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Abstract
An ε-net of a metric space X is a set of points P of X such that the

balls of radius ε centered at points of P cover X, and two distinct points
of P are at least ε apart. We present an algorithm to compute an ε-net of
a closed hyperbolic surface and analyze its complexity.

1 Introduction
This paper focuses on hyperbolic surfaces, i.e., surfaces with a metric of constant
negative curvature. These surfaces have been extensively examined from a
mathematical perspective, due to their generic nature: any Riemannian surface of
genus at least two can be conformally mapped to a unique hyperbolic surface [15,
Section IV.8].

Hyperbolic geometry also plays a key role in computer science. One of the
most famous examples is found in the analysis of rotation distance in binary
trees [18]. Hyperbolic geometry naturally emerges as a valuable tool for graph
representation [13, 14]. The hyperbolic plane also serves as the preferred model
for illustrating the universal cover of surfaces with genus at least 2, which has
proven to be crucial in the proof of purely topological results [10, 6].

Delaunay triangulations of hyperbolic spaces and surfaces have been studied in
the computational geometry community [2, 16, 11, 12]. In this line, we adapt
Shewchuk’s Delaunay refinement algorithm [17] to construct ε-nets of hyperbolic
surfaces, opening the door to the design of efficient approximation algorithms.
To the best of our knowledge, this is the first result of this kind.

Let us recall definitions [5]. Let (X, d) be a metric space and ε > 0. A set
P ⊂ X is an ε-covering if ∀x ∈ X, d(x, P ) ⩽ ε, i.e., if the closed balls of radius
ε centered at each p ∈ P cover X. It is an ε-packing if ∀p ̸= q ∈ P, d(p, q) ⩾ ε,
i.e., if the open balls of radius ε/2 centered at each p ∈ P are pairwise disjoint.
An ε-net is both an ε-covering and an ε-packing. In this paper, we prove:

Proposition 1. Any ε-net of a closed hyperbolic surface S of genus g and systole
σ contains N ⩽ 16(g − 1)

(
1/ε2 + 1/σ2)

points. If ε < σ, then N ⩽ 16(g − 1)/ε2.

The case when ε < σ corresponds to the situation when the surface has no ε-thin
part (see Section 2.2).

Proposition 2. The Delaunay refinement algorithm computes an ε-net using at
most

(
10 + C ′

h Diam(S)6g−4)
N2 + (N − 1)(144g2 − 104g + 35) − 10 elementary
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operations, where C ′
h is a constant depending on the metric h of S, and Diam(S)

is the diameter of S.

For a fixed surface, the complexity is then O(1/ε4).

The first result can be regarded as folklore. We prove it in Section 3 for
completeness. The second proposition rises interesting obstacles to deal with. In
particular, Shewchuk’s refinement adds circumcenters of some triangles, which is
not straightforward in our context, as locating a new point requires to construct
a portion of the universal cover of the surface. We manage to bound the size of
this portion.

2 Background on hyperbolic surfaces and nota-
tion

We refer the reader to textbooks for more details, e.g. [4, 1].

A closed hyperbolic surface can be seen as the quotient H2/Γ of the hyperbolic
plane H2 under the action of a group Γ of orientation-preserving isometries.
Throughout the paper, objects in H2 are denoted with a tilde ·̃, while objects on
S are denoted without. In particular, for an object o on S, õ denotes any of its
lifts in H2. To simplify the language, we often use the term copy to refer to an
image of an object in H2 by an element of Γ.

We work with the Poincaré disk model in which the hyperbolic plane H2 is
represented as the unit disk of the complex plane C. The unit circle consists of
points at infinity. The geodesics are either diameters of the unit disk, or circular
arcs that meet the boundary circle orthogonally. The hyperbolic circles are
Euclidean circles (but their hyperbolic and Euclidean centers differ). Orientation-
preserving isometries are represented as matrices in C2×2.

2.1 Delaunay triangulation and Dirichlet domain
A triangulation T of S is a partition of S into triangles; note that edges may
be loops. A triangulation of S is a Delaunay triangulation if for each triangle
t of T and any of its lifts t̃ in H2, the open disk circumscribing t̃ contains no
vertex of the (infinite) lift of T in H2 [11]. The Voronoi diagram is the dual
of the Delaunay triangulation. The Dirichlet domain D

x̃
of a point x̃ ∈ H2 is

the (closed) cell of x̃ in the Voronoi diagram of its (infinite) orbit Γx̃. Unlike
the Euclidean case, Γ is non-commutative, and the combinatorics of a Dirichlet
domain depends on the point x (Figure 1). The number k of sides of D

x̃
satisfies

4g ⩽ k ⩽ 12g − 6 (see, e.g., [8]).

In this paper, we assume that the input surface S is given by a Delaunay
triangulation having a single vertex b, i.e., all Delaunay edges are loops based in
b. The point b is arbitrary. This introduces no restriction, as such a representation
can be computed for any closed hyperbolic surface, starting from a standard
representation by a fundamental domain and side pairings [8].1 The Dirichlet
domain D

b̃
of some lift b̃ of b can be computed together with the corresponding

side pairings, which are generating the group Γ. The sides of D
b̃

are denoted
1The common basepoint is denoted as b′′ in [8].
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Figure 1: Dirichlet domains for the Bolza surface (g = 2). The domain on the
left has 4g = 8 sides and the one on the right has 12g − 6 = 18 sides. Figure
from [3].

as si, i = 0, . . . , k − 1 and the corresponding side pairings as γi, i = 0, . . . , k − 1
(here, side pairings are pairwise inverses).

2.2 Thin and thick parts
The injectivity radius rx(S) of S at a point x is the supremum of all r > 0 such
that the open ball of radius r centered at x, B(x, r) = {y ∈ S | δS(x, y) < r},
where δS is the distance on S, is isometric to a disk in H2. In particular, B(x, r)
is a topologically embedded disk on S for all r ⩽ rx(S). The systole σ of a
surface is the length of its shortest non-contractible curve, which we also denote
by σ. The systole is related to the injectivity radius: σ = 2 · inf {rx(S) | x ∈ S}.

For any ε > 0, the ε-thin part of S is St
ε = {x ∈ S | rx(S) ⩽ ε/2}, and its ε-thick

part is ST
ε = S \ St

ε. Observe that if ε < σ, then there is no ε-thin part.

σ ⩽ ε

Figure 2: Thick and thin (red) parts of a hyperbolic surface. Disks of radius ε
are shown in blue.
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3 Proof of proposition 1
Let P be an ε-packing of S. The open balls of radius ε/2 centered at the points
of P on the ε-thick part ST

ε are isometric to disks in H2 and are pairwise disjoint.
The area of such a disk centered at a point p is A

(
B

(
p, ε

2
))

= 4π sinh2 (
ε
4
)

[1,
Theorem 7.2.2]. Since sinh(x) ⩾ x for all x ⩾ 0, we have A

(
B

(
p, ε

2
))

⩾ πε2/4.

Let NT be the number of points of P on the ε-thick part ST
ε . By the Gauss-

Bonnet theorem, the area of the surface S is A(S) = 4π(g − 1). Summing
the above inequality over all the points in P ∩ ST

ε , we obtain NT πε2/4 ⩽∑
p∈P ∩ST

ε
A

(
B

(
p, ε

2
))

⩽ 4π(g − 1), thus

NT ⩽
16(g − 1)

ε2 . (1)

The open balls of radius ε/2 in the ε-thin part St
ε, if it exists, that is if σ ⩽ ε,

are also pairwise disjoint, but they are not isometric to disks in H2. However,
by definition, the open balls of radius σ/2 are isometric to disks in H2. We can
apply the reasoning that led to inequality (1) for σ instead of ε, and obtain a
bound on the number of points of P on the thin part St

ε: N t ⩽ 16(g − 1)/σ2.
The bound on the total number of points of P follows.

4 Construction of the ε-net
The input of the algorithm consists of the Delaunay triangulation of S with a
single vertex b, together with the Dirichlet domain D

b̃
of a lift b̃ and the group Γ

generated by side-pairings. As mentioned in Section 2.1, this does not induce
any loss of generality.

Our algorithm is inspired by Shewchuk’s Delaunay refinement [17]. The general
idea is to break each Delaunay triangle whose circumcircle has a radius greater
than ε by inserting its circumscribing center in the triangulation.

We reuse the data structure proposed by Despré et al. for computing the
Delaunay triangulation of a surface by edge flips [11]. A triangulation of S is
represented by

• its vertices: a vertex p has constant-time access to its lift p̃b in D
b̃

and one
of its incident triangles;

• and its triangles: a triangle ∆ has constant-time access to its three
vertices p∆

0 , p∆
1 , p∆

2 , its three adjacent triangles, and three isometries
γ∆

0 = 1Γ, γ∆
1 , γ∆

2 in Γ defined as follows.

A triangle ∆ = (p∆
0 ; p∆

1 ; p∆
2 ) does not always have a lift entirely included in

D
b̃
. However, it always has at least one lift with at least one vertex in D

b̃
(see

Figure 3). Let us choose such a lift and denote it as ∆̃0; up to a re-indexing of its
vertices, p̃∆

0 ∈ D
b̃
. Then γ∆

1 and γ∆
2 are the isometries such that the other two

vertices of ∆̃0 are γ∆
1 p̃∆

1 and γ∆
2 p̃∆

2 . Note that the other lifts of ∆ having at least
one vertex in D

b̃
can be retrieved by applying the inverses of these isometries to
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∆̃0. The union, on all triangles of the triangulation of S, of their lifts with at
least one vertex in D

b̃
covers the fundamental domain D

b̃
.

D̃b

∆̃0

p̃∆0

p̃∆2

p̃∆1

γ∆
1

γ∆
2

γ∆
0 = 1Γ

Figure 3: Example of a triangle ∆ having three lifts with one vertex in D
b̃

(the
hyperbolic triangles are schematically represented with straight edges).

We denote as DT (·) the Delaunay triangulation of a set of points on S.

Let us fix ε > 0. In a first step, the set of points is initialized as P1 = {b}.

At each step i ⩾ 2, the algorithm inserts the circumscribing center c of a triangle
∆ε whose radius is greater than ε. The set of points is updated as Pi = Pi−1 ∪{c}
as well as the Delaunay triangulation DT (Pi). To do so, several operations are
needed.

We first compute the radius of ∆̃0 for every triangle ∆ of DT (Pi−1), until a
triangle ∆ε whose radius is at least ε is found.2 The circumcenter c̃ of the lift
∆̃ε

0 is a lift of c, but it does not necessarily lie in D
b̃
. This can be checked by

testing whether b̃ and c̃ lie on the same side of the supporting line of each side
of D

b̃
.

To actually insert c into DT (Pi−1), we need to find the lift c̃b of c that lies in D
b̃
.

If c̃ lies in D
b̃
, then c̃b = c̃. Otherwise, the algorithm walks in the tiling {γD

b̃
}γ∈Γ

of H2 along the geodesic segment p̃∆ε

0 c̃. The first copy of D
b̃

traversed by p̃∆ε

0 c̃

is found by looking for the side sj1 , j1 ∈ {0, . . . , k − 1} of D
b̃

intersecting it.3

The walk along p̃∆ε

0 c̃ continues in γj1D
b̃
, and so on, until the copy γjn . . . γj1D

b̃

containing c̃ is found. Then c̃b = γ−1
j1

. . . γ−1
jn

c̃. Note that the walk still works
when p̃∆ε

0 c̃ goes through a vertex of a copy of D
b̃
.

2Of course a priority queue could be used to improve the complexity of this search. We
accept a linear complexity for simplicity, as this is not the dominant operation in the algorithm.

3To check whether two geodesic segments x̃1x̃2 and ỹ1ỹ2 intersect, we check whether x̃1
and x̃2 lie on opposite sides of the supporting line of ỹ1ỹ2, and we run the same test, swapping
the roles of x and y.
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The Delaunay triangulation DT (Pi) of Pi = Pi−1 ∪ {c} can then be computed.
First, the triangle ∆c of DT (Pi−1) containing c is found by naively checking if
c̃b lies in one of the (at most three) lifts of each triangle ∆ in DT (Pi−1) having
a vertex in D

b̃
. This can be done by testing, for each edge, whether c̃b and the

third vertex of the triangle lie on the same side of its supporting line. Then ∆c

is split into three by creating an edge between c and its three vertices. In the
data structure, the three isometries stored in each new triangle are 1Γ for c, and
the corresponding isometries in ∆c for the other two vertices. Then DT (Pi) is
computed with a sequence of flips and the data structure is updated [11].

The termination of the algorithm is quite obvious. At step i = 1, the ε-packing
P1 consists of one point. At each step i ⩾ 2, the point added to Pi is the
circumcenter of a Delaunay triangle whose radius is at least ε. Because no vertex
lies in the interior of a Delaunay disk, the center added is at distance at least
ε from any point of Pi. By induction, Pi is an ε-packing containing i points.
By Proposition 1, the algorithm must terminate after a finite number N − 1 of
insertions. It returns an ε-packing PN of cardinality N .

It remains to show that PN is an ε-covering of S. Let x be a point on S. It lies
in a triangle ∆ of DT (PN ). Let ∆̃ be a lift of ∆ and x̃ the lift of x lying in ∆̃.
The circumdisk of ∆̃ has a radius r ⩽ ε. There is a vertex of ∆̃ whose distance
to x̃ is at most r (see Lemma 2 in appendix). That vertex is a lift of a point of
PN by definition of ∆. It follows that δS(x, PN ) ⩽ ε, therefore PN is an ε-net.
This establishes the first claim of Proposition 2.

5 Algorithm analysis
This section is devoted to proving the complexity announced in Proposition 2.

The following operations take O(1) time in the real RAM model and we consider
them as elementary operations:

• Computing ∆̃0 from a triangle ∆ of the data structure (see Section 4 for
notation);

• Computing the radius or the center of the circumcircle of a triangle in H2;

• Deciding if a point lies on the right or the left side of an oriented geodesic
segment in H2;

• Flipping an edge of a triangulation [11, Section 4.1].

At the beginning of a step i ⩾ 2, Pi−1 contains i−1 points, the Euler characteristic
shows that DT (Pi−1) has 2i + 4g − 2 triangles, which gives the cost of finding
∆ε.

Recall that the number k of sides of D
b̃

is at most 12g − 6 (see Section 2).
Determining whether c̃ lies in (a given copy of) D

b̃
thus requires at most 12g − 6

elementary operations. The algorithm tests the copies of D
b̃

that intersect the
geodesic segment p̃∆ε

0 c̃. Since ∆̃ε
0 is a triangle of DT

(
P̃i−1

)
, its circumcircle

does not contain any other lift of p∆ε

0 , so p̃∆ε

0 is the closest lift of p∆ε

0 to c̃. The
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geodesic segment p̃∆ε

0 c̃ is thus a lift of a distance path4 on S, what is called a
distance path in H2. By [9, Proposition 14], every side of D

b̃
is either a distance

path, or the concatenation of two distance paths. As two distance paths that do
not have a subarc in common, which is the case here, can intersect at most once [9,
Lemma 8], p̃∆ε

0 c̃ traverses at most 2k sides of copies of D
b̃
. If an intersection

occurs at a vertex of degree d of a copy of D
b̃
, then this counts for d intersections.

Searching the copy of D
b̃

containing c̃ hence requires k2 ⩽ (12g − 6)2 elementary
operations. Computing c̃b costs 1 operation.

Finding ∆c in DT (Pi−1) when c̃b is known requires at most 9(2i + 4g − 2)
elementary operations since it amounts to checking the three edges of at most
three lifts of each triangle. The update of the data structure when splitting the
triangle containing c into three is done in 8 elementary operations (deleting the
triangle that contains c, adding c to the list of vertices, creating 3 triangles and
3 isometries).

Adding the above costs for step i, locating c in DT (Pi−1) and splitting the
triangle containing it costs at most 10(2i + 4g − 2) + (12g − 6)2 + 9 elementary
operations.

The flips are counted globally for all steps, which concludes the proof of Proposi-
tion 2.

Lemma 1. The total number of flipped edges during the execution of the algo-
rithm is at most C ′

h Diam(S)6g−4N2, where C ′
h is a constant depending on the

metric h of S, and Diam(S) is the diameter of S.

The proof of this lemma mimicks the proofs in [11]. The situation is quite
different here, as the points are inserted incrementally and the flips are done at
each insertion, whereas all points are know in advance in [11], which requires to
rewrite a complete proof.

Proof. Denote as T1 = DT (P1), T2, . . . , TK the sequence of triangulations ap-
pearing during our algorithm. For j ⩾ 1, Tj+1 is obtained from Tj either by
flipping an edge, or by splitting a triangle into three from a new vertex. Every
triangulation is geometric: it is equivalent to a triangulation whose edges are
geodesic segments that do not intersect in their interior. Flipping an edge
maintains the property [11]; splitting a triangle clearly maintains it, too.

We associate to any triangulation T of S a polyhedral surface Σ in R3 as in [11,
Section 2.3]: the vertices of Σ are obtained from the vertices of the (infinite) lift
T̃ of T by the stereographic projection onto the unit sphere S2. The (infinite)
surface Σ is convex if and only if T is a Delaunay triangulation of S. Let us show
that Σj+1 contains Σj for each j ⩾ 1, i.e., Σj+1 lies between Σj and S2. The
case when Tj+1 is obtained by flipping a non-Delaunay edge e of Tj is studied
in [11, Section 2.3]: Σj is concave at each edge projected from a lift of e, and
after the flip Σj+1 is convex at all the new edges. Let us now examine the case
when Tj+1 is obtained by splitting a triangle of Tj into three from a new vertex.
In this case, Tj is a Delaunay triangulation, so Σj is convex, but the edges left

4A distance path on S is a shortest path between two points. It is necessarily a geodesic
segment, but not all geodesic segments are distance paths since they only locally minimize
distances.
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in Σj+1 from each triangle of Tj that is split from the new vertex on S2 are
generally not convex. The surface Σj is thus contained in Σj+1 as well. As a
result, every Σj′ with j′ > j contains Σj . If an edge is flipped at a step i of the
algorithm, the corresponding line segment becomes interior to the polyhedral
surface and all the following, and it can never reappear.

We can now observe that no flip will ever create an edge longer than 8 Diam(S).
Consider the fundamental domain Ω

b̃
consisting of one lift of each triangle of T1

incident to b̃. For all x̃ ∈ Ω
b̃
, δH2(x̃, b̃) < 2 Diam(S), where δH2 is the distance in

H2. This is because x̃ belongs to the circumdisk of the triangle t̃ ∈ T̃1 it lies in,
and b̃ lies on its boundary. That circumdisk must have a radius r < Diam(S),
otherwise it would contain at least one lift of every point of S. In particular, it
would contain a lift of a vertex of t̃ in its interior, which is impossible since t̃
is a Delaunay triangle. Let e be an edge created by a flip and let ṽ be the lift
of its midpoint v lying in Ω

b̃
. The fundamental domain Ω

b̃
is strictly included

in the disk of radius 4 Diam(S) and centered at ṽ: indeed, if x̃ ∈ Ω
b̃

then
δH2(x̃, ṽ) ⩽ δH2(x̃, b̃) + δH2 (̃b, ṽ) < 4 Diam(S). The proof of [11, Lemma 10],
replacing 2∆(T ) by 8 Diam(S) and Ω with Ω

b̃
, shows that e cannot be longer

than 8 Diam(S).

The proof of [11, Theorem 19], replacing 2∆(T ) with 8 Diam(S), proves that a
Delaunay flip algorithm performed on a triangulation of S with n vertices flips at
most C ′

h Diam(S)6g−4n2 edges, where C ′
h is a constant5 depending on the metric

h of S. Since the edges that have been flipped cannot reappear, the number fi of

flipped edges at step i of our algorithm satisfies fi ⩽ C ′
h Diam(S)6g−4i2 −

i−1∑
j=2

fj .

It follows that
i∑

j=2
fj ⩽ C ′

h Diam(S)6g−4i2 for each i = 2, . . . , N .

Note that the bound comes from the best upper bound O(Diam(S)6g−4) known
so far for the flip algorithm [11]. The actual complexity of the flip algorithm
may be much better [7].

Acknowledgements. The authors wish to thank Hugo Parlier for interesting
discussions.

5Our constant C′
h equals 8Ch, where Ch is the constant in [11].
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A Lemma for the proof of correctness (Section 4)
Lemma 2. Let ∆̃ be a triangle of H2 and x̃ ∈ ∆̃. Denote r as the radius of
the circumcircle of ∆̃. Then there exists a vertex of ∆̃ whose distance to x̃ is at
most r.

This lemma holds in both the Euclidean and the hyperbolic planes, as the
following proof uses arguments that function in both settings.

Proof. Let D
x̃

be the closed disk of radius r centered in x̃, D∆̃ be the circumdisk
of ∆̃, and c̃ be its circumcenter. If x̃ = c̃, the two disks are equal and the result
is trivial.

Suppose that x̃ ̸= c̃. Denote C∆̃ (resp. C
x̃
) as the circle bounding the disk D∆̃

(resp. D
x̃
). The distance between x̃ and c̃ is at most r because x̃ lies in ∆̃, so

x̃ ∈ D∆̃ and c̃ ∈ D
x̃
. Therefore, the two disks intersect and their intersection

is not a singleton. Moreover, D∆̃ ̸= D
x̃
, so C∆̃ and C

x̃
intersect exactly twice

(Figure 4). The three vertices of ∆̃ lie on the circle C∆̃. But if their distance
to x̃ is greater than r, i.e. if they belong to C∆̃ \ D

x̃
, then the geodesic passing

through the two intersection points of the circles, that is, the perpendicular
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bisector between x̃ and c̃, separates x̃ from ∆̃, so x̃ cannot be in ∆̃ (Figure 4,
left). Thus, at least one vertex of ∆̃ must lie on C∆̃ ∩ D

x̃
, that is, at distance at

most r from x.

c̃
r

∆̃

r

C
∆̃

D
x̃

C
∆̃
∩D

x̃

x̃

r

∆̃

r

C
∆̃

D
x̃

C
∆̃
∩D

x̃

c̃

x̃

Figure 4: Illustration of the proof of Lemma 2 in Euclidean geometry (for
simplicity). The points c̃ and x̃ belong in each other’s disk of radius r. Right: If
no vertex of ∆̃ lie on C∆̃ ∩ D

x̃
(bold), then x̃ is separated from ∆̃ by the dashed

geodesic.
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