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ABSTRACT

Currently, screen content video applications are increasingly
widespread in our daily lives. The latest Screen Content Cod-
ing (SCC) standard, known as Versatile Video Coding (VVC)
SCC, employs screen content Coding Modes (CMs) selec-
tion. While VVC SCC achieves high coding efficiency, its
coding complexity poses a significant obstacle to the further
widespread adoption of screen content video. Hence, it is cru-
cial to enhance the coding speed of VVC SCC. In this paper,
we propose a fast mode and splitting decision for Intra pre-
diction in VVC SCC. Specifically, we initially exploit deep
learning techniques to predict content types for all CUs. Sub-
sequently, we examine CM distributions of different content
types to predict candidate CMs for CUs. We then introduce
early skip and early terminate CM decisions for different con-
tent types of CUs to further eliminate unlikely CMs. Finally,
we develop Block-based Differential Pulse-Code Modulation
(BDPCM) early termination to improve coding speed. Exper-
imental results demonstrate that the proposed algorithm can
improve coding speed by 34.95% on average while maintain-
ing almost the same coding efficiency.

Index Terms— VVC SCC, content type, fast coding
mode decision, BDPCM.
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1. INTRODUCTION

Content video refers to recordings captured directly from the
display screen of an electronic device. The surge in popular-
ity of computer screen-sharing applications can be attributed
to rapid advancements in networking and portable devices
in recent times. Such applications, including remote desk-
top access and video conferencing, are often complemented
by document and slideshow sharing. These multimedia com-
munication sessions typically comprise a blend of Camera-
captured Content (CC) and Screen Content (SC). Addition-
ally, numerous television programs and online videos also
integrate both CC and SC elements. It is foreseeable that
the future will witness the emergence of cloud services uti-
lizing screen-sharing technologies [1]. Consequently, there
is a growing demand for the efficient compression of SC.
In response to this demand, a Call for Proposal (CfP) was
issued in January 2014 [2] for the development of Screen
Content Coding (SCC) [3] as an extension of the High Ef-
ficiency Video Coding (HEVC) standard [4]. The SCC exten-
sion introduced two major Coding Modes (CMs): Intra Block
Copy (IBC) [5] and Palette (PLT) [6] modes, aimed at im-
proving coding efficiency. In recent times, the Joint Video
Experts Team (JVET) has spearheaded the development of the
next-generation video coding standard, Versatile Video Cod-
ing (VVC) [7]. Early in its development, VVC incorporated
IBC, and later, PLT was added in subsequent phases. How-
ever, the coding process of VVC is extremely complex. Con-
sequently, the development of fast algorithms to mitigate the
coding complexity of VVC SCC is highly desirable.

This paper introduces a fast Intra prediction algorithm
aimed at enhancing the coding speed of VVC SCC. Our



approach first leverages the deep learning techniques to cat-
egorize CUs into distinct types, namely Animation (A) CUs,
Camera-captured Content (CC) CUs, Text and Graphics with
Motion (TGM) CUs, and Mixed content (Mixed) CUs. Based
on this categorization, we predict candidate CMs and sub-
sequently implement Block-based Differential Pulse-Code
Modulation (BDPCM) early termination to improve the cod-
ing speed.

2. RELATED WORK

In general, CM prediction can be broadly categorized into
two groups: content classification-based methods and fea-
ture classification-based methods. A detailed review of these
methods is presented below.

Content classification-based methods: Due to the relation-
ship between image content and CMs, candidate CMs can
be derived based on their content. In [8], statistical features
were selected and fed into a decision tree to effectively clas-
sify CUs into two categories: natural content CUs and screen
content CUs, aiming to predict candidate CMs. In [9], factors
such as color number and gradient were utilized to predict
content types of CUs, thereby predicting candidate CMs. Gao
et al. [10] employed a CNN to classify CUs into natural, text,
image, and color content blocks. They then integrated CU
content type, CU size, mode complexity, and spatial correla-
tions between neighboring CUs and the current CU to predict
candidate CMs. These methods predict candidate CMs based
on content types. However, since the correlations between
content types and CMs are not consistently robust, relying on
content to predict candidate CMs may not always yield opti-
mal performance.

Feature classification-based methods: Tsang et al. [11]
predicted CU sizes by considering the RD costs and early
skipped the IBC mode based on the hash value of each block.
Kuang et al. [12] employed an online learning Bayesian deci-
sion rule to skip unlikely CMs early. Additionally, Kuang et
al. [13] first designed various features as eigenvalues and then
employed a decision tree to sequentially determine whether
to examine Intra mode, IBC Merge mode, IBC search mode,
and PLT mode. Tsang et al. [14] selected a more extensive
set of statistical features to construct a random forest to de-
termine whether to examine Intra mode, IBC Merge mode,
IBC Search mode, and PLT mode. Kuang et al. [15] first
chose statistical features and then used an online-learning-
based Bayesian decision rule to determine whether to early
skip unlikely CMs. Subsequently, they utilized the mode in-
formation from neighboring CUs to further eliminate unlikely
CMs for the current CU. Kuang et al. [16] developed a fast
prediction network based on deep learning to obtain probabil-
ities for all CMs and to early skip CMs of low probabilities,
thus improving coding speed. Tsang et al. [17] used a CNN-
based classifier to predict candidate CMs for all 4×4 CUs and
then determined the CMs based on the counterparts of their

4×4 sub-CUs. The aforementioned methods predict candi-
date CMs based on features. However, as the correlations be-
tween features and CMs are not consistently robust, utilizing
features for predicting candidate CMs may not always yield
optimal performance.

3. DEEP LEARNING-BASED CONTENT
CLASSIFICATION (DLBCC)

SCC sequences comprise four types of content: A, CC, TGM,
and Mixed. Typically, each content type exhibits a strong
correlation with specific CMs and CU splitting that are most
likely to be selected for coding. Consequently, the first step
of the proposed algorithm involves categorizing CU contents,
followed by predicting candidate CMs based on their corre-
sponding CU contents. To categorize CU contents, we de-
signed a neural network and subsequently trained its associ-
ated model.

3.1. Design of the Neural Network

In VVC, a CTU has a default size of 128×128 and can be
flexibly partitioned into blocks with a minimum size of 4×4.
The coding structure of QTMT allows the partitioning of a
CTU into CUs of up to 17 different sizes. Employing deep
learning techniques directly to predict candidate CMs for all
CUs makes the computational process unbearably complex.
Given that the minimum size of CUs is 4×4, we can first de-
termine the content types of 4×4 CUs and subsequently pre-
dict the content type of each CU based on its 4×4 sub-CUs
in the lower partition layer. If all 4×4 sub-CUs within a CU
exhibit the same type, the CU is categorized as that specific
type. Conversely, if the 4×4 sub-CUs within a CU differ in
type, the CU is classified as a Mixed type. Determining the
type of each 4×4 CU is a challenging task.
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Fig. 1. Structure of Sub-CUNet.

Deep learning has demonstrated the capability to au-
tomatically extract extensive features, yielding exceptional
performance across various applications. The Fully Convo-
lutional Network (FCN) has proven to be highly effective,



particularly for various pixel-wise segmentation tasks such as
semantic segmentation, instance segmentation, and biomed-
ical image segmentation. Among these FCNs, the U-Net
stands out as a well-known choice for biomedical image
segmentation [16] [17]. Inspired by U-Net, we have devel-
oped our own 4×4 sub-CU segmentation net, denoted as
Sub-CUNet [17]. Unlike traditional pixel-wise segmentation,
our Sub-CUNet produces only 4×4 sub-CU-wise labels, as
illustrated in Fig. 1.

The luminance component of a 128×128 CTU serves as
the input to Sub-CUNet. Sub-CUNet generates 1024 labels
corresponding to 1024 4×4 sub-CUs, with each label rep-
resenting the content most likely to be chosen. Sub-CUNet
is composed of eight convolutional layers (conv1-conv8),
five deconvolutional layers (deconv1-deconv5), and five con-
catenation layers (concat1-concat5). Following each con-
volutional or deconvolutional layer, a Rectified Linear Unit
(ReLU) activation function is applied. However, in the case
of conv8, the softmax activation function is employed to
generate the output labels.

Through the Sub-CUNet, a 128×128 CTU generates
1024 labels, each corresponding to a 4×4 sub-block. Each
4×4 sub-block is categorized into one of the four content
types according to the probability. If all 4×4 sub-blocks
within a CU share the same content type, the CU is classified
as that specific content type. Otherwise, the current CU is
classified as Mixed.

3.2. Training of the Neural Network

To avoid any overlap between the training set and the test
set, we selected training sequences that are not included
in the Common Test Conditions (CTC) [18] to generate
training samples. These sequences cover A, CC, and TGM
content, specifically including ClearTypeSpreadsheet, Kriste-
nAndSaraScreen, MissionControlClip1, ParkScene, PcbLay-
out, PeopleInVehicle, PptDocXls, RealTimeData, Seek-
ing, VideoConferencingDocSharing, WordEditing, DOTA2,
CSGO, WITCHER3, GTAV, and Hearthstone. In addition
to those sequences recommended in [19], we also obtained
some sequences from the internet.

To fully leverage computing resources, the batch size is
set to 4096. Sequences are randomly allocated at a ratio of
8:2 to the training set and the validation set. After loading
the dataset, pixel values are normalized. In the training stage,
PyTorch is utilized on an RTX3090 GPU. The cross-entropy
loss function is selected, and the optimizer used is Adam, with
default values of 0.9 for momentum 1 and 0.999 for momen-
tum 2. The learning rate is set to 0.0001, and the epoch is set
to 1000. The loss during the training process is illustrated in
Fig. 2, and the best model is determined based on the decreas-
ing trend of the loss value during training.

From Fig. 2, it is evident that as the number of epochs
increases, both training and validation loss values gradually
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Fig. 2. Loss during the training process of the content classi-
fier.

decrease and converge to similar values. When the number of
epochs is greater than or equal to 800, both loss values reach
a minimum and maintain stability with some slight fluctua-
tions. This observation indicates that the networks are not ex-
periencing overfitting problems, which typically occur when
training losses are very small but validation losses are very
high.

4. CONTENT AND FEATURE-BASED CM
PREDICTION (CFBCMP)

Through DLBCC, we can obtain information about the types
of CUs. Subsequently, we examine CM distributions for CUs
of various types and then identify likely CMs while excluding
unlikely ones based on the obtained distributions.

To obtain the CM distribution for CUs of various types,
extensive experiments were conducted. In our experiments,
one sequence from each type was selected to cover different
types. Specifically, the test sequences outlined in [16] were
utilized. According to the CTC, all sequences were encoded
using QP values of 22, 27, 32, and 37 under the All_Intra
configuration. The corresponding CM distribution for CUs of
various types is detailed in Table 1.

Table 1. CM distributions for CUs of various content types
Categories Intra (%) PLT (%) IBC (%)

A 93.14 1.51 5.34
CC 98.24 0.15 1.61

Mixed 59.1 12.6 28.3
TGM 33.38 26.37 40.26

From Table 1, it is evident that the CM distribution for
CUs of various types exhibits significant differences. Specifi-
cally, CUs in CC predominantly employ the Intra mode. Con-
sequently, CUs in CC exclusively examine the Intra mode.
Given the small proportion of CUs in Mixed, we directly ex-
amine all three CMs. Regarding CUs in A, while the Intra
mode has a high proportion, the proportions of the other two
CMs are not considered negligible. As for CUs in TGM, the



differences in proportions among all three CMs are not sub-
stantial. Therefore, for CUs in either A or TGM, it is not
feasible to directly predict the candidate CMs based on their
CM distributions.

Considering both prediction complexity and accuracy, we
chose Decision Tree (DT) as the classifier in this paper. DT
is a widely used binary classification approach known for
its comprehensible flow-chart-like structure. The DT is con-
structed using "Scikit-learn" in Python with offline training.
The aforementioned sequences used for DLBCC are selected
as training sequences.

As mentioned above, we only need to predict candidate
CMs for CUs in A and TGM. As shown in Table 1, for CUs
in both A and TGM, the Intra mode is frequently used. More-
over, these CMs are strongly related to textural features and
can be directly predicted based on them. Therefore, it is ad-
visable to first check the Intra mode. Since the coding process
of the PLT mode is significantly simpler than that of the IBC
mode, which involves IBC merge and IBC search, we next
check the PLT mode and finally the IBC mode.

For the convenience of subsequent descriptions, features
obtained directly before encoding are denoted as Direct Fea-
tures (DFs), and features obtained during encoding are de-
noted as Coding Features (CFs). To enhance coding speed,
before examining a CM, we can use some DFs to determine
whether the CM can be skipped early. If affirmative, the CM
can be directly skipped. Otherwise, we examine it and com-
bine DFs with CFs to determine whether the CM is the best
one, thus early terminating the CM selection.

4.1. Mode Early Skipping based on DFs

Before examining a CM, certain DFs can be acquired. We
input these DFs into a DT to determine the confidence level
of utilizing the CM. To accurately obtain the confidence level,
the DFs are selected as follows.

A CTU can be partitioned into CUs of up to 17 different
sizes using the QTMT structure. The CM distribution for CUs
of different sizes is significantly different. Clearly, the choice
of the best CM is closely tied to the size of a CU. As a result,
the size of CUs is chosen as a feature.

In general, the texture of a CU plays a significant role in
the decision-making process for CM selection. Pixel vari-
ances are evidently crucial textural features in this context.
Consequently, we utilize overall variances (OVP), as well
as horizontal (HVP) and vertical (VVP) variances of pixels
within a CU as features.

The Number of Background Color (NBC) is a metric rep-
resenting the quantity of pixels that share the same color, with
the highest frequency of occurrence within a given CU. The
Number of Distinct Color (NDC) measures the pixels in a CU
with unique pixel values, essentially pixels with colors dis-
tinct from others. Studies in [13] [14] demonstrate that the
CM selection of PLT is strongly related to the count of colors.

This is caused by the fact that the count determines the num-
ber of palette items that must be encoded by PLT following
clustering. After clustering, the pixel values of the block are
represented as indices in the palette, and these indices are en-
coded using Run-Length Coding. Only one item is required
for consecutive identical colors, referred to as a color segment
in this context. Consequently, the minimum Number of Color
Segments (NCS) observed along both horizontal and vertical
scanning paths directly influences the number of index items
that PLT needs to encode and significantly impacts the result-
ing PLT bit rate.

Feeding the features of a CM-to-examine into a DT en-
ables us to derive a confidence level for this CM. If the con-
fidence level is less than or equal to a specified threshold, we
can terminate CM selection early. To determine the optimal
threshold, we used VTM-17.0 for testing on a server equipped
with an Intel Xeon Gold 5122 CPU and 64GB of memory.
The aforementioned training sequences are encoded under the
All_Intra configuration using QP values of 22, 27, 32, and 37.
Coding efficiency is measured using BDBR [20]. The confi-
dence levels and their respective BDBRs for early skipping of
all three CMs in the TGM category are illustrated in Fig. 3.
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Fig. 3. Confidence level and the respective BDBR for CUs in
the TGM category.

From Fig. 3, it is evident that when the confidence levels
of both Intra mode and IBC mode are less than or equal to 0.2,
the corresponding BDBR remains nearly the same. However,
when the confidence levels of both these two CMs exceed
0.2, the corresponding BDBR dramatically increases. Clearly,
there is a turning point at a confidence level of 0.2. Therefore,
we set the threshold as 0.2 for both Intra mode and IBC mode.
As for the PLT mode, when its confidence level is greater than
0.1, the corresponding BDBR continuously increases. Conse-
quently, we set the threshold as 0.1 for this CM. Employing a
similar approach, we can determine thresholds for all CMs for
CUs in the A category. Through the aforementioned process,
we derive the thresholds for all CMs for CUs in the TGM and
A categories, which are listed in Table 2.

When the confidence level of a CM for CUs in the TGM
and A categories is less than or equal to the corresponding
threshold in Table 2, this CM can be skipped directly, thereby
improving the coding speed.



Table 2. Thresholds for all CMs for CUs in the TGM and A
categories

Categories Intra PLT IBC
A 0.2 0.5 0.2

TGM 0.2 0.1 0.2

4.2. Early Termination Based on DFs and CFs

As mentioned earlier, if the confidence level of a CM exceeds
the corresponding threshold in Table 2, further examination
of the CM becomes necessary. After examining the CM, spe-
cific coding information, including residual coefficients and
RD costs, is obtained. This coding information plays a crucial
role in the CM early termination. If the residual coefficients
and RD costs are effectively insignificant, it is highly likely
that the corresponding CM is the best one. Consequently,
CM selection can be terminated early. Therefore, considering
both textural features and coding information, we can deter-
mine whether the mode-to-examine is the best one, thus early
terminating the CM selection.

After examining a CM, the acquired textual features and
coding information are inputted into a DT to determine the
corresponding confidence level. To achieve the optimal con-
fidence level for early termination of the CM, we apply the
aforementioned experimental conditions during testing. The
experiments demonstrate that, for all three CMs, as the con-
fidence level increases, BDBR significantly decreases. When
the confidence level is greater than or equal to 0.9, BDBR re-
mains nearly constant. Clearly, there is a turning point when
the confidence level equals 0.9. Therefore, we set the thresh-
old as 0.9 for the early termination of all three CMs.

5. CONTENT AND RESIDUAL
COEFFICIENT-BASED BDPCM EARLY

TERMINATION (CRCBBET)

In VVC, the Intra prediction process primarily involves three
steps: Rough Mode Decision (RMD), BDPCM, and Rate-
Distortion Optimization (RDO). RMD uses the Hadamard
transform to establish a Rate-Distortion Mode List (RDL).
BDPCM employs only horizontal and vertical modes for
prediction, directly quantifying their residual coefficients
without using a transformation. Subsequently, the RDO pro-
cess uses the DCT transform to examine the RDL, Matrix
Weighted Intra Prediction (MIP), and Intra Sub-Partition
(ISP) to determine the best mode. Given the nature of BD-
PCM, as mentioned above, its coding complexity is clearly
insignificant. Once BDPCM has been examined, if it is iden-
tified as the best mode, subsequent coding processes can
be early terminated, thereby significantly improving coding
speed. To determine whether BDPCM is the best mode, we
examine both the percentage of cases in which BDPCM is se-
lected as the best mode and the percentage of cases in which

RDO determines the best mode for CUs in the TGM and A
categories under the aforementioned experimental conditions.
The results are shown in Table 3.

Table 3. Comparison of BDPCM and RDO for CUs in TGM
and A categories

Categories BDPCM(%) RDO (%)
A 2.50 97.50

TGM 38.85 61.15

Table 3 shows the proportions of BDPCM in the A and
TGM categories, which are 2.50% and 38.85%, respectively.
Given the relatively small proportion of BDPCM in the A cat-
egory, our focus shifts to determining whether BDPCM is the
best mode for CUs in the TGM category.

The performance of BDPCM can be effectively reflected
by the residual coefficients. When examining a CU using BD-
PCM, if the values of its residual coefficients are small and
evenly distributed, this indicates that the CU is predicted very
well. BDPCM is thus highly likely to be the best mode, and
the subsequent RDO processes can be terminated early. As
the variance of residual coefficients can accurately measure
their complexity, we select the overall variance (OVRB), hor-
izontal variance (HVRB), and vertical variance (VVRB) of
residual coefficients as features. Additionally, if the propor-
tion of zero values in the quantized residual coefficients is
notably high, it also indicates that the CU is predicted very
well, making BDPCM likely to be the best mode. Therefore,
the proportion of zero values in the quantized residual coeffi-
cients, denoted as PZQR, is also chosen as a feature.
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Fig. 4. Thresholds and their respective BDBR for CUs in the
TGM category.

Feeding these features into a DT allows us to determine
the confidence level of utilizing BDPCM as the best mode.
Clearly, confidence levels are closely linked to BDPCM se-
lection. If the confidence level is greater than or equal to
a predefined threshold, BDPCM can be chosen as the best
mode, leading to the early termination of subsequent coding
processes. To identify the optimal threshold, the aforemen-
tioned experimental conditions and sequences are employed
in testing. Theoretically, only when thresholds are greater
than or equal to 0.5 can BDPCM be selected as the best mode.
Therefore, we exclusively use thresholds greater than or equal



Table 4. Overall performance comparison among different algorithms
Categories Sequences

Proposed MLMD [13] OLBD [15] FSCNET [17]
BDBR (%) ∆T (%) BDBR (%) ∆T (%) BDBR (%) ∆T (%) BDBR (%) ∆T (%)

A Robot 0.92 22.17 1.57 17.49 0.69 18.50 1.98 37.33

CC
EBURainFruits 0.01 31.07 1.32 16.87 0.27 28.01 0.07 36.44

Kimono1 1.07 29.12 2.13 16.77 1.79 38.37 -0.07 24.66

Mixed
BasketballScreen 1.00 35.52 1.44 21.90 0.72 10.01 4.38 25.16

MissionControlClip2 0.67 34.36 1.22 22.19 0.67 10.98 2.17 31.23
MissionControlClip3 0.57 37.37 1.10 24.59 0.47 9.17 5.71 29.32

TGM

Console 0.43 47.14 2.33 27.37 0.49 16.74 1.98 23.69
Desktop 0.10 59.65 1.56 30.89 0.5 20.72 2.24 32.29

FlyingGraphics 3.11 39.49 1.71 24.28 0.57 13.19 6.66 18.51
Map 1.18 18.60 1.65 20.56 1.03 10.84 2.28 26.87

Programming 1.17 34.69 1.29 23.09 0.79 9.73 3.64 24.55
SlideShow 0.71 15.55 1.74 17.86 0.85 11.01 3.77 23.19

WebBrowsing 0.39 49.66 1.87 26.35 0.46 17.35 7.01 17.62
All Average 0.88 34.95 1.61 22.32 0.72 16.51 3.22 26.98

to 0.5 for testing purposes. The corresponding thresholds and
their associated BDBRs are illustrated in Fig. 4.

From Fig. 4, it is evident that as the thresholds increase,
the corresponding BDBR gradually decreases. When a CU is
examined by BDPCM, if its confidence level is greater than
or equal to 0.5, BDPCM is selected as the best mode, and
subsequent RDO processes can be terminated early.

6. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm, we
employed the VTM-17.0 reference software for testing on
a server equipped with an Intel Xeon Gold 5122 CPU and
64GB of memory. The experimental parameters were config-
ured in accordance with the CTC. Specifically, both GOPSize
and IntraPeriod were set to 1, and QPs were set as (22, 27, 32,
37). The coding efficiency was evaluated using BDBR, repre-
senting the percentage of bitrate increase for the same quality
compared to the reference software. Positive and negative val-
ues indicate a loss and an improvement in coding efficiency,
respectively. Computational complexity was measured by the
percentage of the coding time savings, denoted as ∆T.

Considering the limited research on VVC SCC and the
abundance of works on HEVC SCC, we compare our over-
all performance with MLMD [13], and OLBD [15], FSC-
NET [17]. It is important to note that we did not compare
with the latest two papers, namely Gao et al.’s algorithm [10]
and Zuo et al.’s algorithm [21]. The rationale behind this de-
cision is that Gao et al.’s algorithm assigns different CMs to
CUs of various sizes in HEVC, which encompasses only four
CUs of different sizes. In contrast, VVC supports CUs of 17
different sizes. Consequently, Gao’s method is not suitable
for a direct comparison with our proposed algorithm. Incor-
porating Gao et al.’s algorithm into VVC would result in a
very limited time reduction, rendering it an unfair basis for
comparison. The coding speed of Zuo et al.’s algorithm has
increased by 90.51%, but this improvement comes at the cost
of a 9.47% increase in BDBR. Despite the notable improve-
ment in coding speed, the coding efficiency of Zuo et al.’s

algorithm has significantly deteriorated. This degradation in
coding efficiency cannot be deemed an acceptable trade-off
for improved coding performance. Consequently, Zuo et al.’s
algorithm is not an ideal benchmark for comparison. To the
best of our knowledge, these three algorithms are the state-
of-the-art fast Intra coding algorithms for VVC SCC. To en-
sure a fair comparison, we implement these algorithms on the
same computing platform and use identical experimental pa-
rameters. The comparison of coding performance and coding
speed is presented in Table 4. In consideration of the practi-
cality of our algorithm, the inference time of the models em-
ployed in our algorithm has been included in the experimental
results.

From Table 4, it can be observed that coding speed im-
provements achieved by our proposed algorithms, MLMD,
OLBD, and FSCNET, are 34.95%, 22.32%, 16.51% and
26.98%, respectively. The corresponding average BDBR in-
creases by 0.88%, 1.61%, 0.72%, and 3.22%, respectively.
When compared with FSCNET and MLMD, our proposed
algorithm performs significantly better in terms of both cod-
ing speed and coding efficiency. In comparison to OLBD, the
proposed algorithm is faster by 18.44% with a 0.16% BDBR
increase. Although the proposed algorithm exhibits slight
coding efficiency losses, they can be considered negligible
when considering the substantial coding speed improvements.

7. CONCLUSIONS

In this paper, we propose a fast CM prediction for Intra
prediction in VVC SCC. Experimental results demonstrate
that the proposed algorithm can significantly enhance coding
speed with negligible impact on coding efficiency. In our
future work, we plan to develop efficient deep learning-based
algorithms to further improve the coding speed of VVC SCC.
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