Anomalous propagators and the particle-particle channel: Hedin's equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Anomalous propagators and the particle-particle channel: Hedin's equations

Résumé

Hedin's equations provide an elegant route to compute the exact one-body Green's function (or propagator) via the self-consistent iteration of a set of non-linear equations. Its first-order approximation, known as $GW$, corresponds to a resummation of ring diagrams and has shown to be extremely successful in physics and chemistry. Systematic improvement is possible, although challenging, via the introduction of vertex corrections. Considering anomalous propagators and an external pairing potential, we derive a new self-consistent set of closed equations equivalent to the famous Hedin equations but having as a first-order approximation the particle-particle (pp) $T$-matrix approximation where one performs a resummation of the ladder diagrams. This pp version of Hedin's equations offers a way to go systematically beyond the $T$-matrix approximation by accounting for low-order pp vertex corrections.
Fichier principal
Vignette du fichier
2406.07062v1.pdf (589.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04609000 , version 1 (12-06-2024)

Identifiants

Citer

Antoine Marie, Pina Romaniello, Pierre-François Loos. Anomalous propagators and the particle-particle channel: Hedin's equations. 2024. ⟨hal-04609000⟩
89 Consultations
95 Téléchargements

Altmetric

Partager

More