On the number of vertices of projective polytopes - Archive ouverte HAL
Article Dans Une Revue Mathematika Année : 2023

On the number of vertices of projective polytopes

Résumé

Abstract Let X be a set of n points in in general position. What is the maximum number of vertices that can have among all the possible permissible projective transformations T ? In this paper, we investigate this and other related questions. After presenting several upper bounds, obtained by using oriented matroid machinery, we study a closely related problem (via Gale transforms) concerning the maximal number of minimal Radon partitions of a set of points. The latter led us to a result supporting a positive answer to a question of Pach and Szegedy asking whether balanced 2‐colorings of points in the plane maximize the number of induced multicolored Radon partitions. We also discuss a related problem concerning the size of topes in arrangements of hyperplanes as well as a tolerance‐type problem of finite sets.
Fichier principal
Vignette du fichier
NumberVerticesProjectivePolytopes.pdf (859.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04525216 , version 1 (28-03-2024)

Identifiants

Citer

Natalia García-Colín, Luis Pedro Montejano, Jorge Luis Ramírez Alfonsín. On the number of vertices of projective polytopes. Mathematika, 2023, 69 (2), pp.535-561. ⟨10.1112/mtk.12193⟩. ⟨hal-04525216⟩
5 Consultations
6 Téléchargements

Altmetric

Partager

More