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Hedin’s equations provide an elegant route to compute the exact one-body Green’s function
(or propagator) via the self-consistent iteration of a set of non-linear equations. Its first-order
approximation, known as GW , corresponds to a resummation of ring diagrams and has shown to
be extremely successful in physics and chemistry. Systematic improvement is possible, although
challenging, via the introduction of vertex corrections. Considering anomalous propagators and an
external pairing potential, we derive a new self-consistent set of closed equations equivalent to the
famous Hedin equations but having as a first-order approximation the particle-particle (pp) T -matrix
approximation where one performs a resummation of the ladder diagrams. This pp version of Hedin’s
equations offers a way to go systematically beyond the T -matrix approximation by accounting for
low-order pp vertex corrections.

I. RESUMMATION IN MANY-BODY
PERTURBATION THEORY

In 1965, Lars Hedin published a seminal paper that
introduced a set of equations,

G(11′) = G0(11
′) +G0(12)Σ(22

′)G(2′1′), (1a)

Σxc(11
′) = iG(33′)W (12′; 32)Γ̃(3′2; 1′2′), (1b)

W (12; 1′2′) = v(12−; 1′2′)

− iW (14; 1′4′)L̃(3′4′; 3+4)v(23; 2′3′),
(1c)

L̃(12; 1′2′) = G(13)G(3′1′)Γ̃(32; 3′2′), (1d)

Γ̃(12; 1′2′) = δ(12′)δ(1′2)

+ Ξxc(13
′; 1′3)G(34)G(4′3′)Γ̃(42; 4′2′),

(1e)

now referred to as Hedin’s set [1]. The composite index
1 gathers time, spin, and spatial variables, and implicit
integration over repeated indices is assumed. The involved
quantities will be defined in the discussion that follows.
Here, we consider the 4-point version of these equations [2–
4]. This set of non-linear equations provides a theoretical
route to compute the exact one-body Green’s function
(or propagator) G through self-consistent iterations.

While this formal recipe to obtain the exact propagator
is elegant, the main success of Hedin’s equations lies in
its first-order approximation, the so-called GW approxi-
mation [5–8], which is achieved by discarding the second
term of the 4-point irreducible vertex function Γ̃. Hence,
the GW exchange-correlation (xc) self-energy,

ΣGW
xc (11′) = iG(22′)W (2′1; 1′2), (2)

is expressed in terms of the one-body propagator and
the dynamically-screened Coulomb interaction W . The
GW approximation has been first employed to compute
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FIG. 1. The dynamically-screened interaction W (wiggly line)
computed at the ph-RPA level corresponds to a resummation
of bubble diagrams. The dashed lines represent the Coulomb
interaction and the solid lines with arrows denote the one-body
propagator.

the photoemission spectrum of solids [9–19] before being
imported in quantum chemistry to calculate electron at-
tachment and detachment energies in molecular systems
[20–31]. It has proven to be successful in both fields for
weakly and moderately correlated systems.

The GW self-energy defined in Eq. (2) corresponds
to the first-order term of an expansion with respect to
the effective interaction W . While the associated dy-
namical screening can theoretically be computed using
any irreducible particle-hole (ph) correlation function L̃,
Hedin’s equations naturally suggest relying on the same
approximated vertex function in L̃ and Σ. If this choice is
made, the ph direct random-phase approximation (RPA)
polarizability [32] naturally appears in the construction
of the screened interaction. The diagrammatic content
of the corresponding effective interaction is illustrated
in Fig. 1. The ph-RPA is well-known as it corresponds
to the resummation of polarizability diagrams that are
the most important in the uniform electron gas at high
density, the so-called bubble (or ring) diagrams [33–38].

On the other hand, the most relevant diagrams in
the low-density limit of the uniform electron gas with
short-range interactions (as well as in nuclear matter) are
quite different [38]. These diagrams, known as ladders,
and their exchange counterparts can also be resummed
and this yields the analog particle-particle (pp) RPA, also
known as pairing vibration approximation [32]. These two
closely related approximations include two different types
of correlation events and, hence, do not yield the same
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T = + + + ...

FIG. 2. The effective interaction T computed at the pp-
RPA level corresponds to a resummation of ladder diagrams.
The dashed lines represent the Coulomb interaction and the
solid lines with arrows denote the one-body propagator. The
exchange counterpart of each of these diagrams should be also
included but has not been represented here.

correlation energies. The pp-RPA correlation energy has
been shown to be equivalent to coupled cluster with double
excitations (CCD) restricted to ladder terms [39, 40].
Similarly, the ph-RPA correlation energy is equivalent to
CCD restricted to another subset of terms, namely the
ring terms [41].

As mentioned earlier, the ph-RPA appears naturally
in the GW approximation. Within Hedin’s equations,
ladder self-energy diagrams are obtained through vertex
corrections. At each self-consistent iteration of Eqs. (1),
the functional derivative of W appearing in Γ̃ (through
the exchange-correlation kernel Ξxc = δΣxc/δG ) creates
an additional ladder self-energy diagram of higher order
[42, 43]. However, in certain physical situations, it is
preferable to account for all ladder diagrams from the
start. This is achieved by the T -matrix approximation.

The T -matrix approximation [44, 45], also known as
the Bethe-Goldstone approximation [46], has first been
introduced in the nuclear many-body problem [47, 48].
The T -matrix is a 4-point effective interaction accounting
for repeated scattering of two particles. In practice, these
scattering events are often computed at the pp-RPA level
[32]. This is in close analogy with the effective interaction
W accounting for screening events and built using the
ph-RPA. The diagrams resummed in the T -matrix effec-
tive interaction are represented in Fig. 2. Note that the
term T -matrix has been employed in various contexts for
different types of effective interaction and they should not
be confused (see, for example, the electron-hole T -matrix
for electron-magnon scattering [4, 49–51]). The T -matrix-
based self-energy has been applied to model systems, like
the Hubbard model [49, 52], as well as more realistic solids
(though often combined with other correlation channels in
this case) [53–57]. One of its main successes in this field is
the description of the 6 eV satellite of nickel [53, 54]. More
recently, it has been used to compute ionization potentials
of molecular systems [4, 58–62], where it has been shown
to have similar accuracy to GW for valence ionization
potentials if a Hartree-Fock reference is employed for both
[58].

Unfortunately, while Hedin’s equations provide a path
to go beyond GW , to the best of our knowledge, there is
no such set of equations for the T -matrix approximation.
The T -matrix was initially introduced as a resummation
of diagrams, or equivalently as a Bethe-Salpeter equa-
tion for an effective 4-point interaction [47]. On the
other hand, Hedin’s equations stem from a functional

derivative framework [5]. Romaniello et al. managed to
obtain the T -matrix in such a framework [49]. Their
derivation highlights connections between the GW and
T -matrix approximations, as well as ways to combine
them to go beyond GW . However, it does not provide
a straightforward pathway for a systematic inclusion of
vertex corrections in the T -matrix approximation, as in
the case of GW . Vertex corrections to the GW self-energy
is an active field of research [3, 42, 43, 49, 63–74], and ex-
tending these corrections to the T -matrix approximation
would undoubtedly offer valuable new insights.

The primary focus of the present manuscript is to bridge
this gap by deriving, from first principles, an alternative
set of equations for the one-body propagator. Within this
novel framework, the T -matrix emerges naturally through
the lowest-order vertex approximation, in close analogy
with the GW approximation. Therefore, we shall refer
to it as the pp version of Hedin’s equations. The crux
of the derivation lies in the consideration of anomalous
propagators and a non-number-conserving external po-
tential, as elaborated in the subsequent sections. The
present work aligns with recent studies dealing with the
generalization of Hedin’s equations to a spin-dependent
interaction [75], the exploration of connections between
the parquet and GWΓ formalisms [76], or the extension
of Hedin’s equations to the Gorkov propagator [77].

II. SELF-ENERGY AND SCHWINGER
RELATIONS

The central object of this closed set of equations is the
equilibrium time-ordered one-body propagator (at zero
temperature) defined as

G(11′) = (−i)
〈
ΨN

0

∣∣T̂ [ψ̂(1)ψ̂†(1′)
]∣∣ΨN

0

〉
, (3)

where
∣∣ΨN

0

〉
is the exact N -electron ground-state wave

function. The time-ordering operator T̂ acts on the an-
nihilation and creation field operators in the Heisenberg
picture, which read

ψ̂(1) = ψ̂(x1, t1) = eiĤt1 ψ̂(x1)e
−iĤt1 , (4a)

ψ̂†(1) = ψ̂†(x1, t1) = eiĤt1 ψ̂†(x1)e
−iĤt1 , (4b)

where Ĥ is the electronic Hamiltonian and x1 is a variable
gathering spin and position r1.

The first step is the same as in the usual derivation of
Hedin’s equations (see, for example, Ref. 12) and consists
of deriving the Dyson equation,

G(11′) = G0(11
′) +G0(12)Σ(22

′)G(2′1′), (5)

from the equation of motion for G. Here, G0 is the non-
interacting one-body propagator and the self-energy is
defined as

Σ(11′) = −iv(12; 3′2′)G2(2
′+3′; 2++3)G−1(31′). (6)
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This definition involves the inverse of the one-body prop-
agator G−1, the 4-point Coulomb interaction

v(12; 1′2′) = δ(11′)v(12)δ(22′) (7)

with

v(12) =
δ(t1 − t2)

|r1 − r2|
, (8)

and the two-body propagator

G2(12; 1
′2′) = (−i)2

〈
ΨN

0

∣∣T̂ [ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)]
∣∣ΨN

0

〉
.

(9)
The notation 1± means that an infinitesimal shift is
added/subtracted to the corresponding time variable and
δ(11′) is the Dirac delta function.

To obtain a closed set of equations for G, the two-
body Green’s function must be expressed in terms of the
one-body propagator. This is achieved thanks to the
Schwinger relation [78]

G2(12; 1
′2′) = − δG(11′)

δU eh(2′2)
+G(11′)G(22′), (10)

which express G2 in terms of G and its derivative with
respect to an electron-hole (eh) external potential U eh

which is linked to the external operator

Ûeh(t2) =

∫
d(x2x2′) ψ̂

†(x2)U
eh(x2x2′ ; t2)ψ̂(x2′). (11)

as U eh(11′) = U eh(x1x1′ ; t1)δ(t1 − t1′). Note that, in
Eq. (10), the one- and two-body propagators have been
generalized to their non-equilibrium version. In the fol-
lowing, the functional U -dependence of these propagators
is not explicitly written for the sake of conciseness. In the
presence of such an external potential, the field operators
of Eqs. (4a) and (4b) have to be generalized to the case
of a time-dependent Hamiltonian. Hence, as explained in
detail in the Supplemental Material, the derivation of the
Schwinger relation is more conveniently performed in the
interaction representation.

The key idea to obtain an alternative system of equa-
tions is to realize that an analog relationship can be
obtained in the case of an external pairing potential oper-
ator,

Ûpp(t2) =
1

2

∫
d(x2x2′)

[
ψ̂†(x2)U

ee(x2x2′ ; t2)ψ̂
†(x2′)

+ ψ̂(x2)U
hh(x2x2′ ; t2)ψ̂(x2′)

]
, (12)

composed by an electron-electron (ee) and a hole-hole
(hh) external potential, U ee and Uhh, respectively. One
major difference with Ûeh is that Ûpp does not commute
with the particle number operator. Therefore, the number
of particles is not a good quantum number of the Hamil-
tonian in the presence of Ûpp. Equivalently, one may say
that Ûpp breaks the U(1) symmetry of the Hamiltonian
[38].

The linear response of G to this external perturbation
is not linked to G2 as in Eq. (10). However, G2 can be
obtained as the response of an anomalous propagator to
this external pairing potential

G2(12; 1
′2′) = −2

δGee(1′2′)

δUhh(12)
−Gee(1′2′)Ghh(12). (13)

The derivation of this equation closely follows the one of
Eq. (10) and is reported in the Supplemental Material.

The anomalous propagator Gee, and its counterpart
Ghh, also known as pairing propagators, are defined as

Gee(11′) = (−i) ⟨Ψ0|T̂
[
ψ̂†(1)ψ̂†(1′)

]
|Ψ0⟩ , (14a)

Ghh(11′) = (−i) ⟨Ψ0|T̂
[
ψ̂(1)ψ̂(1′)

]
|Ψ0⟩ . (14b)

Therefore, the one-body propagator defined in Eq. (3)
will now be denoted as Ghe and referred to as the normal
propagator. Thanks to Nambu’s matrix formalism [79],
these propagators can be gathered in a single entity

G(11′) =

(
Ghe(11′) Ghh(11′)
Gee(11′) Geh(11′)

)
, (15)

known as the Gorkov propagator [80]. The lower-right eh
propagator is linked to the normal propagator by the rela-
tionship Geh(11′) = −Ghe(1′1). The Gorkov propagator
admits a Dyson equation

G(11′) = G0(11
′) +G0(12)[Σ(22′) +U(22′)]G(2′1′),

(16)
which defines the normal and anomalous components of
the corresponding self-energy in Nambu’s formalism

Σ(11′) =

(
Σhe(11′) Σhh(11′)
Σee(11′) Σeh(11′)

)
= G−1

0 (11′)−G−1(11′)−U(11′).

(17)

The matrix G0 is the independent-particle Gorkov propa-
gator and

U(11′) =

(
0 U ee(11′)

Uhh(11′) 0

)
. (18)

Note that U ee appears in the hh component of Nambu’s
matrix formalism and vice-versa. This surprising property
is a direct consequence of the equation of motion for G
which is derived in the Supplemental Material.

A diagrammatic perturbation expansion of Σ in terms
of the Coulomb interaction exists as in the simpler case
of Σhe [38, 79]. Recently, this perturbation expansion
has been derived up to second order, implemented, and
applied to mid-mass nuclei in the context of nuclear struc-
ture calculations [81–86]. (See also Ref. 87 for a recent
extension of the Gorkov algebraic diagrammatic construc-
tion up to third order.)

Note that, in the definition of Gee and Ghh, the super-
script N characterizing the ground-state wave function
has been removed. Indeed, as mentioned above, the
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number of particles is not conserved in the presence of
the external pairing potential. Hence, the wave function
becomes a linear superposition of wave functions with
various particle numbers. If a wave function with a fixed
number of particles is considered, then the anomalous
propagators vanish [see Eqs. (14a) and (14b)]. For the
non-relativistic electronic Hamiltonian, this will always
be the case, as this Hamiltonian does not spontaneously
break the particle-number symmetry due to the repul-
sive nature of the Coulomb interaction [88–90]. In other
cases, such as superconductivity or nuclear superfluidity
[91, 92], these propagators can be non-zero and essential
to describe the physics at play.

At first, it might seem counterintuitive to use Gee and
Ghh with a number-conserving Hamiltonian. However,
it is crucial to realize that while anomalous quantities
are zero when the pairing potential is switched off, their
derivatives with respect to the pairing external potential
can be non-zero at U = 0. This is exemplified by taking
the equilibrium limit of Eq. (13) where the derivative of
Gee with respect to Uhh evaluated at U = 0 is equal to
G2.

Before going further, we should mention that anoma-
lous quantities and/or pairing potentials have also been
explored in various ways in quantum chemistry [93–101].
One directly related example is the work of Yang’s
group on pairing fields in density-functional theory (DFT)
[90, 102, 103]. They formulated the adiabatic connection
fluctuation dissipation theorem in terms of pairing matrix
fluctuations which leads to a new path to develop density
functional approximations [90, 102]. They also extended
the adiabatic time-dependent DFT (TDDFT) formalism

to an external pairing field [103]. This alternative response
problem is closely related to pp-RPA and yields comple-
mentary information to the usual ph-TDDFT problem.
Another example is the variation-after-projection ansatz
where the particle-number symmetry of a Hartree-Fock
determinant is restored before variational optimization at
a mean-field cost [104] (see also Ref. 105). Finally, John-
son and co-workers employed Richardson-Gaudin states
(the eigenfunctions of the Bardeen-Cooper-Schriffer model
Hamiltonian [91]) as building blocks to describe strongly
correlated molecular systems [106–110].

III. PARTICLE-PARTICLE GORKOV-HEDIN
EQUATIONS

The stage is now set to derive the pp version of Hedin’s
equations. As mentioned earlier, the relevant equations
for a number-conserving Hamiltonian are the ones involv-
ing only Ghe and Σhe. However, because the Schwinger
relation involves the other components of the Gorkov
propagator, it is more convenient to derive a closed set of
equations for G (at finite U), hence referred to as the pp
Gorkov-Hedin equations. Then, the equations relevant
for number-conserving Hamiltonians are recovered in the
limit of a vanishing pairing potential. This will be done
in Sec. IV where the link with the conventional Hedin
equations will be discussed. In this section, an overview
of the derivation of the pp Gorkov-Hedin equations is
provided. A more comprehensive derivation can be found
in the accompanying Supplemental Material.

As mentioned earlier, the Gorkov-Dyson equation can be derived from the equation of motion for G. The resulting
self-energy expression is

Σ(11′) = −i

∫
d(232′3′)

(
v(12−−; 32′−) 0

0 −v(32+; 12′++)

)
G2(2

′3; 23′)G−1(3′1′), (19)

where G2 is a Nambu generalization of the two-body Green’s function

G2(12; 1
′2′) = (−i)2 ⟨Ψ0|T̂

[(
ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′) ψ̂(1)ψ̂(2)ψ̂(2′)ψ̂†(1′)

ψ̂(1)ψ̂†(2)ψ̂†(2′)ψ̂†(1′) ψ̂(1)ψ̂†(2)ψ̂(2′)ψ̂†(1′)

)]
|Ψ0⟩ . (20)

The Schwinger relation of Eq. (13) can be extended to G2 in order to obtain a closed set of equations for G

G2(12; 1
′2′) =

−2
δGee(1′2′)

δUhh(12)
−Gee(1′2′)Ghh(12) −2

δGeh(1′2′)

δUhh(12)
−Geh(1′2′)Ghh(12)

−2
δGhe(12′)

δU ee(21′)
−Ghe(12′)Gee(21′) −2

δGhh(12′)

δU ee(21′)
−Ghh(12′)Gee(21′)

 . (21)

Substituting this relation into Eq. (19) leads to two self-energy terms. The term corresponding to the product of
propagators reads

ΣB(11
′) = i

(
0 v(11′)Ghh(1′−1)

v(11′)Gee(1′+1) 0

)
, (22)

and is identified as the first-order static anomalous self-energy or Bogoliubov (B) self-energy. Therefore, the self-energy
stemming from the remaining term in the Schwinger relation, denoted as ΣHxc, accounts for Hartree (H), exchange (x)
and correlation effects (c).
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Through the link between the derivative of the Gorkov propagator and the derivative of the inverse Gorkov propagator
(see Supplemental Material), ΣHxc can be expressed as

ΣHxc(11
′) = 2i

∫
d(232′3′)

(
v(12; 32′) 0

0 −v(32′; 12)

)
[(
Gee(2++3′) Geh(2++3′)

0 0

)
Γhh(2′3; 3′1′) +

(
0 0

Ghe(2−−3′) Ghh(2−−3′)

)
Γee(32′; 3′1′)

]
, (23)

where the vertex functions have been defined as

Γhh(12; 1′2′) = −δG
−1(1′2′)

δUhh(1+2)
, Γee(12; 1′2′) = −δG

−1(1′2′)

δU ee(12−)
. (24)

From hereon, integration over repeated indices is assumed in the expression of the self-energy.
The self-energy will now be expressed in terms of effective interactions in order to obtain an analog of Hedin’s

equations. Mathematically, this is done through the chain rule with respect to the two anomalous total potentials,
namely, V ee = Σee

B + Uhh and V hh = Σhh
B + U ee, which yields

ΣHxc(11
′) = i

[(
Gee(2++3′) Geh(2++3′)

0 0

){
T he(12; 44′)Γ̃

ee
(44′; 3′1′) + T hh(12; 44′)Γ̃

hh
(44′; 3′1′)

}
+

(
0 0

Ghe(2−−3′) Ghh(2−−3′)

){
T ee(12; 44′)Γ̃

ee
(44′; 3′1′) + T eh(12; 44′)Γ̃

hh
(44′; 3′1′)

}]
, (25)

where the irreducible vertex functions,

Γ̃
hh
(12; 1′2′) = −δG

−1(1′2′)

δV hh(12)
, Γ̃

ee
(12; 1′2′) = −δG

−1(1′2′)

δV ee(12)
, (26)

and the effective interaction,

T (12; 1′2′) =

(
T he(12; 1′2′) T hh(12; 1′2′)
T ee(12; 1′2′) T eh(12; 1′2′)

)
= 2

(
v(12; 33′) 0

0 −v(33′; 12)

)
δV ee(1′2′)

δUhh(3′+3)

δV hh(1′2′)

δUhh(3′+3)
δV ee(1′2′)

δU ee(33′−)

δV hh(1′2′)

δU ee(33′−)

 , (27)

have been introduced.
This effective interaction admits a Dyson equation

T (12; 1′2′) = −V̄ (12; 1′2′)− T (12; 33′)K̃(33′; 44′)V (44′+; 1′2′++), (28)

where the kernel K̃ is equal to

K̃(12; 1′2′) = i


δGee(1′2′)

δV ee(12)

δGhh(1′2′)

δV ee(12)
δGee(1′2′)

δV hh(12)

δGhh(1′2′)

δV hh(12)

 = i

(
[G(1′3)Γ̃

ee
(12; 33′)G(3′2′)]ee [G(1′3)Γ̃

ee
(12; 33′)G(3′2′)]hh

[G(1′3)Γ̃
hh
(12; 33′)G(3′2′)]ee [G(1′3)Γ̃

hh
(12; 33′)G(3′2′)]hh

)
. (29)

The notation [GΓ̃
ee
G]ee stands for the ee block of the product matrix GΓ̃

ee
G. The Coulomb potential V is defined as

V (12+; 1′2′++) =

(
v(12+; 1′2′++) 0

0 v(1′2′−−; 12−)

)
, (30)

and V̄ is its antisymmetric counterpart, i.e., V̄ (12; 1′2′) = V (12; 1′2′)− V (12; 2′1′). Therefore, the irreducible vertex
functions appear both in the self-energy [see Eq. (25)] (outer vertex) and in the effective interaction (inner vertex).

Using the lowest-order approximations of Γ̃
hh

and Γ̃
ee

,

Γ̃
hh
0 (12; 1′2′) =

1

2

(
0 δ(1′1)δ(2′2)− δ(1′2)δ(2′1)
0 0

)
Γ̃

ee
0 (12; 1′2′) =

1

2

(
0 0

δ(1′1)δ(2′2)− δ(1′2)δ(2′1) 0

)
, (31)
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the corresponding self-energy becomes

ΣHxc(11
′) = i

(
Geh(22′)T he(12; 2′1′) Gee(22′)T hh(12; 2′1′)
Ghh(22′)T ee(12; 2′1′) Ghe(22′)T eh(12; 2′1′)

)
, (32)

and the kernel of the T -matrix Dyson equation reads

K̃(12; 1′2′) =
i

2
[δ(13)δ(23′)− δ(13′)δ(23)]

(
Geh(1′3)Ghe(3′2′) Ghh(1′3)Ghh(3′2′)
Gee(1′3)Gee(3′2′) Ghe(1′3)Geh(3′2′)

)
. (33)

T he = + + + + ...

T eh = + + + + ...

T ee = + + + ...

T eh = + + + + ...

FIG. 3. The effective interaction T computed with the lowest-
order vertex approximation results in a resummation of ladder
diagrams for each component. The exchange counterpart of
each of these diagrams should also be included but has not
been represented here. The double-arrowed propagators in
T hh (T ee) represent Ghh (Gee) [89].

The diagrams corresponding to each component of T ,
up to third order, are represented in Fig. 3. Note that this
generalized T -matrix approximation was introduced by
Bozek using diagrammatic techniques to study superfluid
nuclear matter [111]. Therefore, the present work pro-
vides a first-principle derivation of Bozek’s T -matrix. It
might also be used to go beyond Bozek’s approximation by
including vertex corrections in T and/or Σ. For example,
note that the self-energy approximation of Eqs. (32)-(33)
is not complete up to second order in the Coulomb in-
teraction. The missing second-order terms are recovered
through the first iteration of the pp Gorkov-Hedin equa-
tions as shown in the Supplemental Material. Finally, the
extension of conventional Hedin’s equations to the Gorkov
propagator [77] has been employed to derive exchange-
correlation energy functional for superconducting DFT
[112–114]. Hence, the pp Gorkov-Hedin’s equations might
also provide additional insights into this field.

IV. T -MATRIX APPROXIMATION AND
VERTEX CORRECTIONS

Now that the pp Gorkov-Hedin equations have been
derived, a set of equations analog to Eqs. (1) will be re-

covered as a limiting case (U → 0). We remind the reader
that Ghe is the normal propagator and, thus, we focus on
the upper-left block of the Gorkov-Dyson equation. This
leads to the following alternative system of equations

G(11′) = G0(11
′) +G0(12)Σ(22

′)G(2′1′), (34a)

Σ(11′) = iG(2′2++)T (12; 33′)Γ̃(33′; 2′1′), (34b)
T (12; 1′2′) = −v̄(12; 1′2′)

−T (12; 33′)K̃(33′; 44′)v(44′+; 1′2′++),
(34c)

K̃(12; 1′2′) = iG(31′)G(3′2′)Γ̃(12; 33′), (34d)

Γ̃(12; 1′2′) =
1

2
[δ(1′2)δ(2′1)− δ(1′1)δ(2′2)]

−Ξpp(33′; 1′2′)G(43)G(4′3′)Γ̃(12; 44′),
(34e)

which is actually not closed because the pp kernel,

Ξpp(12; 1′2′) =
δΣee(1′2′)

δGee(12)

∣∣∣∣
U=0

, (35)

explicitly depends on the anomalous self-energy Σee.
Therefore, to compute vertex corrections in this frame-
work, one first needs to compute the corresponding vertex
correction for Σ [see Eq. (32)] and then take the number-
conserving limit.

The analog of the GW approximation for this set
is obtained by setting the inner and outer vertices to
Γ̃(12; 1′2′) = 1

2 [δ(1
′2)δ(2′1)− δ(1′1)δ(2′2)]. The resulting

self-energy is

Σ(11′) = iG(2′2++)T (12; 1′2′), (36)

with the effective interaction

T (12; 1′2′) = −v̄(12; 1′2′)
− T (12; 33′)K0(33

′; 44′)v(44′+; 1′2′++), (37)

and

K0(12; 1
′2′) =

i

2
[G(12′)G(21′)−G(22′)G(11′)]. (38)

Therefore, this approximate self-energy is exactly the T -
matrix approximation computed at the pp-RPA level. y
While the above derivation of the pp T -matrix is elegant,
this approximation was already well-known. However,
this formalism offers a new systematic path to include
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FIG. 4. A third-order self-energy term arising through the
second iteration of the pp Hedin equations.

corrections on top of the T -matrix self-energy through
the irreducible vertex function Γ̃. The derivation follows
the methodology of Mejuto-Zaera and Vlček who investi-
gated vertex corrections to the GW self-energy [43] (see
also Ref. 42). Note that this work will not examine the
vertex corrections to K̃(12; 1′2′). Nonetheless, the present
framework is particularly well-suited for deriving the pp
Bethe-Salpeter equation. Work in this direction is cur-
rently underway and will be presented in a subsequent
study.

The lowest-order term of the irreducible vertex function
arising at the first iteration is of first order in the effective
interaction T (see Supplemental Material). Following
Eq. (34e), the component of interest in the normal phase
(U = 0) is given by

T ee(3′7; 7′1′)

2

× [Ghh(74′)Ghh(47′)−Ghh(7′4′)Ghh(47)]

∣∣∣∣
U=0

= 0,

(39)

which means that there is no self-energy correction of
second order in T in the number-conserving limit. Hence,
the first non-zero self-energy terms beyond Eq. (36) are
of third order in T . This could have been anticipated
as the T -matrix self-energy is exact up to second-order
in the Coulomb interaction. Likewise, the lowest-order
inner-vertex corrections are of second order in T .

To conclude this section, we report a third-order self-
energy term that is non-zero in the absence of pairing
fields. This term is naturally obtained at the second
iteration of the pp Hedin equations (see Supplemental
Material) and reads

i2Ghe(2′2++)T he(12; 33′)T eh(2′8; 66′)Ghe(8−−8′)

× T he(8′7; 7′1′)Geh(6′7′)Ghe(3′7)Ghe(36). (40)

The lowest-order diagram in v contained in Eq. (40) is
represented in Fig. 4. Equation (40) is diagrammatically
equivalent to the third-order GW bubble diagram where
the Coulomb interaction has been replaced by the effective
interaction T . This is fully analog to the screened ladder
diagrams that arise through the vertex corrections to the
GW self-energy in conventional Hedin’s equations [42, 43].

V. CONCLUSION

In this work, we introduced a new system of equations
for the one-body propagator G. The lowest-order self-
energy approximation coming from this set is the well-
known pp T -matrix approximation, where T is computed
at the pp-RPA level. Self-consistently iterating this set
formally leads to a perturbative expansion of the self-
energy with respect to the pp T -matrix. This procedure
parallels the self-energy expansion in terms of the screened
interaction W obtained through the conventional form of
Hedin’s equations. Therefore, we refer to this new set as
pp Hedin’s equations. More importantly, this framework
allows us to derive, from first principles, vertex corrections
to the T -matrix approximation.

The pp Hedin equations have been obtained by first de-
riving a closed set of equations for the Gorkov propagator
in the presence of an external pairing potential and then
taking the limit of a vanishing potential. Indeed, the pp
T -matrix interaction naturally appears when one seeks
the response of an anomalous propagator to a pairing field.
Consequently, this derivation is thus more appropriately
performed in the Nambu-Gorkov framework rather than
considering solely the normal one-body propagator.

Starting from the pp Gorkov-Hedin equations, the sim-
plest form of the irreducible vertex function leads to the
generalized T -matrix self-energy introduced by Bozek to
study superfluid nuclear matter [111]. This new functional
derivative perspective brings complementary insight into
Bozek’s diagrammatic derivation. For example, Bozek’s
T -matrix self-energy is not complete up to second-order in
the Coulomb interaction and we show that these missing
terms arise through the lowest-order vertex correction.

This lowest-order vertex correction to the self-energy,
of second-order in T , turns out to be zero in the nor-
mal phase. The first non-vanishing vertex correction
is obtained by performing a second iteration of the pp
Hedin equations and is thus of third order in T . Diagram-
matically, this term corresponds to the two-bubble GW
self-energy diagram where the bare Coulomb lines have
been replaced by T . Once again, a parallel can be drawn
with conventional Hedin’s equations, where the vertex
function generates screened ladder self-energy diagrams.

Because the first vertex correction to the self-energy
in the normal phase is of third order in T , this approach
is likely computationally too expensive in practice. On
the other hand, computing self-energy terms of higher
order in W without improving the description of W it-
self (and vice-versa) has also produced mixed outcomes
[3, 42, 43, 64, 68, 69, 71, 72, 74]. Therefore, an alternative
route might be to combine W and T . This has already
been explored in various ways, for example, by replacing
the Coulomb interaction with a screened interaction in
ladder self-energy diagrams [49, 51, 53, 57]. The fluctu-
ation exchange approximation of Bickers and coworkers
involves summing the GW and T -matrix channels (with-
out double counting) [54, 115–117]. The Fadeev RPA
[118–121] and multi-channel Dyson formalisms [122, 123]
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constitute other alternatives to approximately couple the
various scattering channels. We believe that the Gorkov
propagator might offer yet another way to combine them
and is currently investigated in our group.

Finally, note that this work focused on using anomalous
quantities to compute the one-body propagator. There-
fore, a natural extension would be to consider these quan-
tities within the two-body Bethe-Salpeter equation. In
particular, it can be shown that pairing propagators and
anomalous self-energies offer a convenient framework to
compute the kernel of the pp Bethe-Salpeter equation.
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