Genome scale metabolic network modelling for metabolic profile predictions - Archive ouverte HAL
Article Dans Une Revue PLoS Computational Biology Année : 2024

Genome scale metabolic network modelling for metabolic profile predictions

Résumé

Metabolic profiling (metabolomics) aims at measuring small molecules (metabolites) in complex samples like blood or urine for human health studies. While biomarker-based assessment often relies on a single molecule, metabolic profiling combines several metabolites to create a more complex and more specific fingerprint of the disease. However, in contrast to genomics, there is no unique metabolomics setup able to measure the entire metabolome. This challenge leads to tedious and resource consuming preliminary studies to be able to design the right metabolomics experiment. In that context, computer assisted metabolic profiling can be of strong added value to design metabolomics studies more quickly and efficiently. We propose a constraint-based modelling approach which predicts in silico profiles of metabolites that are more likely to be differentially abundant under a given metabolic perturbation (e.g. due to a genetic disease), using flux simulation. In genome-scale metabolic networks, the fluxes of exchange reactions, also known as the flow of metabolites through their external transport reactions, can be simulated and compared between control and disease conditions in order to calculate changes in metabolite import and export. These import/export flux differences would be expected to induce changes in circulating biofluid levels of those metabolites, which can then be interpreted as potential biomarkers or metabolites of interest. In this study, we present SAMBA (SAMpling Biomarker Analysis), an approach which simulates fluxes in exchange reactions following a metabolic perturbation using random sampling, compares the simulated flux distributions between the baseline and modulated conditions, and ranks predicted differentially exchanged metabolites as potential biomarkers for the perturbation. We show that there is a good fit between simulated metabolic exchange profiles and experimental differential metabolites detected in plasma, such as patient data from the disease database OMIM, and metabolic trait-SNP associations found in mGWAS studies. These biomarker recommendations can provide insight into the underlying mechanism or metabolic pathway perturbation lying behind observed metabolite differential abundances, and suggest new metabolites as potential avenues for further experimental analyses.
Fichier principal
Vignette du fichier
2024_Cooke_Plos Computational Biology.pdf (3.87 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04596969 , version 1 (03-09-2024)

Licence

Identifiants

Citer

Juliette Cooke, Maxime Delmas, Cecilia Wieder, Pablo Rodríguez Mier, Clément Frainay, et al.. Genome scale metabolic network modelling for metabolic profile predictions. PLoS Computational Biology, 2024, 20 (2), pp.e1011381. ⟨10.1371/journal.pcbi.1011381⟩. ⟨hal-04596969⟩
120 Consultations
11 Téléchargements

Altmetric

Partager

More