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Abstract. We obtain new complexity bounds for computing a trian-
gular integral basis of a number �eld or a function �eld. We reach for
function �elds a softly linear cost with respect to the size of the output
when the residual characteristic is zero or big enough. Analogous results
are obtained for integral basis of fractional ideals, key ingredients to-
wards fast computation of Riemann-Roch spaces. The proof is based on
the recent fast OM algorithm of the authors and on the MaxMinalgorithm
of Stainsby, together with optimal truncation bounds and a precise com-
plexity analysis.
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1 Introduction

Let A be a principal ideal domain with �eld of fractions K and let L/K be
a separable �eld extension of degree d. Denote B the integral closure of A in
L. It is a free A-module of rank d and an integral basis of L/K is a collection
b1, . . . , bd ∈ B that form a A-basis of B.

This paper intends to give new complexity bounds for computing an integral
basis and, more generally, for computing an A-basis of an arbitrary fractional
ideal of L. These fundamental problems of computer algebra are cornerstones to-
wards more advanced computational issues both in algebraic number theory and
in algebraic geometry, such as developing a fast arithmetic of ideals in number
�elds [7] or computing Riemann-Roch spaces in function �elds [2,14].

In all of the sequel, we will assume that L = K(θ) is generated by the root
θ of a degree d monic separable irreducible polynomial f ∈ A[x]. Under this
assumption, there exists an integral basis of L/K of shape

B =

(
1,
g1(θ)

a1
, . . . ,

gd−1(θ)

ad−1

)
(1)

where gi ∈ A[x] is monic of degree i, ai ∈ A \ {0} and a1 | a2 | · · · | ad−1. We call
such a basis a triangular integral basis. This speci�c shape has various algorithmic
advantages, in particular for computing Hermite normal forms or Popov forms.
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Model of computation. For the sake of simplicity, we will express our complexity
results in the case A = k[t] (resp. A = Z). We work with computation trees
[6, Section 4.4]. When considering A = k[t], we use an algebraic RAM model,
counting only the number of arithmetic operations in k. For A = Z, we consider
the Boolean RAM model.

We classically denote O() and O (̃) to respectively hide constant and loga-
rithmic factors in our complexity results ; see e.g. [9, Chapter 25, Section 7]. We
additionally let Oε(d) = O(d1+ε(d)) with ε(d)→ 0. We have O (̃d) ⊂ Oε(d), and
freely speak of almost linear in d for both notations. As in [24], we express our
complexity with Oε() because we deal with dynamic evaluation via the deter-
ministic algorithm of [16]. Our results could be express with the O (̃) notation
using some Las Vegas sub-algorithm instead.

Discriminant and index. Our results will be expressed using the size functions
h(a) = deg(a) when A = k[t] (resp. h(a) = log(|a|) when A = Z). Note that
h(a) =

∑
p vp(a)h(p) where the sum runs over the primes p of A and vp stands

for the p-adic valuation. Let us denote ∆ = ∆f the discriminant of f and ∆L/K

the discriminant of L/K. Both quantities are related by the formula

∆ = D2∆L/K (2)

where D = Df ∈ A is the index of f , generator of the index ideal [B : A[θ]].
We denote for short h∆ := h(∆), hD := h(D) and hred :=

∑
p2|∆ h(p). Looking

at the triangular basis (1), we observe that D = ua1 · · · ad−1 for some unit
u ∈ A× and, up to reduce gi modulo ai, the basis B has global size O(dhD), this
bound being sharp. This observation suggests to emphasise the dependency of
the complexity on the index D instead of the discriminant ∆ which is classically
considered in the literature (see e.g. [1,3,25]).

Global integral basis computation. Our main result is:

Theorem 1. Suppose given a squarefree factorisation of the index D. There
exists a deterministic algorithm which computes a triangular integral basis of
L/K in less than

1. Oε(dhD) operations in k if A = k[t] with char(k) = 0 or char(k) > d,
2. Oε(d hD + h2D) operations in k if A = k[t] with char(k) ≤ d,
3. Oε(d hD + h2D) word operations if A = Z.

If we are only given the squarefree factorisation of the discriminant ∆, then a
similar result holds, adding a cost O(d hred) to the complexity estimates.

We thus get a softly linear cost in case 1. In the other cases, the over-cost in
h2D is only due to the complexity of the OM algorithm [24] over small residual
characteristic, so that the result would become softly linear for all cases if we
are able to improve the complexity of the OM algorithm. In the last statement,
the extra cost O(d hred) is needed to detect which prime divisors of ∆ are prime
divisors of D.



In the case A = k[t], we have access to polynomial time squarefree factorisa-
tion, leading to the following total cost estimate:

Corollary 1. Suppose A = k[t]. There exists a deterministic algorithm which
computes a triangular integral basis of L/K in less than

1. Oε(d h∆) operations in k if char(k) = 0 or char(k) > d,
2. Oε(d h∆ + h2D) operations in k otherwise.

The algorithm returns as a byproduct the index D and the discriminant ∆L/K .

These results improve signi�cantly [25, Theorem 3.5] which after Chinese
remainder gluing leads to a global cost Oε(d2 h∆ + d h2∆). Up to our knowl-
edge, this is the best complexity estimate in the literature. Note also [1] which
leads to Oε(d2 h∆) in the particular case A = k[t] and char(k) = 0, based on
fast computation of Puiseux series (although the resulting integral basis is not
triangular).

The complexity indicators hD and hred in Theorem 1 satisfy hD+hred ≤ h∆,
and the di�erence may be signi�cant, especially when wild rami�cation occurs.

Example 1. Consider f = xq+tnx+t ∈ Fq[t][x] with q a prime. We have ∆ = tnq

whileD = 1. We get h∆ = qn, hD = 0, and hred = 1. An integral basis is trivially
(1, θ, . . . , θd−1). Accordingly, Theorem 1 estimates the true cost O(d) to compute
such a basis, while using h∆ as a complexity indicator would lead to the bad
estimate Oε(d2n), the integer n being arbitrarily large. See [11, Section 6] for
further examples comparing hD + hred and h∆ in the case A = Z.

Let us emphasise that Corollary 1 simply adds to Theorem 1 an extra cost
O(dh∆) due to the computation of ∆, plus O (̃h∆) for its squarefree factori-
sation. Hence any progress for computing the discriminant would improve the
complexity estimate of Corollary 1. There have been recent results in that direc-
tion in the case k = Fq : it follows from [27] that there is a randomised algorithm
of Monte Carlo type which computes the radical of ∆ (and this is enough for
our purpose) in softly optimal time in h∆.

Integral basis over a prime p. If we only want a p-integral basis at a given prime
p ∈ A (that is an Ap-basis of B ⊗ Ap over the localisation of A at p), we get
similar complexity estimates than in Theorem 1, replacing hD and hred by their
respective local contributions vp(D)h(p) and h(p). There's no need to compute
and factorise the discriminant in such a case. This result has to be compared to
[25, Theorem 3.5] (triangular basis) or [3, Lemma 3.10] (non triangular basis).

The case of fractional ideals. In Section 4, we provide similar complexity results
to compute integral basis of an arbitrary fractional ideal I ⊂ L, expressed now
in terms of the size of the index [I∗ : A[θ]] of the smallest multiple I∗ = αI,
α ∈ K such that B ⊂ I∗, see Theorem 7. This is an important issue towards the
computation of Riemann-Roch spaces in function �elds.



Previous results. Classical methods for computing integral bases are variants of
the Round-2 and Round-4 routines by Zassenhaus and Ford [8,13,15,23]. The
central idea is to start from a known order A[α] ⊂ B, and to enlarge it for each
prime p ∈ A dividing the discriminant of A[α] until we reach the maximal order
B. Another strategy of local-to-global type was developed by Okutsu [20]: as-
suming given the local p-integral basis Bp for each prime ideals p ⊂ B dividing
a prime p ∈ A, one can compute multipliers zp ∈ L such that Bp = ∪zpBp is
a p-integral basis. Then, after reducing Bp to a triangular form, one can glue
the various bases Bp into a global integral basis B by means of Chinese remain-
ders. Later on, Montes [22] extended the ideas of Ore and MacLane [17,18] and
developed the OM algorithm that computes a representation of the prime ide-
als p dividing a prime p ∈ A by way of factoring f over the p-adic completion
of K. This led to an e�cient computation of the local basis Bp, last missing
ingredient in Okutsu's strategy. This opened the door to various OM-based rou-
tines: methods of multipliers [1,3,11], method of the quotients [12] and �nally
the remarkably simple MaxMin algorithm of Stainsby [25] that we follow here.

Summary of our strategy. We do not claim any originality in our approach,
following the classical local to global strategy outlined in [2,25]:

1. Run the fast OM algorithm [24] above each prime p ∈ A dividing ∆ (if we
start with a squarefree factor, we rely on dynamic evaluation) and deduce
for each prime ideal p ⊂ B dividing p a local p-integral basis together with
a suitable approximant of the associated local factor Fp of f .

2. Apply the MaxMin algorithm [25] to deduce a triangular p-integral basis (each
numerator being a suitable multiplicative combination of the numerators of
the various p-bases).

3. Use the Chinese Reminder Theorem to glue these p-integral basis as a global
triangular integral basis.

Concerning Point 2, it is remarkable that [25] allows to compute a triangular
p-integral basis avoiding the usual costly Hermite type reduction step. The OM
algorithm was the main bottleneck of the associated complexity analysis given in
[26] and our improvements mainly follow from the recent faster OM algorithm
[24], together with a careful study of the various p-adic precisions needed to
conduct the computations.

Organisation of the paper. In Section 2, we �rst remind how local integral bases
(one for each factor of the local factorisation of f) are deduced from the Okutsu
frames computed during the OM algorithm. Then, we prove that the usual preci-
sion vp(∆) used in the OM algorithm can be improved by 2 vp(D)+1, key result
towards the proof of Theorem 1. Section 3 is dedicated to glue local bases into a
reduced triangular p-integral basis thanks to the MaxMin algorithm of Stainsby,
these p-integral bases being then glued into an integral basis of L/K using Chi-
nese remaindering (Subsection 3.3). Section 4 is dedicated to integral bases of
arbitrary fractional ideals. We pay attention to complexity issues and prove our
main Theorem 1 in Section 5 . Finally, we illustrate the overall strategy with an
example of [25] in Section 6.



2 OM algorithm and local integral basis

Let A be a principal ideal domain with �eld of fraction K and let L = K(θ)
be the �eld extension determined by a root θ ∈ K of a monic, irreducible and
separable polynomial f ∈ A[x] of degree d.

The OM algorithm [22], from the initial of its main artisans Ore, MacLane,
Okutsu and Montes, computes an OM representation of each prime ideal of L
lying over a given prime p ∈ A. This computational object supports several
arithmetic data attached to an irreducible factor (say F ) of f over the p-adic
completion Kp of K. In particular, it allows to compute a local integral basis of
the �nite extension of Kp determined by F , �rst step towards the local-to-global
computation of an integral basis of L/K. After recalling this construction, we
give new tight bounds for the precision required by the OM algorithm.

2.1 Local integral basis and OM-factorisation.

We �x a prime p ∈ A and consider vp : K× → Z the p-adic valuation, Kp the
completion of K with respect to vp and Op the valuation ring of Kp. We still
denote vp the canonical extension of vp to a �xed algebraic closure Kp of Kp.

Okutsu frame and local integral basis. Let F ∈ Op[x] be an irreducible monic
polynomial of degree n and let α ∈ Kp be a root of F .

De�nition 1. An Okutsu frame of F is a sequence [φ1, . . . , φr+1], with φi ∈
Op[x] monic of degree mi such that (denoting m0 = 1, φ0 = 1):

• m1 |m2 | · · · |mr+1 and 1 ≤ m1 < m2 < · · · < mr+1 = n.

• For all g ∈ Op[x] monic, deg g < mi+1 =⇒ vp(g(α))
deg(g) ≤

vp(φi(α))
mi

<
vp(φi+1(α))

mi+1

The polynomial φr+1 is called an Okutsu approximant of F .

The degreesmi = deg(φi) and the length r do not depend on the choice of the
frame. For any 0 ≤ m < n, we can write in a unique way m = j0m0 + · · ·+jrmr

with 0 ≤ ji < mi+1/mi. We accordingly let

gm := xj0φj11 · · ·φjrr ∈ Op[x].

The integral closure Op of Op in Kp(α) is a free Op-module of rank n. Okutsu
proved [20, Theorem 1]:

Proposition 1. Let ηm = bvp(gm(α))c. The family 1 , g1(α)pη1 , . . . , gd−1(α)
pηd−1 is an

Op-basis of Op. We call it an Okutsu basis of F .

We have η1 ≤ · · · ≤ ηd−1 = exp(F ) where exp(F ) is the integrality exponent of
F , least integer such that pexp(F )Op ⊂ Op[α].

De�nition 2. Let g0 = 1 and gn = φr+1. The set N (F ) := {g0, g1, . . . , gn−1, gn}
is called an extended set of Okutsu numerators of F .



OM-factorisation. The prime ideals p of L dividing p are one-to-one with the
irreducible monic factors of f in Op[x]. We denote f =

∏
p|p Fp and we let

θp ∈ Kp be an arbitrary root of Fp.

De�nition 3. An Okutsu factorisation of f above p is a set (Fp)p|p where

Fp :=
[
φp,0, . . . , φp,rp+1

]
is an Okutsu frame of Fp, with φp,i ∈ A[x]. An OM-

factorisation of f above p is an Okutsu factorisation s.t. the approximants φp :=
φp,rp+1

satisfy vp(φp(θp)) > vp(φp(θq)) for all p 6= q (see [4, De�nition 3.2]).

The stronger condition for being an OM-factorisation ensures that the ap-
proximant φp uniquely determines the corresponding factor Fp of f (we might
have φp = φq for some q 6= p in an Okutsu factorisation).

The fast OM algorithm of [24] will allow us to compute an OM-factorisation
of f in the aimed complexity bound, together with all the φp,i de�ned above,
thus an Okutsu basis of each Fp thanks to Proposition 1.

2.2 Precision of the OM algorithm

We improve here the results of [4] about the precision required for computing
an OM-factorisation of f (and a p-integral basis). This section is quite technical,
depending a lot of the references [4,19,24]. It is independent of the strategy for
the computation of a triangular integral basis and the reader mainly interested
on that part can skip it.

The Okutsu bound. For F ∈ Op[x] monic, separable and irreducible, and α a
root of F , we de�ne the Okutsu bound of F as

δ0(F ) := deg(F ) max

{
vp(g(α))

deg(g)
, g ∈ Op[x] monic, deg(g) < d

}
.

Given f ∈ A[x] with irreducible factorisation f =
∏

p|p Fp ∈ Op[x] as above, and

denoting dp = deg(Fp), we let

δ∗(f) :=
1

2

∑
p|p

dpδ0(Fp) +
∑
p6=q

vp(Res(Fp, Fq)).

In contrast to the discriminant valuation δ(f) := vp(∆(f)), the rational number
δ∗(f) is an Okutsu invariant of f , that is it only depends on combinatorial data
attached to an OM-factorisation f (see [19] for details). Both quantities are
related by Proposition 2 below.

Bounds for δ∗(f). For each p|p, let ep and fp be respectively the rami�cation
index and the residual degree of p over p and let Lp = Kp(θp). It is well known
that ∆Lp/Kp

) ≥ fp(ep − 1), with equality if and only if Lp/Kp is tame, that is
if p - ep and the residue �eld extension is separable. We de�ne

ρ(f) :=
∑
p|p

(
vp(∆Lp/Kp

)− fp(ep − 1)
)
≥ 0

which thus measures the non tameness of L/K.



Proposition 2. We have δ∗(f) ≤ δ(f)− ρ(f).

Proof. If F ∈ Op[x] is monic irreducible with Okutsu frame [φ1, . . . , φr+1], it
follows from De�nition 1 that δ0(F ) = deg(F )vp(φr(α))/ deg(φr) and [4, Lemma
1.5] shows that δ0(F ) coincides with the quantity introduced in [4, De�nition
2.1]. We thus get δ0(F ) = µr + νr ≤ 2µr =: 2µ(F ) where µr and νr are Okutsu
invariants de�ned by the successive slopes of the generalised Newton polygon
encountered during the OM algorithm called with parameter F (see [4, page
141]). Combined with [19, Proposition 1.4], we get for each p|p

dpδ0(Fp)

2
≤ dpµ(Fp) = δ(Fp)− fpρp (3)

where ρp ∈ N is related to the local di�erent by vp(Diff(Lp/Kp)) = ep − 1 + ρp.
Applying the norm NLp/Kp and using that ∆Lp/Kp = NLp/Kp(Diff(Lp/Kp)), we
get

∑
p fpρp = ρ(f). The claim follows from summing (3) over all p|p together

with the classical formula δ(f) =
∑

p δ(Fp) +
∑

p6=q vp(Res(Fp, Fq)). ut

The Okutsu invariant δ∗(f) is also closely related to the p-index. In what
follows, we use notations

indp(f) := vp([B : A[θ]]) and indp(Fp) = vp([Bp : Ap[θp]]).

Thus indp(f) = vp(D) with notations of the introduction.

Proposition 3. We have the inequalities indp(f) ≤ δ∗(f) ≤ 2 indp(f) + d− 1.

Proof. The �rst inequality follows from

dpδ0(Fp)

2
≥ dp

2
µ(Fp) = indp(Fp) + 1− e−1p ≥ indp(Fp)

(the equality by [19, Proposition 1.4]) together with

indp(f) =
∑
p

indp(Fp) +
1

2

∑
p6=q

vp(Res(Fp, Fq))

(see e.g. [19, Section 2.2]). For the second inequality, (2) leads to

δ(f) = 2 indp(f) + vp(Disc(L/K)) = 2 indp(f) +
∑
p|p

vp(Disc(Lp/Kp)).

Combined with Proposition 2, we get δ∗(f) ≤ 2 indp(f) +
∑

p fp(ep − 1) and we
conclude thanks to the fundamental equality

∑
p|p epfp = dp. ut

Theorem 2. Let σ ∈ N and let g, f ∈ O[x] be two monic separable polynomials
of degree d such that g ≡ f mod pσ.

1. If σ > 2δ∗(f)/d, then g is irreducible if and only if f is irreducible.
2. If σ > δ∗(f), then any OM-factorisation of g is an OM-factorisation of f .



Proof. Point 1 follows from a closer look at the proof of [4, Lemma 2.8]. Namely,
the quantities ui,s/e0 · · · ei−1 that appear in the proof are upper bounded by
2δ(Fs)/ns (with ns = deg(Fs)) although [4, Lemma 2.2] allows to use the Okutsu
bound to get a sharper inequality

ui,s
e0 · · · ei−1

≤ δ0(Fs) ≤
2δ(Fs)

ns
.

Hence, we may replace δ(Fs) by nsδ0(Fs)/2 in [4, inequalities (2.5) and (2.6)].
By de�nition of δ∗(f), we get that δ(f) can be replaced by δ∗(f) in the upper
bound of [4, Lemma 2.8]. We may thus also use δ∗(f) instead of δ(f) in [4,
inequality (2.8)] of the proof of [4, Theorem 2.3], leading to Point 1. Similarly,
we may replace δ(f) by δ∗(f) in [4, Lemma 3.12], from which it follows that we
may replace δ(f) by δ∗(f) in [4, Theorem 3.13], proving Point 2. ut

Example 2. Consider f = x2 + tNx + t ∈ F2[[t]][x]. We check that δ∗(f) = 1
while δ(f) = 2N can take arbitrarily large values for the �xed degree d = 2.
By Theorem 2, the OM-factorisation of f only depends on f mod p2, and we
de�nitely don't want to work at precision δ(f) = 2N for such a polynomial.

In terms of the index, Theorem 2 together with Proposition 3 shows that we
can work at precision 2 indp(f) + d to get an OM factorisation of f . In fact, we
can do slightly better.

Theorem 3. Let δ̃(f) := 2 indp(f) + 1. Let g ∈ O[x] be a monic separable

polynomial of degree d such that g ≡ f mod pσ for some σ > δ̃(f).

1. Any OM-factorisation of g is an OM-factorisation of f .
2. Running the OM algorithm of [24] with precision σ returns an OM-factorisation

of f where the approximant φp of Fp satisfy vp(Fp − φp) > σ − indp(f).
3. The approximants φp satisfy the conditions of Corollary 3 of Section 3.

Proof. The proof is algorithmic. We �rst call algorithm Irreducible of [24] with
precision σ. By Proposition 3, we have δ̃(f) ≥ 2δ∗(f)/d, so Theorem 2 ensures
that either we can certify f that is irreducible (and compute in such a case an
Okustsu approximant of f), or we detect a �rst partial factorisation that can be
computed up to precision σ thanks to a valuated Hensel lemma, getting

f ≡ G0 · · ·Gr mod pσ.

Each Gi can be lifted to a factor Fi of f (not necessarily irreducible). Denot-
ing µ the current augmented valuation (denoted w in [24]) and e the current
rami�cation index (which is w(π) in [24]) we deduce from [24, Lemma 9] that

σi := vp(Gi − Fi) ≥ σ −
µ(Gi)

e
.

Now, denoting F̂i the cofactor of Fi in f , we deduce from [4, Proposition 3.5]
µ(Gi)
e = µ(Fi)

e = v(Res(Fi,F̂i))

deg(F̂i)
≤ v(Res(Fi, F̂i)). [19, Section 2.2] leads to indp(f) =



indp(Fi) + indp(F̂i) +v(Res(Fi, F̂i)). As by assumption σ > 2 indp(f) + 1, we get

σi > indp(f) + indp(Fi) + indp(F̂i) + 1 ≥ indp(f) + indp(Fi) + 1.

As σi > 2 indp(Fi) + 1, we can apply recursively this strategy on each approx-
imant Gi ≡ Fi mod pσi , working now with precision σi. At a recursive call on
an approximant G of a factor F of f , the current precision σ′ satis�es

σ′ ≥ σ − indp(f) > indp(f) + indp(F ) + 1 ≥ 2indp(F ) + 1 ≥ 2δ∗(F )/deg(F )

so that the algorithm terminates and provides a complete OM-factorisation

f ≡
∏
p

Gp mod πσ with vp(Gp − Fp) ≥ σ − indp(f) ∀ p|p.

This proves Points 1 and 2. In particular, we get vp(Gp − Fp) > indp(f) + 1.
Using notations of Corollary 3, we have indp(f) = bα1c + · · · bαd−1c ≥ bαd−1c
so that vp(Gp − Fp) > αd−1, proving Point 3. ut

Example 3. For the example f = xq + tqx + t ∈ Fq[t][x] of the introduction of

degree d = q (a prime), we get δ(f) = d2, δ∗(f) = d− 1 and δ̃(f) = 1 : we gain
an extra factor d for the precision when considering δ̃(f) rather than δ∗(f).

Remark 1. The bound σ > 2 indp(f) + 1 is sharp at least when indp(f) = 0.
Consider for instance f =

∏n
i=0((x − i)2 − p) + pN with N >> 0, satisfying

indp(f) = 0. Factoring f ≡
∏
i(x − i)2 mod p would be neither su�cient to

compute an OM-factorisation nor to detect if indp(f) = 0. Factorisation modulo
p2 is required (see also Lemma 5).

Remark 2. A closer look at the proof shows that a precision 2 max δ∗(g)/ deg(g)
is su�cient for computing an OM-factorisation, where the max runs over all
monic factors (possibly reducible) g ∈ Op[x] of f . In most cases (when the index
is not mainly due to one factor of small degree), this leads to a much smaller
precision O(δ∗(f)/d), which belongs to O(indp(f)/d) by Proposition 3. This is
the case for instance in the example detailled in Section 6.

3 Triangular p-integral bases

We keep notations of Section 2. Let B ⊂ L stands for the integral closure of A
in L. Denote Ap the localisation of A at a �xed prime p ∈ A and Bp the integral
closure of Ap in L. We have Bp = B ⊗A Ap and Bp is a free Ap-module of rank
d = deg(f).

De�nition 4. A p-integral basis of B/A (or p-basis) is an Ap-basis of Bp.

There are several ways to compute a p-integral basis from the local basis Bp
of the local rings Op for all p dividing p [5,11,12,3]. Traditional methods (based
on the work of Okutsu [20]) compute a p-basis of shape Bp :=

⋃
p|p zpBp for some



well chosen multipliers zp ∈ Bp (see also [12] for the method of the quotients).
Although the complexity of such methods �t in our aimed complexity bound,
the resulting p-basis is not triangular in general and the Hermite type reduction
needed before applying CRT (Proposition 5) does not �t in our aimed complexity
bound. The wonderful MaxMin algorithm of Stainsby [25] avoids this problem by
providing directly a triangular p-integral basis.

3.1 Reduced triangular p-integral bases.

For any prime ideal p dividing p, we de�ne a valuation wp : L× → Q by

wp(g(θ)) :=
vp(g(θ))

ep

where ep = e(p/p) is the rami�cation index and vp is the canonical discrete
valuation attached to p. Thus wp extends vp to L and wp(g(θ)) = vp(g(θp))
where θp ∈ Kp is any root of Fp. Let w = wp be the quasi-valuation de�ned by

w : L→ Q ∪ {∞}, w(b) := min(wp(b), p|p).

Thus, an element b ∈ L belongs to Bp if and only if w(b) ≥ 0.

De�nition 5. We say that a subset B = {b0, . . . , bk} ⊂ L is w-reduced if
w(
∑
i λibi) = mini w(λibi) for all λ0, . . . λk ∈ K.

Computing w-reduced integral bases is relevant for several applications in
function �elds, such as computing Riemann-Roch spaces [2, Section 5] (possibly
using various quasi-valuations w). Given g0, . . . , gk ∈ A[x], we denote by

B(g0, . . . , gk) :=

(
g0(θ)

pbw(g0(θ))c
, . . . ,

gk(θ)

pbw(gk(θ))c

)
.

De�nition 6. A p-integral basis of shape B(g0, . . . , gd−1) with gi monic of degree
i is called a triangular p-basis.

For all i = 0, . . . , d− 1, we de�ne αi = αi(f, p) ∈ Q+ by

αi = max {w(h(θ)), h ∈ A[x] monic, deg(h) = i} . (4)

We say that g ∈ A[x] monic of degree i is w-maximal if w(g(θ)) = αi.

Proposition 4. [25, Theorem 1.4] Let B = B(g0, . . . , gd−1), with gi monic of
degree i. Then

• B is a p-integral basis if and only if bw(gi(θ))c = bαic.
• B is a reduced p-integral basis if and only if w(gi(θ)) = αi.

Corollary 2. Let B = B(g0, . . . , gd−1) and B′ = B(h0, . . . , hd−1), with gi, hi ∈
A[x] monic of degree i. If B is a triangular (resp. reduced triangular) p-basis
and hi ≡ gi mod pbαic (resp. hi ≡ gi mod pdαie), then B′ is a triangular (resp.
reduced triangular) p-basis.



Proof. Let g, h ∈ A[x] and let α = w(g(θ)). If h ≡ g mod pbαc then bw(h(θ))c =
bαc while if h ≡ g mod pdαe then w(h(θ)) = α. Proposition 4 concludes. ut

By Proposition 4, computing a reduced triangular p-basis amounts to com-
pute for each degree i = 0, . . . , d − 1 a maximal monic polynomial gi ∈ A[x]
of degree i. It is shown in [25] that such polynomials can be obtained as the
product of exactly one Okutsu numerator of the local basis Bp, for each p|p.

3.2 The MaxMin algorithm.

For each p|p, denote dp = deg(Fp) and consider an extended set of Okutsu
p-numerators of Fp (De�nition 2)

Np := N (Fp) = {gp,0, . . . , gp,dp−1, gp,dp = φp}.

For each multi-index j = (jp)p|p with 0 ≤ jp ≤ dp, we de�ne gj :=
∏

p|p gp,jp , so

that gj ∈ A[x] is monic of degree deg(j) :=
∑

p|p jp ≤ d.

Theorem 4. [25, Theorem 2.6] If the approximants φp are computed with a
su�cient precision, then there exists for each i = 0, . . . , d− 1 a multi-index ji of
degree i such that gi := gji is maximal, i.e. w(gi(θ)) = αi.

We want to look for such optimal multi-indices without taking care of the
precision of the approximant φp. To this aim, we rather consider φp as a symbol
and use the map

wp(gj) =

{
wp(gj(θ)) if φp - gj
∞ if φp | gj.

Let accordingly w(gj) := min{wp(gj), p|p}. We have w(gj) <∞ if deg(j) < d.

De�nition 7. We say that the multi-index j is maximal if w(gj) ≥ w(gi) for all
multi-index i with deg(i) = deg(j).

Denote P = {p1, . . . , ps} the set of prime ideals of B dividing p in a given
�xed order. Denote (e1, . . . , es) the canonical basis of Zs.

Algorithm: MaxMin(Np1 , . . . ,Nps)

Input: A set Np1 , . . . ,Nps of local Okutsu numerators of f .
Output: Some maximal multi-indices j0, . . . , jd−1 of degrees 0, . . . , d− 1.

1 j0 ← (0, . . . , 0);
2 for k = 0, . . . d− 1 do
3 j ← min{1 ≤ i ≤ s, wpi(gjk ) = w(gjk )};
4 jk+1 ← jk + ej ;



Theorem 5. [25, Theorem 3.3] There exists an ordering on the set P = {p1, . . . , ps}
such that algorithm MaxMin returns a correct answer.

We say in such a case that P is well-ordered. Such an order can be read for free
on the tree of types induced by the OM-factorisation of f , see [25, Section 3.2]
for details. Note that despite of the remarkably simplicity of algorithm MaxMin,
the proofs of Theorems 4 and 5 in [25] are quite involved.

Corollary 3. Let j0, . . . , jd−1 be a sequence of maximal multi-indices, as re-
turned by algorithm MaxMin (assuming P well-ordered). Denote gi := gji . If the
precision of the approximant satis�es vp(Fp − φp) ≥ αd−1 for all p|p, then gi is
a degree i maximal polynomial for all i = 0, . . . , d − 1. We have w(gi(θ)) = αi
and get the reduced triangular p-basis

B =

(
1,
g1(θ)

pbα1c
, . . . ,

gd−1(θ)

pbαd−1c

)
.

Proof. We have by the very de�nition

w(gi) = min{wp(gi(θ)), p|p, φp - gi} ≥ min{wp(gi(θ)), p|p} = w(gi(θ)).

If strict inequality holds then necessarily w(gi(θ)) = wp(gi(θ)) for some prime
p such that φp divides gi, from which it follows that w(gi(θ)) ≥ wp(φp(θ)).
On the other hand, we have αi ≥ w(gi(θ)) by de�nition of αi. We get αi ≥
w(gi(θ)) ≥ wp(φp(θ)) = v(φp(θp)) = v((φp(θp)− Fp(θp)) ≥ v0(Fp − φp) ≥ αd−1.
Since αd−1 ≥ αi, this forces w(gi(θ)) = αi and we conclude with Proposition 4.
Suppose now that equality w(gi) = w(gi(θ)) holds. By Theorem 4, there is some
g = gi of degree i such that w(g(θ)) = αi (up to compute the φp's with high
enough precision). As ji is maximal, we have w(g) ≤ w(gi) independently of the
chosen precision. We get w(gi(θ)) = w(gi) ≥ w(g) ≥ w(g(θ)) = αi ≥ w(gi(θ)),
the last inequality by de�nition of αi. Again, this forces w(gi(θ)) = αi. ut

3.3 Global integral bases

For each prime p ∈ A, we saw how to compute a (reduced) p-integral basis

Bp =

(
1,
gp,1(θ)

pηp,1
, . . . ,

gp,d−1(θ)

pηp,d−1

)
with gp,i ∈ A[x] monic of degree i and ηp,i = bwp(gp,i(θ))c. We can glue these
various p-bases to get a triangular integral basis thanks to the following result,
due to Okutsu [21, Thm 1] (see also [26, Thm 1.17] or [2, Lem 1.3.18]):

Proposition 5. Suppose given a p-basis Bp as above for each prime p |Df .
For all i = 0, . . . , d − 1, let hi ∈ A[x] monic of degree i such that hi ≡ gp,i
mod pηp,i+1 for all p |Df . Then, the following family is a triangular integral
basis of L/K:

B =

(
1,

h1(θ)∏
p p

ηp,1
, . . . ,

hd−1(θ)∏
p p

ηp,d−1

)
.



4 Bases of fractional ideals

4.1 Fractional ideals

We keep notations and hypothesis of the previous section. Recall that any frac-
tional ideal I of B is a free A-module of rank d.

De�nition 8. A triangular basis (with respect to f) of a fractional ideal I of B
is an A-basis of I of shape

BI =

(
1

a0
,
g1(θ)

a1
, . . . ,

gd−1(θ)

ad−1

)
, (5)

where ai ∈ K× satisfy ad−1A ⊂ · · · ⊂ a0A and gi ∈ A[x] is monic of degree i.

Any fractional ideal admits a triangular basis [26, Theorem 1.16]. The fractional
ideals aiA of A depend on the choice of f used to represent the �eld L/K but
the �rst fractional ideal a0A does not:

Lemma 1. We have a−10 A = I ∩K.

Proof. Let BI = (b0, . . . , bd−1) be a triangular basis of I and let α ∈ I. Hence
α =

∑
αibi for some uniquely determined αi ∈ A. We have α ∈ K if and only if

α has degree zero as a polynomial in θ. Since BI is triangular, this is equivalent
to α1 = · · · = αd−1 = 0. Hence I ∩K = b0A = a−10 A. ut

De�nition 9. With notations as above, we de�ne the normalised ideal of I as
I∗ := a0I. We say that I is normalised if I∗ = I.

Notice that 1 ∈ I∗ so that B ⊂ I∗. If B is a (triangular) integral basis of I∗,
then obviously a−10 B is a (triangular) integral basis of I, and we may focus on
the computation of an A-basis of a normalised ideal.

In all what follows, we will assume that we are given the unique factorisation
of I in terms of the prime ideals of B, denoted by I =

∏
p p

np , np ∈ Z. There are
e�cient algorithms to determine such a factorisation given the OM-factorisations
of f above the involved primes p ∈ A [11].

The normalised ideal I∗ is then easily deduced. Let PA be the set of primes
of A (i.e. a set of generators of the prime ideals of A). For p ∈ PA, we de�ne

mp = mp(I) := max

{⌈
np
ep

⌉
, p|p

}
∈ Z. (6)

Lemma 2. We have vp(a0) = −mp and I∗ =
∏
p∈PA

∏
p|p p

np−epmp .

Proof. As B ⊂ I∗, we have vp(I∗) ≤ 0 for all p. This implies that vp(a0) ≤ −np.
If p|p, then vp(a0) = epvp(a0), hence −vp(a0) ≥ np/ep. Since vp(a0) ∈ Z we
deduce that −vp(a0) ≥ mp. If strict inequality holds for some p, we get

−vp(a0) ≥ mp + 1 =⇒ −vp(a0)ep ≥ npep + ep ∀ p|p,

and −vp(pa0) ≥ np for all p. This implies (a0p)
−1 ∈ I ∩K in contradiction with

Lemma 1. Hence vp(a0) = −mp for all p and vp(I∗) = np − epmp for all p|p. ut



Normalised size of fractional ideals. Given two free A-submodules I, I ′ ⊂ L of
rank d with respective A-basis B = (b1, . . . , bd) and B′ = (b′1, . . . , b

′
d), the tran-

sition matrix T ∈ Kd×d from B to B′ is de�ned by (b′1, . . . , b
′
d)T = (b1, . . . , bd).

If we change the A-basis of I or I ′, then T is multiplied by a matrix in GLd(A).
Hence the following de�nition makes sense :

De�nition 10. For two free A-submodules I, I ′ ⊂ K of rank d, the index [I ′ : I]
is the fractional ideal of A generated by the determinant of the transition matrix
from an A-basis of I to an A-basis of I ′.

The index is multiplicative : [I : I ′′] = [I : I ′][I ′ : I ′′]. Moreover, if I ′ ⊂ I,
then [I : I ′] ⊂ A and I ′ = I if and only if [I : I ′] = A.

If I has triangular basis as in De�nition 8, then [I : A[θ]] = (a0 · · · ad−1) and
by transitivity of the index, we get

vp([I
∗ : A[θ]]) = vp(a0 · · · ad−1)− dvp(a0) ≥ 0,

positivity since aiA ⊂ a0A.

De�nition 11. Suppose either A = Z and h(p) := log |p|, or A = k[t] and
h(p) := deg(p). The normalised size of I is

h(I) :=
∑
p∈PA

vp([I
∗ : A[θ]])h(p) ∈ N.

Lemma 3. Denote D = Df as in (2). Let I be a fractional ideal of B. Then
h(I) ≥ h(D) and equality holds if and only if I = αB for some α ∈ K \ {0}.

Proof. We have [I∗ : A[θ]] = [I∗ : B][B : A[θ]] and vp([B : A[θ]]) = vp(D) so that
vp([I

∗ : A[θ]]) = vp([I
∗ : B]) + vp(D). Since B ⊂ I∗, we have vp([I

∗ : B]) ≥ 0,
leading to h(I) ≥ h(D). Equality is equivalent to that vp([I

∗ : B]) = 0 for all
prime p, that is [I∗ : B] = A. Since B ⊂ I∗, this is equivalent to that I∗ = B,
proving the last claim. ut

4.2 p-bases of fractional ideals

Let us �x p ∈ A a prime. Denote Ip := I ⊗A Ap the localisation of I at p. Note
that

Ip = {b ∈ L, vp(b) ≥ np ∀ p|p}
and Ip is a fractional ideal of Bp. As such, it is a free Ap-module of rank d.
A p-basis of I is by de�nition an Ap-basis of Ip. To compute such a basis, we
can follow exactly the same strategy than for the case Ip = Bp, except that we
consider now the shifted valuations

wp,I : L→ Q ∪ {∞}, wp,I(b(θ)) := wp(b(θ))− np
ep

and accordingly the map wI = wp,I de�ned by

wI : L→ Q ∪ {∞}, wI(b(θ)) = min(wp,I(b(θ)), p|p).



Thus, an element b ∈ L belongs to Ip if and only if wI(b) ≥ 0. Given g0, . . . , gk ∈
A[x], we denote by

BI(g0, . . . , gk) :=

(
g0(θ)

pbwI(g0(θ))c
, . . . ,

gk(θ)

pbwI(gk(θ))c

)
.

De�nition 12. A triangular p-basis of I is a basis of shape BI(g0, . . . , gd−1)
with gi monic of degree i.

We let αI,i = max {w(h(θ)), h ∈ A[x] monic, deg(h) = i} for i = 0, . . . , d−1
and say that g ∈ A[x] monic of degree i is wI -maximal if wI(g(θ)) = αI,i.

Theorem 6. Suppose I normalised. Let j0, . . . , jd−1 be a sequence of maximal
multi-indices, as returned by Algorithm MaxMin called with the map wI instead
of w (assuming P well-ordered). Let gi := gji . If vp(Fp − φp) ≥ αI,d−1 for all
p|p, then BI(g0, . . . , gd−1) is a triangular p-basis of I.

Proof. It follows from respectively [26, Theorems 1.25], [26, Theorem 5.1] and
[26, Proposition 5.2] that the analogous of respectively Proposition 4, Theorem
4 and Theorem 5 still hold if we replace w by wI and αi by αI,i. This mainly
follows from the fact that the valuations wp,I are simply a shift of the valuations
wp. Since I =

∏
pnp is assumed to be normalised, we have B ⊂ I hence np ≤ 0

for all p. Thus, [26, Theorem 5.3] ensures that the analogous of Corollary 2 holds
too if we replace w by wI and αi by αI,i. The proof of Theorem 6 is then mutatis
mutandi identical to the proof Corollary 3. ut

4.3 Improvements via S-basis

Let S ⊂ P. For b ∈ L, de�ne wI,S(b) = min(wp,I(b), p ∈ S). If we apply algo-
rithm MaxMin with the set of denominators {Np, p ∈ S} as input and with wI,S
instead of w, we get a family of multi-indices j0, . . . , jdS−1 with ji = (ji,p)p∈S ,
and where dS :=

∑
p∈S deg(Fp). The resulting polynomials gi := gji have maxi-

mal wS,I -valuation (assuming that the involved φp are computed with a su�cient
precision) and give rise to a triangular set

BI,S :=

(
g0(θ)

pbwI,S(g0(θ))c
, . . . ,

gdS−1(θ)

pbwI,S(gdS−1(θ))c

)
that we call an S-basis of I. Besides playing a key role in the proof of the
Theorem 5 in [25], these S-bases are also relevant to accelerate the computation
of a triangular p-basis of I in some particular cases. In what follows we let

T =
{
p ∈ P , indp(Fp) = vp(Res(Fp, F̂p)) = np = 0

}
(7)

and we denote S = P \ T .



Proposition 6. Suppose I normalised. Let g =
∏

p∈T φp ∈ A[x] and consider
BI,S = (b0, b1, . . . , bdS−1) an S-basis of I as above. The set

BI = (1, θ, . . . , θd−dS−1, g b0, , . . . , g bdS−1)).

is a triangular p-integral basis of I.

Proof. Note �rst that deg(g) = d − dS so the set BI is indeed triangular. By
Proposition 4 (in the context of fractionary ideals), we need to show that the
polynomials xi and gbj are bwIc-maximal for 0 ≤ i < deg(g) and 0 ≤ j < dS . Let
b be a wI -maximal polynomial of degree k < d. By Theorem 4 (which remains
valid with wI instead of w), we may take b =

∏
p∈P bp, with bp ∈ Np.

• If there exists p ∈ T such that bp 6= φp, then deg(bp) < dp, which forces
bwp(bp)c ≤ indp(Fp) (Proposition 1), hence bwI,p(bp)c = 0 since indp(Fp) =

np = 0. But vp(Res(Fp, F̂p)) = 0 implies also that wI,p(bq) = 0 for all q 6= p.
Hence bwI,p(b)c = 0. As I is normalised, we have bwI,q(b)c ≥ 0 for all q and we
deduce bwI(b)c = 0. As b is wI -maximal, we deduce that bαI,kc = 0 and any
monic degree k polynomial (in particular xk) is bwIc-maximal.
• If bp = φp for all p ∈ T , then b = gb′ with b′ =

∏
p∈S bp. In particular, we

have k ≥ deg(g). We get

wI(b) = min
p∈P

(wI,p(b′)+wp(g)) = min
p∈S

(wI,p(b′)+wp(g)) = min
p∈S

wI,p(b′) = wI,S(b′),

the second equality because wp(g) =∞ for p ∈ T and the third equality because

vp(Res(Fq, F̂q)) = 0 for all q ∈ T forces wp(g) = 0 for all p ∈ S. Hence b is
wI -maximal if and only if b′ is wI,S-maximal and the claim follows. ut

Remark 3. The basis BI of Proposition 6 is not necessarily wI -reduced (De�-
nition 5). Consider for instance f = (x − 1)2 + p ∈ A[x] and I = B. We have
indp(f) = 0 and using Proposition 6 would lead to the p-integral basis B = (1, θ).
This basis is not w-reduced as w(θ) = 0 < w(θ − 1) = 1/2. Using Corollary 3
would have returned the reduced p-basis (1, θ − 1).

4.4 Global triangular bases of fractional ideals

Proposition 7. Let I be a normalised fractional ideal of L. Suppose given a
triangular p-basis BI,p = BI,p(gp,0, . . . , gp,d−1) of I for each prime p dividing
[I : A[θ]] and let ηp,i(I) := bwI(gp,i(θ))c. For all i = 0, . . . , d − 1, let hi ∈ A[x]
monic of degree i s.t. hi ≡ gp,i mod pηp,i(I)+1 for all p dividing [I : A[θ]]. Then
a triangular A-basis of I is given by

BI =

(
1,

h1(θ)∏
p p

ηp,1(I)
, . . . ,

hd−1(θ)∏
p p

ηp,d−1(I)

)
.

Proof. This follows from [26, Theorem 1.27], where we use moreover that gp,0 = 1
for all p since I is assumed to be normalised. ut



Remark 4. If I is not normalised, we �rst compute I∗ following Lemma 2 and
then compute an integral basis BI∗ of I∗ following Proposition 7. An integral
basis of I is then given by BI = αBI∗ , with α :=

∏
p|[I∗:A[θ]] p

mp , the integer mp

being de�ned in (6).

Theorem 7. Let I be a fractional ideal. Given a squarefree factorisation of the
ideal [I∗ : A[θ]], we can compute a triangular integral basis of I with

1. Oε(d h(I)) operations in k if A = k[t] with char(k) = 0 or char(k) > d,
2. Oε(d h(I) + h2D) operations in k if A = k[t] with char(k) ≤ d,
3. Oε(d h(I) + h2D) word operations if A = Z.

This result has to be compared to Oε(d3 h(I)2 +d h2∆) that can be deduced from
[2, Thm 5.3.19]. The proof will be given at the end of Section 5.

Remark 5. Note that when I = B, we get h(B) = hD so the �rst statement of
Theorem 1 is a particular instance of Theorem 7.

Remark 6. We don't take into account the last multiplications inherent to the
relation BI = αBI∗ in our estimation cost. For many purposes, this step would
lose crucial information.

5 Complexity and proofs of the main results

We keep notations and hypothesis of previous sections. In particular, f ∈ A[x]
is an irreducible separable monic degree d polynomial. For a prime p ∈ A, we
denote kp the residue �eld of Op and we charge one operation in kp for one
operation in a �xed set A ⊂ A of representatives of kp.

Cost of the OM-factorisation.

Proposition 8. Assume σ ≥ 2 indp(f) + 1. We can compute an OM factoriza-
tion of f above p such that vp(φp − Fp) ≥ σ − indp(f) for all p|p with Oε(d σ)
operations in kp if char(kp) = 0 or > d, and Oε(d σ + indp(f)2) operations in
kp otherwise. The algorithm returns as a byproduct the values wq(φp,i(θ)) for all
p, q|p and all 0 ≤ i ≤ rp + 1.

Proof. When char(kp) is zero or > d, this follows from Theorem 3 together with
[24, Thm 4]. When 0 < char(kp) < d, the number of re�nement steps inherent
to the OM algorithm is bounded by O(ind(f)/`0) thanks to [10, Def 4.15 and
Thm 4.18], with `0 being the �rst residual degree as used in [24, Lemma 4]. We
thus need to add a cost O (̃δ∗ indp(f)) thanks to [24, Section 3] (replacing again
δ by δ∗ in [24, Thm 2]). By Proposition 3, this is O (̃indp(f)2 +d indp(f)) which
�ts in the aimed bound. ut

Note that we only compute the square-free factorisation of the various resid-
ual polynomials and we rely on dynamic evaluation, using the complexity results
of [16] in that context (see [24, Section 5.4]).



Binary cost of the MaxMin algorithm. We consider the general context of a nor-
malised fractional ideal I of B. Denote for short indp(I) = vp(I : A[θ]). Note
that indp(B) = indp(f) = vp(D).

Proposition 9. The cost of MaxMin above a prime p with respect to the quasi-
valuation wI is O(ds log(indp(I))) word operations, with s the number of irre-
ducible factors of f in Op[x].

Proof. There are d iterations including one minimum of a set of cardinality s
and one addition, each element having binary size bounded by log(indp(I)). ut

With regards to Theorem 7, we need to take care that we might have s >
indp(I). For such a small p-index, we rather use Proposition 6.

Lemma 4. Suppose I normalised and let S ⊂ P as de�ned by (7). The binary
cost of MaxMin to compute an S-basis of I is O (̃d indp(I)).

Proof. The cost of MaxMin restricted to S is now O(dS Card(S) log(indp(I))).
We have indp(I) = vp([B : A[θ]) + vp([I : B]) = indp(f)− vp(NL/K(I)), leading
to

indp(I) =
∑
p|p

(
indp(Fp) +

1

2
vp(Res(Fp, F̂p)− fpnp

)
.

Since I is normalized, we have np ≤ 0 for all p so each summand is ≥ 1/2
whenever p ∈ S by (7). We get Card(S) ≤ indp(I)/2 and the claim follows. ut

Cost of expanding and gluing p-integral basis.

Proposition 10. Suppose I normalised. Up to the cost of the OM-factorisation,
one can compute a triangular p-basis of I in less than O (̃d indp(I)) operations
in kp.

Proof. Up to use Proposition 6 and Lemma 4, we can compute non expanded
denominators g0, . . . , gd−1 of a triangular p-basis BI in the aimed cost (binary
cost for this step). There remains to expand gi mod pbαI,ic (Corollary 2 and
Corollary 3 in the context of triangular ideal), for a cost of O (̃deg(gi)bαI,ic)
operations in kp. As

∑
ibαI,ic = indp(I) and deg(gi) = i ≤ d, the total cost is

O (̃d indp(I)) operations in kp. ut

Proposition 11. Suppose I normalised. Given a triangular p-integral basis above
each prime p ∈ A dividing [I : A[θ]], we can compute a global integral basis of I
in less than O (̃dh(I)) binary operations if A = Z or O (̃dh(I)) operations in k
if A = k[t].

Proof. Let us �rst suppose that A = k[t]. Computing the polynomial hi ∈ A[x] in
Proposition 7 requires O (̃deg(hi)

∑
p ηp,i(I)h(p)) operations in k by fast Chinese

multi-remaindering. The result follows by summing over all i = 0, . . . , d−1, using
deg(hi) = i ≤ d,

∑d−1
i=0 ηp,i(I) = indp(I) and

∑
p indp(I)h(p) = h(I). The same

reasonning applies if A = Z, counting now the number of word operations. ut



Proof of Theorem 7. We may assume I = I∗. By Theorem 6, it's enough to
compute the φp's with precision indp(I). By Proposition 8, we may apply the
OM algorithm with precision σ = indp(I)+indp(f)+1, which costs Oε(d indp(I))
operations in kp (recall that indp(I) ≥ indp(f) since I is normalized), plus an
extra Oε(indp(f)2) for small residual characteristic. The result then follows from
Proposition 8, Proposition 10 and Proposition 11. Note that we rely again on
dynamic evaluation since we are working above a squarefree factor p of the index
of I which is not necessarily irreducible. �

Proof of Theorem 1. First part of Theorem 1 follows from Theorem 7 applied
with I = B. Let us prove the last claim, assuming now that we only know a
squarefree factorisation of the discriminant ∆. We use the following lemma.

Lemma 5. Given a prime p, the condition p|D only depends on f mod p2, and
can be checked with O (̃d) operations in kp.

Proof. We want to check if indp(f) = 0. We �rst compute the square-free factori-
sation of f mod p and lift it once to get f =

∏
i Fi mod p2, where Fi|f and the

Fi's are coprime mod p. This costs O (̃d) operations in k. We have indp(f) = 0

if and only if indp(Fi) = 0 for all i. Since Fi = PNii mod p with Pi ∈ A[x]
monic and square-free mod p, we have indp(Fi) = 0 if and only if Ni = 1 or
vp(Fi mod Pi) = 1 (Eisenstein case), see e.g. [10, Rem 4.13]. Both conditions
only depend on Fi mod p2 and can be checked with O (̃deg(Fi)) operations in
kp for each i, hence a total cost O (̃d). ut

The last claim in Theorem 1 follows. By (2), we need to check if p|D only
if p2|∆. By Lemma 5, this adds an extra cost of O (̃d

∑
p2|∆ h(p)) = O (̃dhred)

(binary cost if A = Z or arithmetic cost if A = k[t]). �

6 An illustrative example

We conclude our paper by illustrating the di�erent steps of our algorithm on the
following example of Stainsby [25, Section 3.3] over Z[x], that is the polynomial

f = x13 + 3 q8 x11 + 18753 q12 x10 + 781253 q16 x9 + 244178131 q20 x8+
783631254 q24 x7 + 14894940628 q28 x6 + 763967225003 q32 x5 + 193053764471876 q36 x4

+1562575008 q48 x3 + 488318756 q52 x2 + 1527929762506 q56 x+ 4579209021877 q60

with q = 5. We have ∆f = 26 5744 n with n squarefree, and Df = 23 5372.
Knowing either of them, we �rst compute integral bases over p = 2 and p = 5.

Reduced triangular basis over p = 5. The OM algorithm run with precision 69
�nds a factorisation f = f1 f2 f3, for which we have initial approximations

ψ1 = x4 + 2 p24, ψ2 = φ21 + p18 φ1 + p32 x+ p36, ψ3 = φ1 + p17



with φ1 = x3 + p8 x + p12. It provides the three associated quasi-valuations

w1, w2, w3 satisfying (we denote
→
w (a) = (w1(a), w2(a), w3(a))):

→
w (x) = (6, 4, 4) ;

→
w (φ1) = (12, 18, 17)

→
w (f1) = (∞, 16, 16) ;

→
w (f2) = (24,∞, 34) ;

→
w (f3) = (12, 17,∞)

We also get w1(ψ1) = 24, w2(ψ2) = 36, w3(ψ3) = 17 and the numerator sets are

N5,1 = {1, x, x2, x3, f1};N5,2 = {1, x, x2, φ1, x φ1, x2 φ1, f2};N5,3 = {1, x, x2, f3}.

MaxMin runs as follows: starting from g0 = 1, at each step i, we increase in the
triplet the index equal to the smallest j ∈ {1, 2, 3} s.t. wj(gi) = minw(gi) (which
is underlined in the last column).

i triplet gi
→
w (gi) w(gi)

0 (0, 0, 0) 1 (0, 0, 0) 0
1 (1, 0, 0) x (6, 4, 4) 4
2 (1, 1, 0) x2 (12, 8, 8) 8
3 (1, 2, 0) x3 (18, 12, 12) 12
4 (1, 3, 0) xφ1 (18, 22, 21) 18
5 (2, 3, 0) x2 φ1 (24, 26, 25) 24
6 (3, 3, 0) x3 φ1 (30, 30, 29) 29
7 (3, 3, 1) x4 φ1 (36, 34, 33) 33
8 (3, 3, 2) x5 φ1 (42, 38, 37) 37
9 (3, 3, 3) x3 φ1 f3 (42, 47,∞) 42
10 (4, 3, 3) φ1 f1 f3 (∞, 51,∞) 51
11 (4, 4, 3) xφ1 f1 f3 (∞, 55,∞) 55
12 (4, 5, 3) x2 φ1 f1 f3 (∞, 59,∞) 59

Note that any order on the prime ideals p1, p2, p3 works here. We get:

N5 = {1,x,x2,x3,x φ1,x
2 φ1,x

3 φ1,x
4 φ1,x

5 φ1,x
3 φ1 f3,φ1 f1 f3,x φ1 f1 f3,x

2 φ1 f1 f3}

Finally, one can check that it is su�cient to get approximations ψi of the factors
fi satisfying w1(ψ1) ≥ 28, w2(ψ2) ≥ 36 (that we got from the OM algorithm
with precision 69) and w3(ψ3) ≥ 18. By lifting the factorisation only once (using
precision 70), we get that, and update:

ψ1 = x4 + 2 p24 + p34 , ψ3 = φ1 + p17 + 2 p12 x2 + 4 p16 x+ 3 p20

Reduced triangular basis over p = 2. Here we do not need the MaxMin algorithm.
As f mod 2 = (y3+y2+1) (y4+y3+1) (y3+y+1)2, we only use the OM algorithm
above the factor (y3 + y + 1), then use Proposition 6 to conclude. The OM
algorithm provides a local set of numerators equal to {1, x, x2, φ0, x φ0, x2 φ0}
with φ0 = x3 + x+ 1. We thus get

N2 = {1, x, x2, x3, x4, x5, x6, g, x g, x2 g, φ0 g, x φ0 g, x2 φ0 g}

with g = (x3 + x2 + 1) (x4 + x3 + 1).



Global basis. We �nally glue together these two bases using CRT. For instance,
we compute g4 s.t. g4 = x4 + 58 x2 + 512 x mod 519 and g4 = x4 mod 2, that

is g4 = 519 x4 − 2 519−1
2 (x4 + 58 x2 + 512 x) = x4 + (58 − 527)x2 + (512 − 531)x,

using 519 − 2 519−1
2 = 1. We get similar formulas for g5 and g6 (replacing 19 by

resp. 25 and 30), etc. Computing all the gi this way, we get the following global
triangular integral basis:

{1, θ
54
,
θ2

58
,
θ3

512
,
g4(θ)

518
,
g5(θ)

524
,
g6(θ)

529
,
g7(θ)

533
,
g8(θ)

537
,
g9(θ)

542
,
g10(θ)

2 551
,
g11(θ)

2 555
,
g12(θ)

2 559
}

In particular, we get Df = 23 5372 mentioned earlier.
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