Composite likelihood inference for the Poisson log-normal model
Résumé
Inferring parameters of a latent variable model can be a daunting task when the conditional distribution of the latent variables given the observed ones is intractable. Variational approaches prove to be computationally efficient but, possibly, lack theoretical guarantees on the estimates, while sampling based solutions are quite the opposite. Starting from already available variational approximations, we define a first Monte Carlo EM algorithm to obtain maximum likelihood estimators, focusing on the Poisson log-normal model which provides a generic framework for the analysis of multivariate count data. We then extend this algorithm to the case of a composite likelihood in order to be able to handle higher dimensional count data.
Fichier principal
StR24.pdf (1.68 Mo)
Télécharger le fichier
StR24 (1).pdf (1.68 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|