Invariant foliations for endomorphims of $\mathbb{P}^2$ with a pluripotentialist product structure - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Invariant foliations for endomorphims of $\mathbb{P}^2$ with a pluripotentialist product structure

Résumé

Let $f$ be a holomorphic endomorphism of $\mathbb{P}^2$, let $T$ be its Green current and $\mu=T\wedge T$ be its equilibrium measure. We prove that if $\mu$ has a local product structure with respect to $T$ then (an iterate of) $f$ preserves a local foliation $\mathcal{F}$ on a neighborhood of $\mathrm{Supp}(T )\backslash\mathcal{E}$, where $\mathcal{E}$ denotes the exceptional set of f . If the local foliation $\mathcal{F}$ extends through $\mathcal{E}$, then it extends to $\mathbb{P}^2$ and is an invariant pencil of lines.
Fichier principal
Vignette du fichier
main.pdf (407.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04512333 , version 1 (20-03-2024)

Identifiants

Citer

Virgile Tapiero. Invariant foliations for endomorphims of $\mathbb{P}^2$ with a pluripotentialist product structure. 2024. ⟨hal-04512333⟩
42 Consultations
14 Téléchargements

Altmetric

Partager

More