Fast Coding Mode Prediction for Intra Prediction in VVC SCC - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Fast Coding Mode Prediction for Intra Prediction in VVC SCC

Résumé

Currently, screen content video applications are increasingly widespread in our daily lives. The latest Screen Content Coding (SCC) standard, known as Versatile Video Coding (VVC) SCC, employs screen content Coding Modes (CMs) selection. While VVC SCC achieves high coding efficiency, its coding complexity poses a significant obstacle to the further widespread adoption of screen content video. Hence, it is crucial to enhance the coding speed of VVC SCC. In this paper, we propose a fast mode and splitting decision for Intra prediction in VVC SCC. Specifically, we initially exploit deep learning techniques to predict content types for all CUs. Subsequently, we examine CM distributions of different content types to predict candidate CMs for CUs. We then introduce early skip and early terminate CM decisions for different content types of CUs to further eliminate unlikely CMs. Finally, we develop Block-based Differential Pulse-Code Modulation (BDPCM) early termination to improve coding speed. Experimental results demonstrate that the proposed algorithm can improve coding speed by 34.95% on average while maintaining almost the same coding efficiency.
Fichier principal
Vignette du fichier
2024_ICIP_Wang_et_al.pdf (159.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04609740 , version 1 (12-06-2024)

Identifiants

  • HAL Id : hal-04609740 , version 1

Citer

Dayong Wang, Junyi Yu, Xin Lu, Frédéric Dufaux, Hongwei Guo, et al.. Fast Coding Mode Prediction for Intra Prediction in VVC SCC. International Conference on Image Processing (ICIP’2024), IEEE, Oct 2024, Abu Dhabi, United Arab Emirates. ⟨hal-04609740⟩
133 Consultations
92 Téléchargements

Partager

More