Computing an $\varepsilon$-net of a closed hyperbolic surface - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2024

Computing an $\varepsilon$-net of a closed hyperbolic surface

Abstract

An $\varepsilon$-net of a metric space $X$ is a set of points $P$ of $X$ such that the balls of radius $\varepsilon$ centered at points of $P$ cover $X$, and two distinct points of $P$ are at least $\varepsilon$ apart. We present an algorithm to compute an $\varepsilon$-net of a closed hyperbolic surface and analyze its complexity.
Fichier principal
Vignette du fichier
version_hal.pdf (786.34 Ko) Télécharger le fichier
Vignette du fichier
cylindre.png (11.83 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Figure, Image

Dates and versions

hal-04466350 , version 1 (19-02-2024)
hal-04466350 , version 2 (21-02-2024)

Identifiers

  • HAL Id : hal-04466350 , version 2

Cite

Vincent Despré, Camille Lanuel, Monique Teillaud. Computing an $\varepsilon$-net of a closed hyperbolic surface. 2024. ⟨hal-04466350v2⟩
41 View
20 Download

Share

Gmail Facebook X LinkedIn More