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Abstract

Metabolic profiling (metabolomics) aims at measuring small molecules (metabolites) in com-

plex samples like blood or urine for human health studies. While biomarker-based assess-

ment often relies on a single molecule, metabolic profiling combines several metabolites to

create a more complex and more specific fingerprint of the disease. However, in contrast to

genomics, there is no unique metabolomics setup able to measure the entire metabolome.

This challenge leads to tedious and resource consuming preliminary studies to be able to

design the right metabolomics experiment. In that context, computer assisted metabolic pro-

filing can be of strong added value to design metabolomics studies more quickly and effi-

ciently. We propose a constraint-based modelling approach which predicts in silico profiles

of metabolites that are more likely to be differentially abundant under a given metabolic per-

turbation (e.g. due to a genetic disease), using flux simulation. In genome-scale metabolic

networks, the fluxes of exchange reactions, also known as the flow of metabolites through

their external transport reactions, can be simulated and compared between control and dis-

ease conditions in order to calculate changes in metabolite import and export. These import/

export flux differences would be expected to induce changes in circulating biofluid levels of

those metabolites, which can then be interpreted as potential biomarkers or metabolites of

interest. In this study, we present SAMBA (SAMpling Biomarker Analysis), an approach

which simulates fluxes in exchange reactions following a metabolic perturbation using ran-

dom sampling, compares the simulated flux distributions between the baseline and modu-

lated conditions, and ranks predicted differentially exchanged metabolites as potential

biomarkers for the perturbation. We show that there is a good fit between simulated meta-

bolic exchange profiles and experimental differential metabolites detected in plasma, such

as patient data from the disease database OMIM, and metabolic trait-SNP associations

found in mGWAS studies. These biomarker recommendations can provide insight into the
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underlying mechanism or metabolic pathway perturbation lying behind observed metabolite

differential abundances, and suggest new metabolites as potential avenues for further

experimental analyses.

Author summary

Associating diseases and other metabolic disruptions with physiological markers is key for

diagnostic and personalised medicine. These markers can be metabolites—small mole-

cules involved in every living being’s metabolism, and can be measured in biofluids such

as blood or urine using metabolic profiling (metabolomics). Nevertheless, this experimen-

tal metabolomics design needs to be tailor made for each disease to ensure that most rele-

vant metabolites will be detected. The selection of metabolites to analyse for future

experiments can be time-consuming and expensive. In this paper, we build upon an exist-

ing computational method for simulating metabolite changes in a human model. This

provides a prediction of the change in biofluid abundance of every known metabolite

involved in human metabolism in a potentially large number of metabolic situations. The

newly introduced method produces a change score and a rank for each metabolite in each

condition. We show the strong potential of the approach by comparing predictions with

experimental results.

Introduction

Molecular biomarkers are measurable molecules directly or indirectly related to alterations of

a certain physiological state. They can be used as diagnostic indicators, and can be measured

in order to detect the presence or severity of many different diseases [1]. Among them, meta-

bolic biomarkers are small molecules (metabolites) whose concentrations differ from a healthy

state due to changes in the organism’s or tissue’s metabolism. In clinical settings, these bio-

markers are traditionally detected using targeted bioassays which result in measurements for a

small number of well characterised diagnostic metabolites (Fig 1A), such as glucose for dia-

betic disorders.

A more holistic approach to measuring metabolites experimentally is via metabolic profil-

ing, also called metabolomics [2]. In this paradigm, the detection of metabolic modulations

relies on a broader panel of molecules (the metabolic profile) than targeted biochemical assays,

hence resulting in an increased predictive and explanatory potential (Fig 1A). The most com-

mon analytical techniques used to measure metabolites are Nuclear Magnetic Resonance

(NMR) and Mass Spectrometry (MS) coupled with separation techniques such as Liquid or

Gas Chromatography (LC or GC).

Both NMR and MS are unable to completely cover the entire metabolome (see [3] for meta-

bolic coverage assessment of MS data). In fact, both analytical techniques have the ability to

detect a portion of the metabolome depending on the physico-chemical properties of mole-

cules present in the sample (e.g. polarity) [4]. Hence, it is important to select the right analyti-

cal method (e.g. separation, ionisation technique), or combination of methods [5], to ensure

that measured metabolites will be relevant for a specific disease. This experimental design step

can be time and resource consuming for experts.

Even if a technique is in principle able to measure a relevant metabolite, it still requires an

identification step to ensure the measured feature is a metabolite of interest. In MS for
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instance, the exact mass is not sufficient to confidently identify a metabolite. It requires con-

fronting measurements with at least an orthogonal approach and confirming the identification

by comparing the observed spectra with the one of the pure molecule (reference spectra of a

standard, level 1 identification [6]). However, the reference spectra of the metabolite might not

be available, which requires the laboratory to buy and inject new standards into mass

spectrometers.

Computational solutions can be used to fill the gaps in experimental observations by pro-

viding a recommendation list of metabolites which are expected to be altered in the studied

condition. This list can be used at different steps of the metabolomics process. Firstly, it can be

used upstream of the experiment to select “the most suitable” analytical platform and set-up

Fig 1. Combining metabolomics profiling with simulations of metabolism. A: Experimental-based biomarker discovery produces metabolic profiles

containing detected and annotated metabolites along with a concentration or fold-change value. B: Metabolic disruptions can be modelled to simulate

metabolic profiles similar to those generated using metabolomics. C: By combining information from both types of metabolic profiles and improving

both experimental annotation and in silico models, various approaches can be used to improve our knowledge of given biomarker sets, affected

pathways, and patient disease classes.

https://doi.org/10.1371/journal.pcbi.1011381.g001
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(e.g. if mostly lipids are expected to be affected, a lipidomics setup will be favoured). The bene-

fit of predicting profiles is also downstream of the analysis for annotation purposes. Raw data

can be mined to look directly at the predicted metabolites which will accelerate the process of

identification. This prediction can be used to select the right set of standards to be analysed to

reach level 1 annotation. Finally, SAMBA can be of added value to fill gaps in biochemical

interpretation by suggesting metabolites (and related pathways) which could be of interest for

the biological comprehension of a disease.

A well suited class of methods for global metabolic modelling is Constraint-Based Model-

ling (CBM). CBM is a modelling framework which uses genome-scale metabolic networks,

under the formalism of a stoichiometric matrix, to compute steady-state metabolic fluxes (the

flow of metabolites) through biochemical reactions [7]. These networks aim to encompass all

known metabolic genes, reactions and metabolites as well as the interactions between them for

a given organism [8–10]. They can also be built to model a specific tissue or cell type [11], or

even multiple tissues linked together [12].

CBM can be used to predict fluxes at steady-state under various conditions. This is achieved

by defining metabolism as a system of linear mass balance equations, composed of the reaction

flux vectors for each metabolite. These fluxes exist under defined flux constraints (setting

upper and lower bounds) to model different metabolic states and reaction directionality. Con-

trolling these bounds can for instance be used to simulate the complete knock-out (KO) (Fig

1B) of one or multiple gene(s) or reaction(s) (like for genetic diseases), or the reduction of the

flux through a reaction or multiple reactions (knock-down), representing reduced enzyme

activity due to some effect of treatment, regulation, or exposure to xenobiotics.

By using an organism-specific metabolic network in conjunction with a metabolic disrup-

tion, this CBM methodology can be used to predict which metabolites will be more or less

released in biofluids. Indeed, in metabolic networks, some metabolites can be transported in

and out from the internal compartment (cell or tissue) to the external compartment (e.g. bio-

fluid or cell culture medium) usually using a single specific exchange reaction. For the in silico
prediction of biomarkers these exchange reactions can be used to model the in/out flux of

metabolites between tissues and circulating biofluids like blood or urine. This is why, in the

context of metabolic profile prediction, the focus must be on these specific exchange reactions

from the metabolic network in order to predict the equivalent of “biofluid metabolite level

changes” using CBM. A break-down of this methodology is shown in Fig 2, using a simple

metabolic network to compare flux simulations in healthy and disease conditions, and result-

ing in a ranked list of metabolites which change the most between the two conditions.

The overall methodology introduced in Shlomi et al. [13] for biomarker prediction consists

in comparing the flux of exchange reactions between two conditions: one corresponding to a

standard metabolic state (wild type) and one to a disease state. The wild type (WT) model is

obtained by running the flux simulation on the chosen genome-scale metabolic network with

default constraints, forcing the reaction of interest to have a non-zero flux (see Methods for

more details). Then, the disease or mutant state model (MUT) is obtained by simulating a

knock-out or knock down state using a list of genes or reactions to constrain (e.g. imposing

null flux for knocked out reactions). Flux simulation is then also run on this MUT model (Fig

2B). In both states, fluxes are assessed simultaneously for all of the reactions in the network,

however in the case of metabolic profile prediction, we only consider the exchange reaction

fluxes. In constraint-based metabolic models a positive exchange reaction flux value represents

an export of the corresponding metabolite, and a negative flux value means that the metabolite

is imported. These flux values are represented in Fig 2B as the thickness of the arrows, and in

Fig 2C as single flux values for each metabolite’s exchange reaction. Then, the flux values for

every exchange reaction in the network can be compared between the WT and MUT
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conditions (Fig 2C) to determine a change (Fig 2D). The change of a given metabolite’s

exchange reaction flux provides information on the corresponding metabolite’s production/

consumption in both conditions, which leads over time to an increase, decrease or unchanged

concentration in the biofluids. This is based on the assumption that the metabolites are not

being depleted or produced through alternate external metabolic processes, or, at the very

least, the rate of depletion/production is negligible enough to have any noticeable effect on the

extracellular metabolic concentrations.

In Shlomi et al. and Thiele et al. [13, 14], the authors show that CBM modelling can be used

to predict biomarkers for diseases associated with gene deletions, validating these predictions

with data from targeted clinical assays (focusing on specific classes of compounds like amino

acids). The resulting predictions are boolean values associated with metabolites (i.e., the

Fig 2. Methodology for the comparison of flux values and prediction of metabolite ranks. Using a simple network (A) in two conditions (B), with

single flux values (C). The methodology from Shlomi et al. [13] is shown in (D): each exported metabolite will have an associated change score for a

given pair of conditions. (E) shows our methodology of scoring and ranking by absolute value among all of the metabolites in the network.

https://doi.org/10.1371/journal.pcbi.1011381.g002
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metabolite is a biomarker or is not a biomarker (Fig 2D)), which does not allow the assessment

of expected levels of changes in terms of concentrations.

In this article, we propose to go beyond previous work by predicting metabolic changes for

1497 metabolites from the Human1 metabolic network. The method can also be used to pin-

point metabolites not detected in the selected analytical setup, therefore guiding metabolomics

researchers in the selection and design of assays. To do so, we implement a measure which

ranks metabolites based on their likelihood to be modulated under a given genetic, environ-

mental, or otherwise metabolic stress (Fig 2E). To highlight the strong potential of our

approach, we demonstrate how predicted metabolite rankings fit data from human metabolic

profiling studies (both targeted and untargeted), hence paving the way for combining both in

silico and experimental metabolic profiling.

This recommendation system is implemented in a freely available computational workflow

at the following addresses: https://forgemia.inra.fr/metexplore/cbm/samba-project/samba or

https://doi.org/10.5281/zenodo.8369624.

Results

From metabolic network flux sampling to improved metabolite change

predictions

Sampling based flux estimation. Metabolic network models are usually undetermined,

i.e., there are not enough constraints in the model to determine a unique solution for the mass

balance system of linear equations [7]. For example, in the WT (Fig 2B), any other value for E1

would still ensure the steady state, as long as the other reactions’ flux values are changed

accordingly to compensate. This is why it is difficult to define any one exact value for a reac-

tion, and it is generally necessary to evaluate the range of possible flux values for all reactions

through various CBM methods.

Fig 3 highlights two CBM methods for assessing the variability of flux values, again in two

different conditions (WT and MUT). Flux Variability Analysis (FVA) [15] predicts minimum

and maximum flux bounds for each reaction in the network (Fig 3B) under the predefined

constraints. This interval represents the range of possible values that the fluxes of a given reac-

tion can take. In an extreme case, like a complete KO or a single flux value, both the upper and

lower bounds of the involved reaction will have null or close to zero values, like R2 in the

MUT state in Fig 3B.

In Shlomi et al. and Thiele et al. [13, 14], the authors used FVA to predict biomarkers by

comparing two conditions: WT, and inborn errors of metabolism as gene knock-outs. If the

FVA intervals of an exchange reaction shift between the two conditions, then the correspond-

ing metabolite is considered to be a potential biomarker for the disease state (like for R2 in Fig

3B).

A second method for determining the most frequent flux values for a given reaction is by

assessing the possible flux configurations (distributions) which fit the constraints defined in

the model. These constraints on reaction fluxes (minimum and maximum possible values)

define boundaries in the space of all possible flux values: the solution space. The solution space

contains an infinite number of feasible flux values, hence it is impossible to fully explore the

entire solution space without an infinite number of samples. Markov Chain Monte Carlo

methods can be utilised for uniformly sampling the constrained space of feasible solutions,

thereby offering a more comprehensive characterization of the solution space [16–18].

FVA may conceal the fact that the values present in most of the solution combinations (e.g.

the most frequent flux values) are, for instance, close to one of the bounds as opposed to at the

halfway point. For example, by comparing Fig 3B and 3C, the most frequent flux values for
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WT are much closer to the upper FVA bound than the centre of the bounds. It is also possible

for two reactions to have the same extreme bounds but with flux values which are spread out

differently in between the bounds. In other words, FVA is not sufficiently precise to assess the

most frequent flux values. FVA does not provide insight into the distribution of flux values

between those bounds since the most frequent flux value for a reaction could be located any-

where in between the two bounds.

Fig 3. Flux Variability Analysis (FVA) and sampling. For simulating fluxes in different conditions (A). The resulting flux values to be compared differ

depending on the method used. FVA generates minimum and maximum possible flux values, shown as intervals (B), whereas sampling generates many

values within those bounds, shown as distributions (C).

https://doi.org/10.1371/journal.pcbi.1011381.g003
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By exploring the many combinations of flux values that satisfy the model constraints, sam-

pling provides an overview of the most frequently valid flux values for every reaction in the

network. Indeed, any one possible solution is a specific combination of flux values for each

reaction, and some flux values are more frequent than others, meaning that they appear more

often in different valid solutions. These many solutions can therefore outline each reaction’s

flux distribution and thus reveal the most frequent fluxes along with the variability of the val-

ues, as shown in Fig 3C.

In this study, we propose an application we developed specifically for predicting metabolic

profiles using random sampling, called SAMBA (SAMpling Biomarker Analysis) (using the

optGPSampler algorithm).

Scoring and ranking metabolites according to their predicted out/influx changes.

While previous modelling methods had been used to predict biomarkers, the goal here is to

predict entire metabolic profiles by capturing, for each metabolite, its amplitude of variation

between the control and the condition under study. This variability can be evaluated, and

metabolites can be scored and ranked in order to prioritise the ones to be measured and anno-

tated during metabolic profiling.

Using FVA to predict biomarkers reveals another underlying limit regarding the compari-

son of bounds between conditions: there are multiple ways of defining the comparison

between two intervals. This can become especially difficult when the intervals are both positive

and negative (reversible reactions): for example, if a reaction has bounds of [-100, 100] in one

condition and [-50, 300] in another, can this be considered an increase or a decrease of flux?

The total flux range of this interval has increased (from 200 to 350) but the flux in one direc-

tion has decreased (from -100 to -50). This is one of many cases where flux intervals can be

ambiguous in determining an increase or decrease.

Comparing sampling distributions directly can help overcome this difficulty in comparing

intervals. SAMBA is used to sample flux distributions for every exchange reaction in the net-

work, in two network states (WT and MUT). A score is calculated for each exchange reaction

in the model by comparing the samples between both states. We propose the use of a z-score

to evaluate the shift in distributions weighted by their variance, based on the z-score used in

Mo et al. [19]. Z-scores are calculated for each metabolite’s exchange reaction exi between the

WT and MUT. First, we sample a number (by default the total number of samples) of random

pairs of values from the WT and MUT distributions. The collections of all MUT samples and

WT samples for metabolite i’s exchange reaction are MUTi and WTi respectively. A “difference

distribution” ddi is calculated by subtracting random pairs of values from both MUTi and WTi

(Eq 1). These random samples are not matched: the two WT and MUT values are not necessar-

ily from the same sample step. The final z-score zi is calculated by dividing the mean mddi
by

the standard deviation sddi
of ddi.

For an exchange reaction exi:

zi ¼
mðMUTi � WTiÞ

sðMUTi � WTiÞ
¼
mddi

sddi

ð1Þ

The z-score zi is directional: a negative z-score indicates a decreased shift in the flux distri-

butions from WT to MUT, and a positive z-score indicates an increased shift. A z-score close

to 0 means that there is little difference between the distributions in the WT and MUT condi-

tions. A z-score therefore represents the intensity and direction of one metabolite’s shift in a

specific condition.

While a z-score was chosen for this metabolic profile prediction approach, other scoring

methods were analysed and compared to make sure it was the best suited method, such as the
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subtraction of distribution means. In the following figures, the SCD example from the follow-

ing sections was used for illustrative purposes. Briefly, the example is from a metabolic

Genome Wide Association Study (mGWAS) cohort which analyses Single Nucleotide Poly-

morphisms (SNPs) significantly associated with various experimentally measured metabolites.

When modelling one example SNP, the simulation predicts the 1497 exchanged metabolites

from the network and compares them to the list of 20 experimentally significant metabolites

(shown in red in the following figures). The list of 1497 metabolites is ranked based on the z-

score as well as other methods, and then compared between each scoring method.

Fig 4 shows the comparison of using a z-score to compare distributions, versus subtracting

the means of the distributions (left panel) or medians of the distributions (right panel). For

each pair of metrics, the top ten metabolites for each given metric are displayed with their

labels (red being those in the experimental signature) and with dots located on the y-axis. The

y-axis corresponds to the position in the ranking of these metabolites among the 1497 metabo-

lites using the corresponding metric (the top being the first metabolite while the bottom is the

last metabolite for the given ranking). For example, both TAG-chylomicron pool and oleate

are ranked in the top 10 when using the mean difference as a ranking metric instead of the z-

score (right side of the left plot), and TAG-chylomicron pool is in black because it is not

observed to be experimentally abundant, whereas oleate (in red) is significantly abundant in

the example experimental data.

Using the z-score as a ranking metric predicts more experimentally observed metabolites in

the top 10 than when using the difference of the means or medians to rank metabolites. Two

experimentally observed metabolites, oleate and palmitate, that were not in the z-score top 10

Fig 4. Z-score based ranks (left side of each plot) vs using the difference between means (right side of left plot) or medians (right side of right

plot) to rank metabolites. The metabolite labels are all ranked in the top 10 by each method. The metabolites highlighted in red are differentially

abundant in the example dataset, whereas those in black are the rest of the top 10 metabolites which are not experimentally associated with the SNP.

https://doi.org/10.1371/journal.pcbi.1011381.g004
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are highly ranked when using the mean- or median-based rank. However, most of the other

top 10 ranked metabolites using the mean differences appear to be unrelated and non-specific

(H+, CO2) or vague (metabolite pools) in modelling terms. A similar plot using fold changes

of means and other metrics is shown in Fig E in S1 Text, and leads to the conclusion that using

ratios of means is less adapted than both z-score and mean difference based ranking metrics.

For the rest of this study, we used the z-score to rank metabolite changes as it provided the

best results when looking at the top of the ranked list. Indeed, using the bottom half of the list

can be complex due to the similarity in z-scores for the low-ranking metabolites (see Fig G in

S1 Text).

Therefore, we propose the use of z-scores of all the exchange reactions in the network as a

basis to rank all exchanged metabolites based on the intensity of the changes. Z-scores can also

be used as-is or used with a threshold (see Discussion section). Since both increased and

decreased metabolites are of potential interest, this ranking is based on the absolute values of

the z-scores (Fig 2D). This reveals the metabolites whose import/export behaviour changes the

most between the WT and MUT, relative to every other exchange metabolite in the network.

Furthermore, ranking the z-scores by absolute value provides insight via the comparison of

the list of the top ranked metabolites between different scenarios, as ranks are relative to the

entire list of exchange metabolites and not quantitative. In this paper, the rank calculated by

SAMBA for each metabolite is referred to as SAMBARank.

In order to show the benefits of this methodology, we selected two complementary applica-

tions in human health. The goal was twofold: first to show the ability of SAMBA to retrieve

known biomarkers, and then to show in an untargeted study that the newly introduced

SAMBA ranking system is coherent with metabolomics data and indicate other potential

metabolites of interest chemically related to the observed metabolites. First, the benefit of sam-

pling for metabolic profile prediction is illustrated on a specific Inborn Error of Metabolism

(IEM) and associated biomarkers. Then, we use a mGWAS example to show how ranking

these metabolite predictions can align with untargeted studies like metabolomics, and to rec-

ommend new potential metabolites of interest.

Illustrating the benefits of sampling through the prediction of Inborn

Errors of Metabolism biomarkers

Predicting Xanthinuria type I biomarkers. Xanthinuria type I is a rare genetic disease

caused by a mutation in the XDH gene [20], and is characterised by kidney stones (urolithia-

sis), urinary tract infections, and rarely kidney failure [21]. In patients with this disease, a

decrease in urate and an increase in hypoxanthine has been observed (from OMIM [22]).

Here, we applied both FVA and sampling in order to compare the information which can

be drawn from both techniques. Both the FVA bounds and the sampling distributions are dis-

played on the same plot for both of the expected biomarker metabolites (Fig 5). Expected bio-

markers are defined as metabolites with observed significant changes in patients with the

disease according to the original dataset. The flux simulations were run using Recon 2 [14], a

human genome-scale metabolic network, by knocking out the XDH gene, which knocks out 7

reactions (see Table 1 in Methods). The flux values are reported on a log scale for clarity.

For urate, the FVA bounds were the same in both conditions (Fig 5A), which is interpreted

as a metabolite not considered as a biomarker in Shlomi et al. [13], and thus the FVA predic-

tion does not agree with the observed decrease. On the other hand, the sampling distributions

correctly show a decreasing shift from WT to MUT. For hypoxanthine, both methods are able

to predict the expected increase in metabolite export, as shown in Fig 5B, via the shift in
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distributions for sampling and the change in upper bounds for FVA although this change is

very small (10.3%) compared to the total feasible range.

Comparison with FVA-based methods on 49 IEMs. Xanthinuria type I is one of many

IEM from an entire IEM—biomarker dataset which was curated in Sahoo et al. [23]. We used

Fig 5. Flux bounds (FVA) and distributions (sampling) for urate and hypoxanthine. The WT state is shown in light blue, and

the MUT state in red. MUT here corresponds to the knock-out of the XDH gene. Highlighted in grey, red, and dark blue are the

absences of shifts (=), decreases (-), and increases (+) respectively between WT and MUT.

https://doi.org/10.1371/journal.pcbi.1011381.g005

Table 1. Genes and reactions knocked-out to simulate Xanthinuria Type I in Recon2.

Condition Model Gene KO Reaction KO

Xanthinuria

type I

Recon2 XDH XANDp XAO2x XAOx r0424 r0425 r0546 r0547

SCD Human1 SCD, SCD5,

FADS6

MAR02281 MAR02282 MAR02284 MAR02286 MAR02287 MAR02292 MAR02293 MAR02294 MAR02295

MAR02296 MAR02288 MAR02289 MAR00144 MAR00146 MAR00147 MAR00148 MAR02126 MAR02128

https://doi.org/10.1371/journal.pcbi.1011381.t001
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a subset of this dataset, the same used in Thiele et al. [14], to run our analyses by knocking out

each gene responsible for each disease: we ran both FVA and sampling on the 49 IEM for 54

metabolites on Recon 2. Heatmap figures containing the entire set of predictions for both FVA

and sampling are included in supplementary data Fig A in S1 Text and Fig F in S1 Text, and

overlaps are shown in Fig B in S1 Text.

The accuracy score calculated in [14] to evaluate directional biomarker predictions for vari-

ous IEM can also be applied to sampling predictions for the same set of metabolites and dis-

eases. It must be noted that the accuracy score evaluates the capacity of the method to predict

the correct change direction among all observations, and not the capacity to predict correctly

among all possible predictions. This means that false positives and false negatives are disre-

garded when using this score, and the focus is on evaluating how well the method can predict

the metabolite’s direction of dysregulation when a prediction matches an observation. Fig 6

shows these accuracy scores for when using SAMBA predictions with different rank cutoffs

(only the top N metabolites out of all SAMBA predictions for each IEM are considered).

The best rank cut-off for this dataset is 110, with an accuracy of 80%. In this case, SAMBA’s

accuracy score is slightly higher than the accuracy with the FVA-based method, which was

Fig 6. Accuracy plot for every rank cut-off threshold for the IEM dataset.

https://doi.org/10.1371/journal.pcbi.1011381.g006
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76.8%. Despite predicting less total metabolites when using a rank cut-off, SAMBA can provide

a similar level of accuracy in terms of metabolite change direction prediction to the FVA-

based method used in previous studies. SAMBA’s main advantage lies in extending metabolic

profiles to provide an improved understanding of the perturbation, as shown in the following

sections.

Overall, sampling not only complements FVA by providing new correct predictions, but

also attributes more meaning to the scores of the predictions for each metabolite (see Fig A in

S1 Text). Sampling z-scores, as opposed to the binary increase/decrease indicators of FVA, can

be used to rank, filter and gain insight on the intensity of changes. Indeed, once generated, dis-

tributions can be used in multiple ways, one of which is calculating z-scores and ranks as

shown in this paper; in contrast FVA interval boundaries represent only the flux extremes

instead of the general flux behaviour. This is illustrated by comparing the sampling z-scores in

Fig G in S1 Text with the FVA boundary differences in Fig H in S1 Text. Indeed, this compari-

son demonstrates that a ranking metric or threshold would not be feasible on FVA intervals

due to the almost binary nature of the results: either at or close to zero difference between con-

ditions, or an extreme shift in bounds.

Generating coherent recommendations and identifying novel metabolites

of interest associated with SNPs using SAMBA

Simulating the metabolic profiles associated with two SNPs, SCD and ACADS. For

this study, we chose a case example for the comparison of mGWAS data and SAMBA ranking

system. In general, Genome Wide Association Study (GWAS) datasets are composed of traits

associated with SNPs, which are germline genetic substitutions of one nucleotide, present at a

specific DNA position in at least 1% of the population. Specifically, mGWAS data consists of

SNP-to-metabolic trait associations. One type of metabolic trait consists of single metabolite

fold changes between non-SNP and SNP individuals (e.g. the fold change of margarate). The

second type associated with SNPs in the study is ratios of two different metabolite levels, again

compared between non-SNP and SNP individuals (e.g. the ratio of margarate / palmitoleate).

Other examples of these types of data are shown in Table 2 in Methods. We used data from

Suhre et al. [24], extracted SNPs associated with significant metabolites, and mapped them

onto the Human 1 metabolic network.

Among the 37 SNPs present in Supplementary Table 3 of Suhre et al. [24], 17 were SNPs of

17 metabolic genes (one SNP per gene) present in the metabolic model Human 1 (version

1.10). The 20 other SNPs were impossible to simulate since they do not correspond to meta-

bolic genes in Human 1. Human 1 was used to run sampling on 2 of these 17 SNPs: SNPs

Table 2. Examples of mGWAS data.

Ratio beta’ meta P meta p-gain meta

myristate (14:0) / myristoleate (14:1n5) 0.124 2.9*10−57 1.2*1048

myristate (14:0) / palmitoleate (16:1n7) 0.131 1.4*10−48 1.0*1039

margarate (17:0) / palmitoleate (16:1n7) 0.157 2.1*10−42 6.6*1032

margarate (17:0) 0.06 4.9*10−08 1

myristoleate (14:1n5) −0.075 3.3*10−09 1

3 significant metabolite ratios and 2 significant single metabolites. Beta’ represents the relative difference per copy of

the minor allele (SNP) for the metabolic trait compared to the estimated mean of the non SNP population. The p-

gain statistic quantifies the decrease in P value for the association with the ratio compared to the P values of the two

separate corresponding metabolite concentrations.

https://doi.org/10.1371/journal.pcbi.1011381.t002
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affecting the -CoA 9-desaturase (SCD) gene and the ACADS (Acyl-CoA Dehydrogenase Short

chain) gene. Human1 is one of the most recent and largest reconstructions of the human meta-

bolic network, also showing that the method can scale to this larger network (13 024 reactions,

8 363 metabolites). The 15 remaining SNPs with corresponding genes in Human 1 were not

analysed due to the manual curation needed to confirm genetic, enzymatic and metabolic

matches.

We chose to focus on the SCD SNP specifically because i) the gene and reactions are present

in the network, and ii) there are many measured metabolites present in the network, which is

not the case for all of the SNPs, as some SNPs only have one or two significantly associated

metabolites, or the associated metabolites do not exist in the network. It therefore serves as a

good proof of concept application for the methodology. Furthermore, the selection of the cor-

rect genes to KO in the model for each SNP requires manual curation to make sure the Gene

Protein Reaction (GPR) relationships correctly represent the enzyme and corresponding gene.

Additionally, mapping the metabolite names from the study to model metabolites is a time

consuming manual step. Results for SCD and ACADS (another SNP) are shown in the main

text.

In contrast with IEM data, where mutations always result in an enzyme defect, an SNP

might reduce enzyme activity (knock-down), enhance enzyme activity, or have an effect on a

different gene. Some of the SNPs from the Suhre et al. [24] study are well known to be associ-

ated with loss-of-function phenotypes such as enzyme deficiencies (e.g. the ACADS gene in

ACADS-deficiency), and others have not been studied enough to confirm the effect of the SNP

on gene function. As one example of an understudied SNP phenotype, the SCD gene (SNP

rs603424 [25]) codes for the enzyme Stearoyl-CoA 9-desaturase, involved in fatty acid metabo-

lism. The hypothesis is that the SNP mutation in the gene affects the corresponding enzyme

negatively, which leads to no SCD enzyme activity, represented in the network by knocking-

out the SCD gene and therefore blocking the corresponding reactions. This is suggested in Illig

et al. [25] by drawing a parallel between known loss of function SNPs leading to severe disor-

ders, and newly identified SNPs. Additionally, the SNP mutation in the SCD enzyme-coding

gene is predicted to be in an intronic (i.e. non-coding) region, using ensembl’s VEP (Variant

Effect Predictor) [26]. When simulating a scenario, the effect of the gene mutation should

always be checked in order to generate the most accurate metabolic condition possible.

In Human 1, there are 19 reactions linked to the SCD gene, most of which involve the desa-

turation of stearoyl-CoA, palmitoyl-CoA and myristoyl-CoA into corresponding mono-unsat-

urated fatty acids. Following the GPR relationships in the model, knocking out SCD only

affects 4 reactions (due to the fact that SCD can be compensated by another gene). However,

SCD also shares 14 GPRs with two other genes: SCD5 and FADS6, whose functions are not

well described. We decided to knock out these extra 14 reactions in order to block the enzy-

matic function related to SCD completely.

The SCD SNP has two types of significantly associated metabolic traits: single metabolite

changes, and ratios of two different metabolite concentrations. The single significant metabo-

lites measured for the mGWAS study for this SNP are margarate, palmitoleate, myristoleate,

stearate and 1-palmitoleoylglycerophosphocholine. These are the main “expected” metabolites,

which will be compared with the SAMBA recommended metabolites.

SAMBA returned z-scores for the 1497 unblocked metabolite exchange reactions in

Human 1. The distribution of these z-scores is shown in Fig G in S1 Text, and highlights the

difference between the extreme high-ranking metabolites and the low-ranking metabolites in

the centre. A metabolic profile this large is difficult to compare with the data from the

mGWAS study as no raw data was included in the original study: only the significantly associ-

ated metabolites were reported, as well as the total list of 295 measured metabolites (but not
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their fold changes for each SNP). We also calculated the FVA bounds for each metabolite for

the same metabolic condition as the sampling. Here, we compared the 5 significant metabolites

reported in the mGWAS study with their simulated SAMBA metabolite ranks and FVA

bounds to see the biggest effect this KO has on metabolite exports and imports. No rank or z-

score threshold was used for Figs 7 and 8 as the metabolites were selected based on their pres-

ence in the significant results of the Suhre et al. [24] dataset.

Fig 7 shows the five metabolites identified in the mGWAS study along with the correspond-

ing SAMBA ranks and the FVA predictions. Both in Figs 7 and 8, the metabolite(s) marked

with “NA” in the SAMBARank column have no flux values because either they aren’t present

as a metabolite in the network, don’t have an exchange reaction in the network, or have a

blocked exchange reaction, meaning no flux can be carried through it in the current metabolic

state.

Four out of the five expected metabolites are present with an exchange reaction in Human

1, and the SAMBA predicted change directions match the expected mGWAS experimental

changes. The directions of change predicted by FVA are correct except for myristoleate, which

was predicted to be increased instead of decreased using the FVA bounds. Their ranks are

shown in the column SAMBARank and these ranks are to be compared with the total number

of exchange metabolites present in Human 1, i.e. 1497. These four metabolites are in the top

13%, two of which are in the top 1%.

The significant metabolite ratios linked to SCD include many different combinations of

pairs of metabolites. The assumption here is that at least one of the two metabolites involved in

each ratio must change for the ratio to be significantly changed. Fig 8 shows the metabolites

present in at least one ratio significantly associated with SCD and their associated predicted

SAMBARanks.

Fig 7. Observed and predicted changes for the five metabolites significantly associated with the rs603424 SNP. The first column shows the

observed change directions from the mGWAS study. The second column shows the predicted change direction using SAMBA (SAMBAdir). The third

column shows the predicted change direction using FVA (FVAdir). The fourth column shows the SAMBA predicted rank out of the 1497 metabolites

in the network (SAMBARank). The fifth column shows the SAMBA predicted z-score, with the colour scale as the absolute value of the z-score. The

NAs represent metabolites for which SAMBA was unable to predict fluxes for one of the following reasons: (i) the metabolite is not in the network, (ii)

the metabolite is in the network but has no exchange reaction, or (iii) the metabolite’s exchange reaction can carry no flux (=blocked). Sampling

distributions and FVA predicted bounds for each metabolite’s exchange reaction in WT and MUT are shown on the right.

https://doi.org/10.1371/journal.pcbi.1011381.g007
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Fig 8. Predicted ranks for the metabolites present in a ratio significantly associated with the rs603424 SNP. The

first column shows the predicted rank out of the 1497 metabolites in the network. The second column shows the

SAMBA predicted z-score, with the colour scale as the absolute value of the z-score. The NAs represent metabolites for

which SAMBA was unable to predict fluxes for one of the following reasons: (i) the metabolite is not in the network,

(ii) the metabolite is in the network but has no exchange reaction, or (iii) the metabolite’s exchange reaction can carry

no flux (=blocked). Sampling distributions for each metabolite’s exchange reaction in WT and MUT are shown on the

right.

https://doi.org/10.1371/journal.pcbi.1011381.g008
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The second most differentially abundant metabolite predicted by SAMBA for this condition

is 10-heptadecenoate, which is present in at least one significant ratio in the mGWAS SCD

dataset. In addition to this, there are 4 other highly ranked metabolites, all in the top 171

ranked metabolites out of 1497 (top 11%). The five metabolites ranked below the 50% mark

have z-scores lower than 0.1. Interestingly, myristate is almost ranked last in the entire list of

predictions. When taking a closer look at its flux distributions, the MUT distribution appears

to be bimodal, meaning that while the flux seems to have shifted, the z-score was not able to

detect this difference due to its reliance on the similar means.

A second example from the Suhre et al. [24] paper is the Acyl-CoA Dehydrogenase Short

chain (ACADS) SNP. In the paper, it does not have any “single” metabolite trait associations,

but has 11 significant ratio metabolite associations. The predictions using SAMBA for these

metabolites involved in significant ratios are shown in Fig 9.

As in the previous example, there are some extremely well ranked metabolites while others

are poorly ranked. The literature suggests that carnitine (rank 22) is intrinsically linked with

CoA on multiple levels. Metabolically, the reactions catalysed by ACADS enzymes are two

reactions away from propionycarnitine and L-carnitine, due to their interaction with propa-

noyl-CoA, their direct product. Carnitine also plays a role in the stabilisation of CoA and

Fig 9. SAMBA ranks for the metabolites involved in significant ratios for the ACADS SNP from Suhre et al. 2011.

[24] The SAMBARank column shows the predicted rank out of the 1498 metabolites in the network. The NAs

represent metabolites for which SAMBA was unable to predict fluxes for one of the following reasons: (i) the

metabolite is not in the network, (ii) the metabolite is in the network but has no exchange reaction, or (iii) the

metabolite’s exchange reaction can carry no flux (=blocked). Sampling distributions for each metabolite’s exchange

reaction in WT and MUT are shown on the right.

https://doi.org/10.1371/journal.pcbi.1011381.g009
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acetyl-CoA levels, as well as energy production by taking part in a rate controlling step in mito-

chondrial oxidation of long-chain fatty acids [27]. Medically, L-carnitine is used as treatment

in some cases of ACADS deficiency (also known as SCAD deficiency (short chain acyl-CoA

dehydrogenase)) [28]. Regarding the highly ranked amino acids, an adjacent enzyme Isobu-

tyryl CoA Dehydrogenase (IBD), which is coded by ACAD8 and shares GPRs with ACADS,

has been shown to be involved in valine metabolism [29, 30]. The ACADS gene is also involved

GPRs in reactions in the “Valine, leucine, and isoleucine metabolism” pathway in the Human1

genome-scale metabolic network (GSMN).

Evaluating the statistical significance of SCD’s predicted metabolic profile. Despite the

problems that come with evaluating the false positives and negatives predicted by metabolite

prediction methods, the statistical significance of the previous findings can be evaluated using

a hypergeometric test. The test describes the statistical significance of predicting k number of

metabolites correctly out of the top n predictions, when taking into account the total N num-

ber of predictions containing K number of experimentally significant metabolites.

Fig 10 shows the results of these tests for various rank cut-offs. For example, when looking

at the top 300 (n) metabolites (x-axis), predicting 10 (k) experimentally significant metabolites

(green y-axis) out of the 20 (K) total experimental metabolites for a total of 1497 (N) predic-

tions, is significant (p-value< 0.05) (blue y-axis).

Fig 10. Hypergeometric test p-values for different rank cut-off values for SCD. Hypergeometric test p-values for different rank cut-off values for

SCD. The left y axis (blue) shows the hypergeometric test p-values when using a given rank cut-off and the number of experimental metabolites

predicted in that top ranking. The right y axis (green) shows the number of experimental metabolites predicted for each rank cut-off.

https://doi.org/10.1371/journal.pcbi.1011381.g010
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The figure highlights the significance of finding theses numbers of expected metabolites in

the top ranks of the SCD predictions. Until around the top 100, the test shows that predicting

around 6 expected metabolites is extremely significant (p-value� 0.01) and remains signifi-

cant (p-value < 0.05) until just below the halfway point of the ranked list.

Using SAMBA predicted metabolite lists enriches experimental knowledge

and points to novel chemical classes of interest

The top 10 most differentially changed metabolites associated with SCD predicted using

SAMBA can be used to form a list of new metabolites of interest for this condition. By examin-

ing the chemical class of each predicted highly differentially abundant metabolite, we can

gather information on a general type of metabolite affected by the KO.

Fig 11 shows the CHEBI ontology extracted using these top 10 metabolites. This hierarchi-

cal graph was made using BiNChE [31], which creates and enriches a subnetwork using a list

of CHEBI IDs and the CHEBI ontology.

All of the top 10 most changed metabolites are classed as lipids (outlined in blue in Fig 11),

8 of which are fatty acids, which is consistent with the functionality of the enzyme SCD.

Indeed, the SNP rs603424 has been shown to be significantly associated with circulating phos-

pholipid levels [32], as well as with low levels of palmitoleate [32]. SCD is a desaturase which

leads to the formation of fatty acids, specifically monounsaturated fatty acids involved in mem-

brane phospholipids [33].

Fig 11. Hierarchical BiNChE CHEBI graph. Hierarchical CHEBI graph of the top 10 metabolites predicted to be differentially abundant (outlined in

blue) predicted by SAMBA for SCD, extracted using BiNChE. The node colour corresponds to the BiNChE enrichment level. The metabolites in bold &

italic were significant in the mGWAS dataset for SCD.

https://doi.org/10.1371/journal.pcbi.1011381.g011
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Out of the top 10 metabolites, 4 were measured in the mGWAS study (margarate, 10-hepta-

decenoate, nonadecanoate, and eicosenoate), and they are all classified as saturated or long-

chain fatty acids. This means that the other long-chain fatty acids could be potential metabo-

lites of interest, such as 9-Heptadecenoic acid (rank 1) or cis-tetradec-7-enoic acid (rank 6),

which weren’t measured in the original mGWAS study.

However, the ChEBI classification is limited by the annotation of each metabolite to the

correct class. Upon manual inspection, both cis-tetradec-7-enoic acid and 5-tetradecenoic acid

are C14:1 fatty acids, only differing by the position of the double bond, but they are classified

separately in long-chain fatty acid and unsaturated fatty acid respectively. This indicates that

5-tetradecenoic acid could also be of interest for future studies. Furthermore, by looking at the

chemical structures, 4 out of the top 10 are odd chain fatty acids which is interesting to high-

light since they represent a very small percentage of the total human fatty acid plasma concen-

tration [34].

Since BiNChE provides a view of the ChEBI ontology on a per-metabolite scale, using too

many metabolites as input results in a large and difficult to read figure. Other methods can

integrate more of the predicted metabolic profile (for example 50 metabolites).

As a step closer to using chemical structures as opposed to class annotations as well as using

more of the metabolic profile, we ran a ChemRich [35] analysis using the top 50 metabolites

predicted to be differentially abundant. It uses the chemical structure via SMILES, and the

MeSH terms associated with PubChem IDs to highlight enriched chemical classes. Fig 12 rep-

resents the most enriched clusters from the top 50 metabolite set. The higher the -log(pvalue)

(y axis), the more the group is enriched.

The ChemRich plot also shows that both saturated and unsaturated fatty acids are signifi-

cantly enriched by this dataset. Fig 12 also highlights some other groups such as HETE

(Hydroxyeicosatetraenoic acids (which are oxylipins)), cholestenes, and cholestadienols not

detected using BiNChE. ChemRich serves as a complementary method to BiNChE for analys-

ing predicted metabolic profiles, as highlighted in S2 Table. These are just two methods of

enriching a metabolite set of interest. As well as looking into specific metabolites as potential

biomarkers, using SAMBA could direct future research in SCD towards the general families of

unsaturated fatty acids and straight-chain saturated fatty acids, with wider panels of measure-

ments for better coverage.

Additionally, by using only the top 20 SAMBA predictions as input for ChemRich, the

same classes as those obtained when using the list of experimentally significant metabolites are

identified, shown in Fig 13. By going further down the list of ranked predictions, the informa-

tion gained can be enriched using the simulated data. This figure clearly shows the gain of

information as the list of original metabolites grows in length and is enriched.

The information gained by adding SAMBA predictions are the chemical classes mentioned

previously: HETE, cholestenes and cholestadienols. HETE are eicosanoids produced from ara-

chidonic acids, which are present in membrane phospholipids. The SCD enzyme is known to

be a membrane-bound enzyme which contributes to the maintenance of the ratio of saturated

to monounsaturated fatty acids for membrane fluidity, and is regulated by polyunsaturated

fatty acids [36]. Furthermore, in Frainay et al. [3], the authors highlight the poor coverage of

certain metabolic pathways in MS databases, one of which is Eicosanoid Metabolism. Enrich-

ment methods using metabolomics data as input are highly dependent on the experimentally

measured metabolites, and if a certain class of metabolites was not measured it cannot be

enriched. In the mGWAS study, the most well-known eicosanoids were measured (adrenate,

arachidonate, dihomo-linoleate, eicosenoate), but there are 81 metabolites in the Eicosanoids

Metabolism pathway in Human1. The enrichment of the HETE chemical class appears to be

relevant and could consist of a poorly known class to target for future analyses or experiments.
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It is more specific compared to “Saturated FA” as an enrichment and therefore provides a

more direct avenue of potential analysis.

Finally, we ran ChemRich on the IEM examples from the Thiele et al. [14] study using the

sampling predictions for some IEMs (the same as those seen in Fig A in S1 Text). As an exam-

ple of one of these, Fig K in S1 Text shows the ChemRich figure for Fish-eye disease/ LCAT

deficiency when using the top 54 sampling metabolites (z-scores) predicted using SAMBA for

this condition as input. The significantly enriched compound classes here are oligopeptides

and retinoids, going beyond the originally expected biomarker “cholesterol” from the IEM

compendium [23]. Fish-eye disease/ LCAT deficiency, as the name suggests, affects eyesight,

resulting in corneal opacifications. Retinoids are class of chemical compounds that are vita-

mers of vitamin A, which plays a vital role in maintaining a clear cornea [37]. Based on the lit-

erature, Fig K in S1 Text appears to be a more coherent enrichment than the previous

predictions.

Fig 12. ChemRich enrichment of the top 50 most changed metabolites for SCD. The y-axis shows the most significantly altered clusters on the top.

Each node reflects a significantly altered cluster of metabolites. Enrichment p-values are given by the Kolmogorov–Smirnov test. Node sizes represent

the total number of metabolites in each cluster set. Cluster colours show the proportion of increased or decreased metabolites (red and blue

respectively). The x axis represents a separation based on cluster order on the chemical similarity tree, and non-significant clusters are hidden.

https://doi.org/10.1371/journal.pcbi.1011381.g012
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Discussion

The results presented in this study show that by using metabolism-simulating methods like

SAMBA, we can predict metabolic profiles. For instance, for the SCD case study, the metabo-

lites reported as associated with the SNP were highly ranked, especially when considering the

total number of exchange metabolites in the whole human network.

Metabolites belonging to the predicted list but not in the original metabolomics fingerprint

may be of interest to improve metabolic profiling. In fact, as it was shown in Frainay et al. [38],

metabolites may be overlooked during the whole metabolomics pipeline. This can be for

instance due to pre-processing steps since most peak picking methods [39] will define an

intensity threshold to keep only intense peaks and, as a consequence, may discard peaks of

interest that fall just below the threshold. Additionally, these metabolites are additional

Fig 13. ChemRich enrichment of the top N most changed metabolites for SCD. ChemRich using only experimentally significant metabolites (left)

and using increasing numbers of highly ranked SAMBA metabolites (right) for SCD.

https://doi.org/10.1371/journal.pcbi.1011381.g013
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metabolites of interest that could be future paths for analysis which could not be directly

inferred from the affected reactions and scenario. This can be seen in Fig I in S1 Text and Fig J

in S1 Text, which show that some highly ranked metabolites are not directly linked to the met-

abolic disruption. The far but highly ranked metabolites are metabolites we may not have

thought of as potential metabolites of interest due to their distance from the disruption in the

network, since they may seem unrelated at first glance.

Conversely, metabolites in the original experimental results but not predicted as highly

ranked by SAMBA could be due to inconsistencies in the model, whether they are due to

errors or unknowns, or an incorrectly simulated metabolic condition. Additionally, extra care

should be taken when analysing low-ranking metabolites as their z-scores are very similar to

each other. This means that their specific order does not indicate much information about the

extent of how they were affected by the perturbation, only that they were affected very little.

The measurement of pure standards of metabolites is essential to obtain the highest level of

confidence in metabolite identification (level 1 according to Metabolomics Standard Initiative

[6]). Selecting which standards to measure is by itself a challenge, since samples can contain

thousands of metabolites. Hence, SAMBA can be used by laboratories to select which stan-

dards to acquire in the context of the disease under study. More broadly, the top ranked list

can also be used to identify families of metabolites to study as a whole, such as by extending

the panel of measurable metabolites during a metabolomics experiment.

Although SAMBA is a predictive method, evaluating the predictions using traditional con-

tingency tables, recall and precision is difficult due to the nature of metabolomics measure-

ments and the available “truth” datasets. The model contains all known metabolites involved

in metabolic reactions, but metabolomics methods are not able to detect and annotate all of

them. This results in many cases where metabolites are predicted to be of interest while they

are not detected by typical assays. In these cases, the predictions could be correct while being

considered as a “false positive”. Instead of using “false positive” to represent these predictions,

we simply present the entire ranked prediction results in order to orient the user towards cer-

tain metabolites or metabolite classes. We then evaluate the method using true positive ranks

and the list of the top most changed metabolites, some of which could be considered false posi-

tives, but could also be unmeasured metabolites. An additional method of evaluating the statis-

tical validity of the results is by running a hypergeometric test, to test the significance of

obtaining the number of correct predictions, for different rank cut-offs. This highlights that

the number of experimental metabolites predicted in the top ranks is significant. Finally, for

comparison reasons, we calculated the accuracy score used in a previous study [14] using our

sampling predictions for the same dataset. Despite the slight improvement in accuracy, we

believe that using this accuracy score does not represent the reality of the predictions. The

score only takes into account predictions that match with observations, ignoring all predic-

tions where no truth values were observed (false positives), which could be potential metabo-

lites of interest if they were not measured in the patient dataset. It also ignores false negatives,

where a prediction was expected to match an observation but did not, an essential part of eval-

uating the recall score of a method.

SAMBA is based on ranking z-score absolute values, meaning that the metabolites whose

exchange fluxes (and by extension concentrations) are more likely to change will be considered

first. There are of course metabolites whose concentrations can change very little and have

extreme consequences on the rest of the metabolism, such as via enzyme regulation, or if they

are limiting substrates for example.

We demonstrated that sampling can add a layer of information to better improve metabolic

profiling compared to FVA. Sampling provides a finer grained description of changes which

helps order metabolites based on their likelihood to be affected by a perturbation. Compared
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with FVA, sampling is more computationally intensive (CPU and memory) but recent strate-

gies are reducing this computational burden [40–42]. Nevertheless, sampling is currently more

than feasible on large networks such as Human1.

The FVA method used in previous work [13] to compare intervals calculates the greatest

change between the two pairs of upper bounds and the two pairs of lower bounds. This com-

parison of boundary shifts is not always representative of the underlying changes and can

mislead the interpretation of the intensity of these changes. Using other methods such as

comparing the means of boundaries assumes a uniform or centred normal flux distribution

within these bounds, which we have shown via sampling is rarely the case. Using the most

frequent fluxes with sampling appears as a good approximation of the mix of metabolite

exports that occurs in biofluids, but it should be noted that the most frequent flux value may

not be the most frequently observed flux in reality. However, in some cases, the most fre-

quently predicted flux value may not represent the biological reality of a cell, such as for

cells in extreme conditions or fast-growing cancerous cells, for which fluxes might be more

close to the extremes. To represent these extreme conditions in SAMBA, the initial parame-

ters of the model could be adjusted (such as a higher minimal production of biomass) to

force the model to operate within extreme (boundary) optimums, as opposed to more likely

fluxes.

The boundary shifts evaluated by FVA are very sensitive to change, since a very low thresh-

old (1e-6 tolerance and 0.01 factor) for change is used to report an increase or a decrease.

Despite this, FVA is able to predict biomarkers, as shown in previous studies [13, 14], when

aiming to predict specific biomarkers. We progressed from the calculation of a score to the

ranking of these scores since ranking the change intensities via sampling means that the most

changed metabolites can be highlighted, while still keeping information on the other subtle

metabolite changes. Contrary to the binary change/no change method of reporting FVA

results, sampling ranks provide information on a wider scale by taking into account relative

changes between metabolites.

In order to continue to highlight the full benefits of using sampling distributions instead of

FVA boundary values, further research for other applications and more validation data are

required. For instance, experimentally-measured in vivo fluxomics data [43] could be matched

to simulated import/export rates. A database of every unique KO could be simulated and com-

piled as a repository for comparison with real data to determine which metabolic perturbations

are most likely to cause the condition tested by the experiment.

This ranking system bypasses the issues that come with using flux values directly, and espe-

cially helps in choosing which metabolites to focus on first. The comparison of metabolic pro-

file recommendations between different scenario simulations can be achieved by considering

the top most changed metabolites and their ranks, as opposed to the raw flux values.

Z-scores prove to be useful in that they reflect an intensity of change similar to fold changes,

and are weighted by the standard deviation of the distributions, which helps the z-scores to

remain flexible given the variable nature of these distributions. Initially, instead of using a z-

score to compare sampling distributions, more widely used statistical metrics were tested, such

as Kullback-Leibler Divergence, Kolmogorov-Smirnov, and Wasserstein. However, they did

not prove to be informative in our use case since they lead to p-values being too sensitive,

resulting in extremely significant p-values for very similar distributions. In addition to this,

these tests provide scoring metrics which are unable to quantify or describe the differences in

the way a z-score can. Z-scores efficiently capture both the intensity and extent of variation of

flux distributions between conditions. Additionally, we assessed various other metrics in order

to decipher their ability to capture relevant metabolite rankings (more detail can be found in

Fig E in S1 Text).
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The goal of this study is to simulate whole-body metabolic markers using a generic

genome-scale model. From a physiological point of view these models may seem to be some-

what over simplified in that a single metabolic system is represented. However the examples

used in this study are genetic diseases, therefore they affect the genome of all of the cells in the

body. While gene expression can depend on organs and tissue regions, the hypothesis here is

that experimentally observed metabolic profiles are a combination of metabolite exports from

all tissues connected to biofluids, which is why they can be equated to metabolic profiles pre-

dicted using a genome-scale network. However, the modulation of a tissue-specific biomarker

may be predicted incorrectly if it is normally (biologically) compensated by other tissues,

which could result in false positives. In those cases, tissue-specific networks could be useful for

analysing diseases that are known to affect a certain tissue, such as glycogen storage diseases.

These diseases are a collection of genetic metabolic disorders, and the enzymes affected by the

mutations are specific to the liver and muscle [44]. By using transcriptomics data to create a

liver-specific model, the accuracy of metabolic simulations could be increased. This can be

done using various integration methods such as iMAT [45] or DEXOM [46]. However, choos-

ing any given model and tissue-specific conditions must be done with care as it will have a

major impact on the resulting metabolite ranks. More broadly, the definition of constraints is

key to adapting the model to the biological condition (e.g. availability of nutrients) and will

impact predictions. These modelling steps can be performed upstream of SAMBA.

Furthermore, including the SAMBA approach in whole-body metabolic models [12] which

combines the interactions of multiple human tissues is a potential path for future study. Since

sampling algorithms are being continuously improved and iterated upon, and more CPU

power is being added to computational clusters, running sampling on these larger models will

become less of an issue. These models, with their different gene and reaction expressions per

tissue, could reveal the different effects of genetic diseases or other metabolic disruptions on

biofluid metabolites on a multi-tissular level.

Finally, while SAMBA was applied to KO scenarios in this paper, the method can be

adapted to more complex constraints such as multiple gene KOs or even to simulate knock

downs of reactions. Knock downs involve reducing the maximum flux capacity of affected

reactions instead of blocking the flux completely and can be run directly using SAMBA by

changing the input condition file (see Fig D in S1 Text for details). This can be particularly use-

ful in the context of toxicology or drug development, where these subtle metabolic disruptions

can lead to reduced enzyme activity. There are many potential applications for SAMBA recom-

mendations, such as in predicting the effects of xenobiotics on human metabolism. In this

paper we focused on simulating genetic diseases as the metabolic disruptions are simple to

translate into the metabolic model, but the next challenge will be converting more complex

metabolic perturbations into explicit reaction modulations. Effects like toxic environmental

exposure can be simulated once the mechanism is narrowed down, while the effect of diet

could be modelled by varying the input nutrients via the exchange reactions of the network.

Conclusion

Building upon constraint based modelling of metabolism through the use of random sampling

of fluxes, we were able to predict large potential metabolic profiles and confirm measured

metabolites both in targeted and untargeted assays. Ranking all metabolites becomes possible

through the methodology’s comparison of flux distributions between healthy and disease

states. Metabolites revealed by this method are of potential interest to broaden the panel of tar-

gets for future metabolomics experiments, and can be identified as understudied metabolites,

helping to develop our understanding of metabolic mechanisms. Furthermore, the rank of a
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given metabolite can be compared between two different disruption scenarios, which provides

information on the specificity of the disrupted metabolite to the scenario.

Although the methodology is designed to be used to predict external metabolite exchange

fluxes, it can also be used to simulate the internal reaction fluxes, which can be useful for

understanding internal metabolism along with external metabolites. Finally, simulated meta-

bolic profiles can also be used to benchmark various analyses specific to metabolomics, such as

pathway analysis, or other analyses which require lots of data like machine learning.

Materials and methods

Metabolic models

In this study, Human 1 v1.14 [47], containing 13 024 reactions, was used to carry out mGWAS

analyses. https://github.com/SysBioChalmers/Human-GEM Recon 2 [14], containing 7 440

reactions, was used to carry out IEM analyses. https://github.com/opencobra/COBRA.papers/

tree/master/2013_Recon2 Recon 2 was used for the IEM analyses as the idea was to compare

results between FVA and sampling for the same set of conditions in the same model. This

served as a proof of concept and we decided to publish the results using Recon 2 to show the

comparison with previous work by Thiele et al. [14]. Human 1 was then used for the mGWAS

analyses as we believe it is a more complete model, and it is in the community’s best interest to

use the latest model since it can then be improved by community efforts. It also highlights that

SAMBA can scale to a larger model. Note that model choice will have an impact on any model-

ling approach and this selection step, out of the scope of this article, has to be taken with care.

The top plot of Fig D in S1 Text shows the application of Xanthinuria Type I to Human 1 (sim-

ulated using Recon 2 in the main text).

WT and MUT states

When choosing which metabolic network to use, a decision must be made on whether to opti-

mise the biomass reaction or not. This is done by providing the name of the reaction in the

network (as they are not named uniformly between networks) as well as the fraction of bio-

mass to optimise for, as SAMBA inputs. A list of genes or reactions to knock-out must also be

provided to create the MUT state. Exchange reaction bounds are set to define the cellular

medium by using a specific parameter X to set all bounds to [-X, 1000]. They can instead be set

upstream of SAMBA by changing the model exchange bounds directly and then setting the

config parameter to use the default bounds.

The WT state is created using the default network parameters (reaction bounds, biomass

coefficients etc.). Then, the reaction(s) to be knocked out are forced to carry a non-zero flux.

This is done by optimising for the reaction(s) to KO and then changing the minimum bound

to 5% of the maximum flux value, or maximum bound to -5%, for forward and reverse reac-

tions respectively. This avoids sampling and comparing two states where the fluxes are zero for

the reactions of interest, and is also why each WT is specific to a MUT state.

In the case of a KO, the MUT state is created using the default network followed by setting

the upper bound ub and lower bound lb for the reaction(s) to KO to zero: ubnew = lbnew = 0,

resulting in [0, 0] for each reaction related to the KO gene.

Model parameters

Sampling and FVA were run using the same parameters as in Shlomi et al. and Thiele et al.
[13, 14]: minimum fraction of optimum of the objective function (biomass) set to 0, and all

exchange reaction bounds set to [-1, 1000].
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Sampling method

Random sampling is done using Python code written for SAMBA, based on the cobrapy [48]

Python package. The code uses the CPLEX 12.10 solver by default and uses the optGpsampler

algorithm [49] to sample from the reaction flux solution space. optGpsampler begins with a

warm-up phase to select starting points (by running a preliminary FVA on each reaction), fol-

lowed by uniform sampling within this feasible solution space. Because each sample is selected

from the solution space directly, there is no sample rejection since this would be extremely

inefficient to do on genome-scale models. A thinning parameter of k (default k = 100) means

that every k sample is saved and the rest is discarded in order to reduce intersample correla-

tion. For large models such as Recon 2 and Human1, 100 000 samples with a thinning of 100

were used.

The number of samples can be changed, however, in order to sufficiently explore the solu-

tion space, a large number (at least 100 000) of samples must be used for larger networks such

as Recon 2 or Human 1 which contain thousands of reactions. Determining a sufficient num-

ber of samples is discussed below in Sampling Convergence and supplementary data.

Parallel processing

Sampling can be run on a local computer for smaller models, but it needs a certain amount of

resources to run correctly. More specifically, the amount of RAM required increases with the

size of the model, and more CPUs will help generate the samples faster.

For this study, the larger metabolic models (Recon2 and Human1) were sampled using a

computer cluster using 16 cores and 128GB of RAM for each job. The cluster we used is the

Genotoul computational cluster which has about 3000 cores / 600 threads, 36 Tera Byte mem-

ory (3TB on a SMP machine), Infiniband interconnection (QDR/FDR), parallel file system

(GPFS).

Sampling convergence

One of the main limitations of CBM is that it is impossible to fully describe such a large solu-

tion space. When using random sampling to explore the solution space, the number of samples

to use must be provided, but choosing the ideal number for a given network is a challenge

since by definition the structure of the solution space is unknown.

Therefore it is essential to know when to stop sampling: determining when the solution

space has been sufficiently sampled. We ran convergence tests using various well-known sam-

pling metrics: running means, traceplots, and shrink factor plots, to make sure that using 100

000 samples was enough for a network this large, for the goal of calculating z-scores on distri-

butions. The results can be found in the supplementary data (Fig C in S1 Text).

Plots & libraries

The SAMBA pipeline is managed using Snakemake. Venn diagrams were made using the R

library eulerr. Sampling distributions and mGWAS plot tables were made using ggplot2.

BiNChE: the BiNChE plot was created by using a docker containing an old version of Firefox

and Flash. The subnetwork was exported and then taken into Cytoscape [50] to change the lay-

out, followed by Inkscape to edit the placement of labels. Code availability The code for the

SAMBA project is freely available at https://forgemia.inra.fr/metexplore/cbm/samba-project

or https://doi.org/10.5281/zenodo.8369624.

PLOS COMPUTATIONAL BIOLOGY Metabolic modelling and metabolic profile prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011381 February 22, 2024 27 / 31

https://forgemia.inra.fr/metexplore/cbm/samba-project
https://doi.org/10.5281/zenodo.8369624
https://doi.org/10.1371/journal.pcbi.1011381


Data

Using the mGWAS SNP dataset, genes were mapped to the Human 1 network using the anno-

tated ENSG IDs. Then, using the model’s GPR relationships, reactions were automatically

knocked out using SAMBA. In the case of SCD, the GPRs were manually checked. The SCD

SNP only affects the SCD1 gene (known as SCD in the metabolic model), as SCD1 and SCD5

are two separate genes. SCD5 codes for the same enzymatic function as SCD1 but they are

both expressed in different tissues, fat tissue for SCD1 and brain and pancreas for SCD5. How-

ever, Human1 is not tissue-specific and the reactions are not necessarily associated with the

genes according to this tissue specificity, so in order to block the enzymatic function

completely, both SCD1 and SCD5 were blocked.

Resulting SAMBA metabolites were manually mapped to the mGWAS significant metabo-

lite names for SCD, with manual verification of metabolite synonyms as many lipids have mul-

tiple names and naming conventions.

Supporting information

S1 Text. Fig A: Reproduction of Fig 3 from Thiele et al. 2013 using FVA (original matlab code

from the study) and the random sampling method used in SAMBA. Fig B: Venn diagrams of

FVA (orange) and sampling (purple) predictions using Recon 2. Fig C: Running means, trace

plots and PSRF plots for 3 random exchange reaction fluxes using 100, 10 000 and 100 000

samples, with 3 independent runs for each. Fig D: Flux bounds and distributions for urate and

hypoxanthine exchange reactions in Human1 when affected by Xanthinuria Type I, for differ-

ent flux range reduction values. Fig E: Z-score vs other metric-based rankings for SCD. Fig F:

Heatmap based on Fig A in S1 Text, using predicted ranks instead of z-scores. Fig G: Distribu-

tion of metabolite z-scores for SCD. Fig H: Distributions of FVA bound differences. Fig I. Dis-

tances from the top 50 most changed metabolites to each of the reactions affected by the SCD

SNP. Fig J: Undirected subnetwork showing paths between the reactions affected by SCD and

the top 50 predicted most changed metabolites for this condition. Fig K: ChemRich using top

54 metabolite sampling predictions for Fish-eye disease/ LCAT deficiency. Table A: Table of

the top 10 most differentially changed metabolites for the SCD gene KO using SAMBA. Table

B: ChemRich provides a metabolite-level table with each metabolite assigned to a cluster, the

top 10 of which are shown in S2 Table.

(PDF)

S1 Table. All SAMBA-predicted z-scores and ranks for SCD.

(XLSX)

S2 Table. Significant metabolites for SCD from Suhre et al. converted to Human1 identifiers.

(XLSX)
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