Invariant foliations for endomorphims of $\mathbb{P}^2$ with a pluripotentialist product structure
Résumé
Let $f$ be a holomorphic endomorphism of $\mathbb{P}^2$, let $T$ be its Green current and $\mu=T\wedge T$ be its equilibrium measure. We prove that if $\mu$ has a local product structure with respect to $T$ then (an iterate of) $f$ preserves a local foliation $\mathcal{F}$ on a neighborhood of $\mathrm{Supp}(T )\backslash\mathcal{E}$,
where $\mathcal{E}$ denotes the exceptional set of f . If the local foliation $\mathcal{F}$ extends through $\mathcal{E}$,
then it extends to $\mathbb{P}^2$ and is an invariant pencil of lines.
Origine | Fichiers produits par l'(les) auteur(s) |
---|