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|x1 − x2 + x3 − x4|. Therefore, the constraint (3g) is replaced by the stochastic
constraints (7) and (8).

∀t, P(|xtgt
t − xt + ytgtt − yt| ≥ dmin) ≥ α =⇒ (6)

∀t, xt + yt ≤ µxt
+ µyt

+ dmin +
√
σ2
xt

+ σ2
yt

· F−1
N (α/2) (7)

∀t, xt + yt ≥ µxt + µyt − dmin +
√
σ2
xt

+ σ2
yt

· F−1
N (1− α/2) (8)

4 Numerical Experiments

The numerical experiments aim to show the efficiency of the continuous-time
model compared to previous discrete-time results [1]. The optimal control prob-
lem (3) is solved with Python Package GEKKO [16] in both deterministic and
stochastic forms. The solver relies on Model Predictive Control (MPC) [17]; it
optimizes the objective function and implicitly computes the model and its con-
straints at the same time. The driving scenarios are sampled from the same
experimental set-up in discrete time to keep the comparison relevant. All sce-
narios explored in our numerical experiments in Section 4.3 and Section 4.4
were produced using SCANeR Studio software [18], which is a simulation tool
designed for Advanced Driver Assistance Systems (ADAS) features.

We recall that this experiment set-up is performed in an urban driving sce-
nario, with the following input parameters :

Parameter Function Value

vr Reference linear speed 12 m.s−1

dmin Minimum distance between ego and target vehicle 5 m

vmax Maximum linear speed 40 m.s−1

ωmax Maximum angular speed π
6
s−1

jmax Maximum jerk 0.6 m.s−2

Table 1: Parameters’ values for urban driving scenarios during the simulation.

Figure 1 represents the values (linear acceleration at and angular speed ωt) in
deterministic and stochastic controls for a given example scenario. We consider
this scenario as risky, so the ego and target vehicles are willing to collide. This
risky scenario is used for our first experiment in section 4.3.

4.1 Shortcomings of the deterministic model

The deterministic model presents bad performances compared to the stochastic
model and is subject to a high risk of collision in discrete time [1], modelled as
the number of times the constraint 3g is violated per realisation of a scenario
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Fig. 1: Control values for an example scenario.

(experiment 1) or per scenario (experiment 2). To show the robustness of the
stochastic model, the following Figure 2 presents the number of violations for
the deterministic models in continuous-time and discrete-time, with a corpus of
200 driving scenarios with different levels of risk.

Fig. 2: Violations of constraints for deterministic models in discrete-time and
continuous-time.

The number of violations of the constraint is very high for both models.
We can conclude that the deterministic model is not robust enough for our
optimal control problem and should not be favoured over stochastic models. In
the remainder of this study, we conduct our experiments for stochastic models
only.
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wg : wv : wa : wω : wj : wh : wp 5:1:1:1:1:1:1 1:5:1:1:1:1:1
T 50 200 400 50 200 400

Average CPU times 0.261 0.800 1.079 0.322 0.794 1.035
Average acceleration 1.961 1.98 1.532 1.849 1.732 1.373

Average angular velocity 0 0 0 0 0 0
Average velocity 14.743 15.741 17.031 14.718 15.667 16.861
Average distance 14.764 31.523 68.265 14.739 31.375 67.589

wg : wv : wa : wω : wj : wh : wp 1:1:5:1:1:1:1 1:1:1:5:1:1:1
T 50 200 400 50 200 400

Average CPU times 0.247 0.744 1.145 0.251 0.804 1.045
Average acceleration 1.960 1.972 1.437 1.960 1.928 1.436

Average angular velocity 0 0 0 0 0 0
Average velocity 14.743 15.730 17.029 14.743 15.727 17.019
Average distance 14.764 31.501 68.256 14.764 31.496 68.220

wg : wv : wa : wω : wj : wh : wp 1:1:1:1:5:1:1 1:1:1:1:1:5:1
T 50 200 400 50 200 400

Average CPU times 0.245 0.795 1.044 0.249 0.947 1.060
Average acceleration 1.961 1.928 1.436 1.960 1.928 1.436

Average angular velocity 0 0 0 0 0 0
Average velocity 14.743 15.727 17.019 14.743 15.727 17.019
Average distance 14.764 31.496 68.220 14.739 31.375 68.220

wg : wv : wa : wω : wj : wh : wp 1:1:1:1:1:1:5 1:1:1:1:1:1:1
T 50 200 400 50 200 400

Average CPU times 0.242 0.799 1.038 0.241 0.797 1.043
Average acceleration 1.960 1.928 1.436 1.960 1.928 1.436

Average angular velocity 0 0 0 0 0 0
Average velocity 14.743 15.727 17.019 14.743 15.727 17.019
Average distance 14.764 31.496 68.220 14.739 31.375 68.220

Table 2: Comparison under different configurations over 100 different scenarios
of the continuous-time model.

4.2 Convergence speed of continuous-time solving

Other input parameters have to be designed; they are the weights (wg,wv,wa,wω,wj ,wh,wp).

Table 2 shows analytics for different configurations of those weights. As in [1],
the sensors are imperfect, and their measures contain errors which are modelled
by adding a random noise with a normal distribution N (0, 1) over the real po-
sitions of the target vehicle. To compare the analytics of our model with the
different configurations without considering the effects of the random noises, we
look at the average of control-state values over a sample of 100 different scenarios
for each set of weights.

The time horizons T considered here have higher values than the number of
samples N for discrete-time analysis [1], thanks to dynamic solvers in continuous
time which can handle far horizons. Steady-state real-time optimisation used in
GEKKO [16] for discrete-time optimal control problems requires solvingN differ-
ent control-state equations, as each variable describes a time-step k. In contrast,
dynamic solvers solve the equation for each control-state variable through the
time horizon. In addition, the average CPU times are lower than for the discrete-
time model [1]. The dynamics are similar for each set of weights, as they increase
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proportionally with the time horizons. The most significant increases in compu-
tational time are for weights wa and wv. However, the continuous-time model is
still faster and goes beyond the limits of the discrete-time model, as we develop
in Section 4.6

4.3 Experiment 1: one risky scenario

The scenario introduced for our first experiment presents the trajectory illus-
trated in Figure 3 : :

Fig. 3: Trajectory of ego and target vehicles.

In the risky scenario, the input parameter which changes from the classic
urban driving scenario as described in Table 1 is the recommended linear speed
vr, from a value of 12 m.s−1 representing the average speed of vehicles in cities
to a value of 14 m.s−1 which is a little bit above the maximum speed limit of
50 km.h−1 in urban areas.

This first experiment focuses on assessing the robustness of our continuous
model, that is, its capacity to give a solution for the trajectory planning problem
even with uncertainties in measured data. Here, we suppose (xtgt

t , xtgt
t )t∈[0,T ]

to be sampled from random variables as in (4) and (5), and we perform 200
realisations.

The number of steps for the discrete-time model and the time horizon for the
continuous-time model are fixed with lower values for the first experiment than
in the second experiment, where the scenarios are considered well-dimensioned.
If they are not dimensioned correctly, the optimal control problem for trajectory
planning does not guarantee convergence to a feasible or realistic solution. As
an example, if the linear recommended speed vr is too high and the associated
weight wv is large enough, the solution of the optimal control problem could
give the ego vehicle to remain motionless at the beginning and wait for some
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time before accelerating. The horizon is lower to prevent this phenomenon in
the simulation, especially in risky scenarios. When the speed increases, other
parameters must be adapted to dimension different scenarios, as we do in Section
4.6 to model road and highway driving scenarios.

Figure 4 shows the value of the quantity dmin −K(xtgt
t , ytgtt , xt, yt) derived

from constraint (3g) for each realisation, on the time interval [0;T ] for the con-
tinuous model and on the steps {1, ..., N} for the discrete model. We show both
zoomed-in and entire visualisations for both stochastic models. A constraint vi-
olation is visualised on positive values, which implies dmin > K(xtgt

t , ytgtt , xt, yt)
for a given time t. For this specific time t, the vehicles are too close to what we
would have expected based on the constraints defined in our model.



12 A. Valli and al.

0 50
Time horizon

10

8

6

4

2

0

Co
ns

tra
in

ed
 d

ist
an

ce
 to

 ta
rg

et
 v

eh
icl

e

Continuous stochastic model realizations

0 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849
Number of steps

8

6

4

2

0

2

Co
ns

tra
in

ed
 d

ist
an

ce
 to

 ta
rg

et
 v

eh
icl

e

Discrete stochastic model realizations

0 50
Time horizon

4

2

0

2

4

Co
ns

tra
in

ed
 d

ist
an

ce
 to

 ta
rg

et
 v

eh
icl

e

Zoomed-In Continuous stochastic model realizations

0 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849
Number of steps

4

2

0

2

4

Co
ns

tra
in

ed
 d

ist
an

ce
 to

 ta
rg

et
 v

eh
icl

e

Zoomed-In Discrete stochastic model realizations

Fig. 4: Constraint function values of all realisations of the scenario for
stochastic models.



Continuous-time optimal control for trajectory planning under uncertainty 13

Figure 5 represents the number of violations for each realisation for stochas-
tic models in discrete-time and continuous-time frameworks. As the scenario
considered here has been chosen as risky, we have more constraint violations in
the realisations than for unstressed urban driving scenarios, as discussed in the
second experiment Section 4.4. However, the discrete-time model reaches the
highest number of violations, and the average number of violations per realisa-
tion is higher for the discrete-time stochastic model than the continuous-time
stochastic model. Figure 6 presents the histogram of the number of realisations
per number of violations, and most realisations have less than one violation for
continuous-time while a large part of discrete-time realisations has more than
two violations.

Fig. 5: Number of violations per realisation of the scenario for stochastic
models.

Fig. 6: Histogram of the number of violations per realisation of the scenario for
stochastic models.

4.4 Experiment 2: multiple scenarios
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As in the previous experiment, Figure 7 visualises the value of the quantity
dmin −K(xtgt

t , ytgtt , xt, yt) through time, for each simulated scenario. Violations
are the positive values of the curves. Those scenarios are various urban driving
scenarios generated from the simulator. As those are less risky scenarios than in
the first experiment, both stochastic models perform better.

Figure 8 and 9 are, respectively, the representations of the number of vi-
olations per scenario and histograms of the number of scenarios per number
of violations, as we visualised for each realisation in Section 4.3. Observations
show that in over 200 scenarios, the number of violations is meagre. The discrete-
time stochastic model presents at most two violations and the continuous-time
stochastic model presents at most one violation in a few scenarios. The his-
togram shows no violations for more than 180 scenarios for the continuous-time
model and more than 150 scenarios for the discrete-time one. The continuous-
time model also performs best in this experiment compared to the discrete-time
model, but the stochastic approach in both cases guarantees good results.

Fig. 8: Number of violations per scenario for stochastic models.

Fig. 9: Histogram of the number of violations per realisation of the scenario for
stochastic models.
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4.5 Chance-constraints in stochastic models

Figure 10 is a representation of the chance constraint (6) over all scenarios for
both discrete-time and continuous-time models. We have chosen a confidence
value α = 0.95, represented as a bold line on this figure. The stochastic con-
straints (4) and (5) are sufficiently robust to guarantee the ego vehicle does not
violate the constraint 95% of the time through one simulation. The continuous-
time stochastic model performs better than the discrete-time stochastic model,
as for 200 scenarios, the model is valid more than 99% of the time.

Fig. 10: Proportion of valid constraints per scenario for discrete-time and
continuous-time stochastic models
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4.6 Robustness of continuous-time model to high time horizons T

The continuous model performs better than the discrete model, but both provide
satisfactory results, thanks to the stochastic approach.

The advantage of the continuous-time model is to handle a large time horizon
(T >= 100) where the discrete model presents limitations over the number
of steps N . Therefore, the continuous model can handle scenarios other than
those studied in Section 4.3 and Section 4.4, allowing higher speeds (driving on
roads outside city restrictions, highways). For safety reasons, we need to perform
trajectory planning over far horizons when the speed increases. This approach
requires more data points but is more robust to prevent unexpected events and
have a precautionary approach to driving.

Continuous model Discrete model

vr/ωmax
π
6

π
4

π
2

π
6

π
4

π
2

22 m.s−1 96 98 99 6 7 2

36 m.s−1 85 95 92 3 4 1

Table 3: Number of solutions found over 100 scenarios.

Table 3 presents the number of solutions found for 100 scenarios, given dif-
ferent constraints over the control.
For this experiment, the computation time is ≈ 30 minutes for the discrete-time
model and ≈ 5 minutes for the continuous-time one.

The discrete-time model does not find a solution for all real-life scenarios,
as the driving is continuous, so some information about the environment can be
lost when discretising. The solver is robust enough to find feasible solutions in
continuous time when the scenarios are more diverse concerning target vehicle
speed and centre lane variations.
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5 Conclusions and Future Work

This paper shows the effectiveness of a continuous-time approach for optimal
control-based reference trajectory generation compared to a discrete-time frame-
work. Chance-constrained optimisation addresses the stochastic aspect of the
model, which considers the uncertainty of information concerning autonomous
vehicles. Our analysis showed low performance for deterministic models com-
pared to the stochastic models in continuous-time. Good results are obtained for
urban driving scenarios with both continuous-time and discrete-time stochastic
models, with slightly better results in continuous-time, specifically for risky sce-
narios where it diminishes the risks of collisions. Still, the discrete-time stochastic
model fails to find solutions for roads and highways with higher speed limits, as
those scenarios require planning over far time horizons. The computation time is
higher for the discrete-time stochastic model as the number of control-state vari-
ables increases with the horizon. The continuous-time stochastic model reflects
real-life driving conditions better and converges faster to an optimal solution.

Further work would consider enhancements to the vehicle model to tackle
other aspects of road conditions, with more vehicles considered in the plan-
ning. Dealing with the uncertainty of information on the environment is a tough
challenge in modelling autonomous vehicles, so another extension could be to
consider new terms in the objective function and constraints over our stochastic
optimal control problem.
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