Fast Integral Bases Computation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Fast Integral Bases Computation

Résumé

We obtain new complexity bounds for computing a triangular integral basis of a number field or a function field. We reach for function fields a softly linear cost with respect to the size of the output when the residual characteristic is zero or big enough. Analogous results are obtained for integral basis of fractional ideals, key ingredients towards fast computation of Riemann-Roch spaces. The proof is based on the recent fast OM algorithm of the authors and on the MaxMin algorithm of Stainsby, together with optimal truncation bounds and a precise complexity analysis.
Fichier principal
Vignette du fichier
integral.pdf (439.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04583334 , version 1 (22-05-2024)

Licence

Identifiants

  • HAL Id : hal-04583334 , version 1

Citer

Adrien Poteaux, Martin Weimann. Fast Integral Bases Computation. 2024. ⟨hal-04583334⟩
100 Consultations
37 Téléchargements

Partager

More