Nonlinear Model Predictive Control based on K-step Control Invariant Sets - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Nonlinear Model Predictive Control based on K-step Control Invariant Sets

Résumé

One of the fundamental issues in Model Predictive Control (MPC) is to be able to guarantee the recursive feasibility of the underlying receding horizon optimization. In other terms, the primary condition for a NMPC design is to ensure the closed-loop solution remains indefinitely within a safe set. This issue can be addressed by introducing a terminal constraint described in terms of a control invariant set. However, the control invariant sets of nonlinear systems are often impractical to use due to their complexity. The K-step control invariant sets are representing generalizations of the classical one-step control invariant sets and prove to retain the useful properties for MPC design, but often with simpler representations, and thus greater applicability. In this paper, a novel NMPC scheme based on K-step control invariant sets is proposed. We employ symbolic control techniques to compute a K-step control invariant set and build the NMPC framework by integrating this set as a terminal constraint, thereby ensuring recursive feasibility.
Fichier principal
Vignette du fichier
Invariants.pdf (1.93 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04514594 , version 1 (21-03-2024)
hal-04514594 , version 2 (17-06-2024)

Identifiants

  • HAL Id : hal-04514594 , version 1

Citer

Zhixin Zhao, Antoine Girard, Sorin Olaru. Nonlinear Model Predictive Control based on K-step Control Invariant Sets. European control conference, Jun 2024, Stockholm, Sweden. ⟨hal-04514594v1⟩
119 Consultations
172 Téléchargements

Partager

More