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Computing an ε-net of a closed hyperbolic surface

An ε-net of a metric space X is a set of points P of X such that the balls of radius ε centered at points of P cover X, and two distinct points of P are at least ε apart. We present an algorithm to compute an ε-net of a closed hyperbolic surface and analyze its complexity.

Introduction

This paper focuses on hyperbolic surfaces, i.e., surfaces with a metric of constant negative curvature. These surfaces have been extensively examined from a mathematical perspective, due to their generic nature: any Riemannian surface of genus at least two can be conformally mapped to a unique hyperbolic surface [START_REF] Farkas | Riemann Surfaces[END_REF]Section IV.8].

Hyperbolic geometry also plays a key role in computer science. One of the most famous examples is found in the analysis of rotation distance in binary trees [START_REF] Daniel | Rotation distance, triangulations, and hyperbolic geometry[END_REF]. Hyperbolic geometry naturally emerges as a valuable tool for graph representation [START_REF] Eppstein | Squarepants in a tree: Sum of subtree clustering and hyperbolic pants decomposition[END_REF][START_REF] Eppstein | Limitations on realistic hyperbolic graph drawing[END_REF]. The hyperbolic plane also serves as the preferred model for illustrating the universal cover of surfaces with genus at least 2, which has proven to be crucial in the proof of purely topological results [START_REF] Despré | Computing the geometric intersection number of curves[END_REF][START_REF] Éric Colin De Verdière | Untangling graphs on surfaces[END_REF].

Delaunay triangulations of hyperbolic spaces and surfaces have been studied in the computational geometry community [START_REF] Bogdanov | Hyperbolic Delaunay complexes and Voronoi diagrams made practical[END_REF][START_REF] Iordanov | Implementing Delaunay triangulations of the Bolza surface[END_REF][START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF][START_REF] Ebbens | Minimal Delaunay triangulations of hyperbolic surfaces[END_REF]. In this line, we adapt Shewchuk's Delaunay refinement algorithm [START_REF] Richard | Delaunay refinement algorithms for triangular mesh generation[END_REF] to construct ε-nets of hyperbolic surfaces, opening the door to the design of efficient approximation algorithms. To the best of our knowledge, this is the first result of this kind.

Let us recall definitions [START_REF] Kenneth | Building triangulations using ϵ-nets[END_REF]. Let (X, d) be a metric space and ε > 0. A set P ⊂ X is an ε-covering if ∀x ∈ X, d(x, P ) ⩽ ε, i.e., if the closed balls of radius ε centered at each p ∈ P cover X. It is an ε-packing if ∀p ̸ = q ∈ P, d(p, q) ⩾ ε, i.e., if the open balls of radius ε/2 centered at each p ∈ P are pairwise disjoint. An ε-net is both an ε-covering and an ε-packing. In this paper, we prove: Proposition 1. Any ε-net of a closed hyperbolic surface S of genus g and systole

σ contains N ⩽ 16(g -1) 1/ε 2 + 1/σ 2 points. If ε < σ, then N ⩽ 16(g -1)/ε 2 .
The case when ε < σ corresponds to the situation when the surface has no ε-thin part (see Section 2.2). For a fixed surface, the complexity is then O(1/ε 4 ).

Proposition 2. The Delaunay refinement algorithm computes an ε-net using at most 10 + C

′ h Diam(S) 6g-4 N 2 + (N -1)(144g
The first result can be regarded as folklore. We prove it in Section 3 for completeness. The second proposition rises interesting obstacles to deal with. In particular, Shewchuk's refinement adds circumcenters of some triangles, which is not straightforward in our context, as locating a new point requires to construct a portion of the universal cover of the surface. We manage to bound the size of this portion.

Background on hyperbolic surfaces and notation

We refer the reader to textbooks for more details, e.g. [START_REF] Buser | Geometry and Spectra of Compact Riemann Surfaces[END_REF][START_REF] Beardon | The Geometry of Discrete Groups[END_REF].

A closed hyperbolic surface can be seen as the quotient H 2 /Γ of the hyperbolic plane H 2 under the action of a group Γ of orientation-preserving isometries. Throughout the paper, objects in H 2 are denoted with a tilde •, while objects on S are denoted without. In particular, for an object o on S, o denotes any of its lifts in H 2 . To simplify the language, we often use the term copy to refer to an image of an object in H 2 by an element of Γ.

We work with the Poincaré disk model in which the hyperbolic plane H 2 is represented as the unit disk of the complex plane C. The unit circle consists of points at infinity. The geodesics are either diameters of the unit disk, or circular arcs that meet the boundary circle orthogonally. The hyperbolic circles are Euclidean circles (but their hyperbolic and Euclidean centers differ). Orientationpreserving isometries are represented as matrices in C 2×2 .

Delaunay triangulation and Dirichlet domain

A triangulation T of S is a partition of S into triangles; note that edges may be loops. A triangulation of S is a Delaunay triangulation if for each triangle t of T and any of its lifts t in H 2 , the open disk circumscribing t contains no vertex of the (infinite) lift of T in H 2 [START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF]. The Voronoi diagram is the dual of the Delaunay triangulation. The Dirichlet domain D x of a point x ∈ H 2 is the (closed) cell of x in the Voronoi diagram of its (infinite) orbit Γ x. Unlike the Euclidean case, Γ is non-commutative, and the combinatorics of a Dirichlet domain depends on the point x (Figure 1). The number k of sides of D x satisfies 4g ⩽ k ⩽ 12g -6 (see, e.g., [START_REF] Despré | Computing a Dirichlet domain for a hyperbolic surface[END_REF]).

In this paper, we assume that the input surface S is given by a Delaunay triangulation having a single vertex b, i.e., all Delaunay edges are loops based in b. The point b is arbitrary. This introduces no restriction, as such a representation can be computed for any closed hyperbolic surface, starting from a standard representation by a fundamental domain and side pairings [START_REF] Despré | Computing a Dirichlet domain for a hyperbolic surface[END_REF]. as s i , i = 0, . . . , k -1 and the corresponding side pairings as γ i , i = 0, . . . , k -1 (here, side pairings are pairwise inverses).

Thin and thick parts

The injectivity radius r x (S) of S at a point x is the supremum of all r > 0 such that the open ball of radius r centered at x, B(x, r) = {y ∈ S | δ S (x, y) < r}, where δ S is the distance on S, is isometric to a disk in H 2 . In particular, B(x, r) is a topologically embedded disk on S for all r ⩽ r x (S). The systole σ of a surface is the length of its shortest non-contractible curve, which we also denote by σ. The systole is related to the injectivity radius:

σ = 2 • inf {r x (S) | x ∈ S}.
For any ε > 0, the ε-thin 

part of S is S t ε = {x ∈ S | r x (S) ⩽ ε/2}, and its ε-thick part is S T ε = S \ S t ε . Observe that if ε < σ, then there is no ε-thin part. σ ⩽ ε

Proof of proposition 1

Let P be an ε-packing of S. The open balls of radius ε/2 centered at the points of P on the ε-thick part S T ε are isometric to disks in H 2 and are pairwise disjoint. The area of such a disk centered at a point

p is A B p, ε 2 = 4π sinh 2 ε 4 [1, Theorem 7.2.2]. Since sinh(x) ⩾ x for all x ⩾ 0, we have A B p, ε 2 ⩾ πε 2 /4.
Let N T be the number of points of P on the ε-thick part S T ε . By the Gauss-Bonnet theorem, the area of the surface S is A(S) = 4π(g -1). Summing the above inequality over all the points in P ∩ S T ε , we obtain

N T πε 2 /4 ⩽ p∈P ∩S T ε A B p, ε 2 ⩽ 4π(g -1)
, thus

N T ⩽ 16(g -1) ε 2 . ( 1 
)
The open balls of radius ε/2 in the ε-thin part S t ε , if it exists, that is if σ ⩽ ε, are also pairwise disjoint, but they are not isometric to disks in H 2 . However, by definition, the open balls of radius σ/2 are isometric to disks in H 2 . We can apply the reasoning that led to inequality (1) for σ instead of ε, and obtain a bound on the number of points of P on the thin part S t ε : N t ⩽ 16(g -1)/σ 2 . The bound on the total number of points of P follows.

Our algorithm is inspired by Shewchuk's Delaunay refinement [START_REF] Richard | Delaunay refinement algorithms for triangular mesh generation[END_REF]. The general idea is to break each Delaunay triangle whose circumcircle has a radius greater than ε by inserting its circumscribing center in the triangulation.

We reuse the data structure proposed by Despré et al. for computing the Delaunay triangulation of a surface by edge flips [START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF]. A triangulation of S is represented by

• its vertices: a vertex p has constant-time access to its lift p b in D b and one of its incident triangles;

• and its triangles: a triangle ∆ has constant-time access to its three vertices p ∆ 0 , p ∆ 1 , p ∆ 2 , its three adjacent triangles, and three isometries

γ ∆ 0 = 1 Γ , γ ∆ 1 , γ ∆ 2 in Γ defined as follows. A triangle ∆ = (p ∆ 0 ; p ∆ 1 ; p ∆ 2 )
does not always have a lift entirely included in D b . However, it always has at least one lift with at least one vertex in D b (see Figure 3). Let us choose such a lift and denote it as ∆ 0 ; up to a re-indexing of its vertices, p ∆ 0 ∈ D b . Then γ ∆ 1 and γ ∆ 2 are the isometries such that the other two vertices of ∆ 0 are γ ∆ 1 p ∆ 1 and γ ∆ 2 p ∆ 2 . Note that the other lifts of ∆ having at least one vertex in D b can be retrieved by applying the inverses of these isometries to ∆ 0 . The union, on all triangles of the triangulation of S, of their lifts with at least one vertex in D b covers the fundamental domain D b . We denote as DT (•) the Delaunay triangulation of a set of points on S.

D b ∆ 0 p ∆ 0 p ∆ 2 p ∆ 1 γ ∆ 1 γ ∆ 2 γ ∆ 0 = 1 Γ
Let us fix ε > 0. In a first step, the set of points is initialized as P 1 = {b}.

At each step i ⩾ 2, the algorithm inserts the circumscribing center c of a triangle ∆ ε whose radius is greater than ε. The set of points is updated as P i = P i-1 ∪{c} as well as the Delaunay triangulation DT (P i ). To do so, several operations are needed.

We first compute the radius of ∆ 0 for every triangle ∆ of DT (P i-1 ), until a triangle ∆ ε whose radius is at least ε is found. 2 The circumcenter c of the lift ∆ ε 0 is a lift of c, but it does not necessarily lie in D b . This can be checked by testing whether b and c lie on the same side of the supporting line of each side of D b . The Delaunay triangulation DT (P i ) of P i = P i-1 ∪ {c} can then be computed. First, the triangle ∆ c of DT (P i-1 ) containing c is found by naively checking if c b lies in one of the (at most three) lifts of each triangle ∆ in DT (P i-1 ) having a vertex in D b . This can be done by testing, for each edge, whether c b and the third vertex of the triangle lie on the same side of its supporting line. Then ∆ c is split into three by creating an edge between c and its three vertices. In the data structure, the three isometries stored in each new triangle are 1 Γ for c, and the corresponding isometries in ∆ c for the other two vertices. Then DT (P i ) is computed with a sequence of flips and the data structure is updated [START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF].

To actually insert c into DT (P

The termination of the algorithm is quite obvious. At step i = 1, the ε-packing P 1 consists of one point. At each step i ⩾ 2, the point added to P i is the circumcenter of a Delaunay triangle whose radius is at least ε. Because no vertex lies in the interior of a Delaunay disk, the center added is at distance at least ε from any point of P i . By induction, P i is an ε-packing containing i points. By Proposition 1, the algorithm must terminate after a finite number N -1 of insertions. It returns an ε-packing P N of cardinality N .

It remains to show that P N is an ε-covering of S. Let x be a point on S. It lies in a triangle ∆ of DT (P N ). Let ∆ be a lift of ∆ and x the lift of x lying in ∆.

The circumdisk of ∆ has a radius r ⩽ ε. There is a vertex of ∆ whose distance to x is at most r (see Lemma 2 in appendix). That vertex is a lift of a point of P N by definition of ∆. It follows that δ S (x, P N ) ⩽ ε, therefore P N is an ε-net. This establishes the first claim of Proposition 2.

Algorithm analysis

This section is devoted to proving the complexity announced in Proposition 2.

The following operations take O(1) time in the real RAM model and we consider them as elementary operations:

• Computing ∆ 0 from a triangle ∆ of the data structure (see Section 4 for notation);

• Computing the radius or the center of the circumcircle of a triangle in H 2 ;

• Deciding if a point lies on the right or the left side of an oriented geodesic segment in H 2 ;

• Flipping an edge of a triangulation [START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF]Section 4.1].

At the beginning of a step i ⩾ 2, P i-1 contains i-1 points, the Euler characteristic shows that DT (P i-1 ) has 2i + 4g -2 triangles, which gives the cost of finding ∆ ε .

Recall that the number k of sides of D b is at most 12g -6 (see Section 2). Determining whether c lies in (a given copy of) D b thus requires at most 12g -6 elementary operations. The algorithm tests the copies of D b that intersect the geodesic segment p ∆ ε 0 c. Since ∆ ε 0 is a triangle of DT P i-1 , its circumcircle does not contain any other lift of p ∆ ε 0 , so p ∆ ε 0 is the closest lift of p ∆ ε 0 to c. The geodesic segment p ∆ ε 0 c is thus a lift of a distance path 4 on S, what is called a distance path in H 2 . By [9, Proposition 14], every side of D b is either a distance path, or the concatenation of two distance paths. As two distance paths that do not have a subarc in common, which is the case here, can intersect at most once [9, Finding ∆ c in DT (P i-1 ) when c b is known requires at most 9(2i + 4g -2) elementary operations since it amounts to checking the three edges of at most three lifts of each triangle. The update of the data structure when splitting the triangle containing c into three is done in 8 elementary operations (deleting the triangle that contains c, adding c to the list of vertices, creating 3 triangles and 3 isometries).

Adding the above costs for step i, locating c in DT (P i-1 ) and splitting the triangle containing it costs at most 10(2i + 4g -2) + (12g -6) 2 + 9 elementary operations.

The flips are counted globally for all steps, which concludes the proof of Proposition 2.

Lemma 1. The total number of flipped edges during the execution of the algorithm is at most C ′

h Diam(S) 6g-4 N 2 , where C ′ h is a constant depending on the metric h of S, and Diam(S) is the diameter of S.

The proof of this lemma mimicks the proofs in [START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF]. The situation is quite different here, as the points are inserted incrementally and the flips are done at each insertion, whereas all points are know in advance in [START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF], which requires to rewrite a complete proof.

Proof. Denote as T 1 = DT (P 1 ), T 2 , . . . , T K the sequence of triangulations appearing during our algorithm. For j ⩾ 1, T j+1 is obtained from T j either by flipping an edge, or by splitting a triangle into three from a new vertex. Every triangulation is geometric: it is equivalent to a triangulation whose edges are geodesic segments that do not intersect in their interior. Flipping an edge maintains the property [START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF]; splitting a triangle clearly maintains it, too.

We associate to any triangulation T of S a polyhedral surface Σ in R 3 as in [START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF]Section 2.3]: the vertices of Σ are obtained from the vertices of the (infinite) lift T of T by the stereographic projection onto the unit sphere S 2 . The (infinite) surface Σ is convex if and only if T is a Delaunay triangulation of S. Let us show that Σ j+1 contains Σ j for each j ⩾ 1, i.e., Σ j+1 lies between Σ j and S 2 . The case when T j+1 is obtained by flipping a non-Delaunay edge e of T j is studied in [11, Section 2.3]: Σ j is concave at each edge projected from a lift of e, and after the flip Σ j+1 is convex at all the new edges. Let us now examine the case when T j+1 is obtained by splitting a triangle of T j into three from a new vertex. In this case, T j is a Delaunay triangulation, so Σ j is convex, but the edges left in Σ j+1 from each triangle of T j that is split from the new vertex on S 2 are generally not convex. The surface Σ j is thus contained in Σ j+1 as well. As a result, every Σ j ′ with j ′ > j contains Σ j . If an edge is flipped at a step i of the algorithm, the corresponding line segment becomes interior to the polyhedral surface and all the following, and it can never reappear.

We can now observe that no flip will ever create an edge longer than 8 Diam(S). Consider the fundamental domain Ω b consisting of one lift of each triangle of T 1 incident to b. For all x ∈ Ω b , δ H 2 ( x, b) < 2 Diam(S), where δ H 2 is the distance in H 2 . This is because x belongs to the circumdisk of the triangle t ∈ T 1 it lies in, and b lies on its boundary. That circumdisk must have a radius r < Diam(S), otherwise it would contain at least one lift of every point of S. In particular, it would contain a lift of a vertex of t in its interior, which is impossible since t is a Delaunay triangle. Let e be an edge created by a flip and let v be the lift of its midpoint v lying in Ω b . The fundamental domain Ω b is strictly included in the disk of radius 4 Diam(S) and centered at v: indeed, if x ∈ Ω b then δ H 2 ( x, v) ⩽ δ H 2 ( x, b) + δ H 2 ( b, v) < 4 Diam(S). The proof of [START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF]Lemma 10], replacing 2∆(T ) by 8 Diam(S) and Ω with Ω b , shows that e cannot be longer than 8 Diam(S).

The proof of [START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF]Theorem 19], replacing 2∆(T ) with 8 Diam(S), proves that a Delaunay flip algorithm performed on a triangulation of S with n vertices flips at most C ′ h Diam(S) 6g-4 n 2 edges, where C ′ h is a constant5 depending on the metric h of S. Since the edges that have been flipped cannot reappear, the number f i of flipped edges at step i of our algorithm satisfies f i ⩽ C ′ h Diam(S) 6g-4 i 2 -i-1 j=2 f j .

It follows that i j=2 f j ⩽ C ′ h Diam(S) 6g-4 i 2 for each i = 2, . . . , N .

Note that the bound comes from the best upper bound O(Diam(S) 6g-4 ) known so far for the flip algorithm [START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF]. The actual complexity of the flip algorithm may be much better [START_REF] Despré | Experimental analysis of Delaunay flip algorithms on genus two hyperbolic surfaces[END_REF].

bisector between x and c, separates x from ∆, so x cannot be in ∆ (Figure 4, left). Thus, at least one vertex of ∆ must lie on C ∆ ∩ D x , that is, at distance at most r from x. 
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 11 Figure 1: Dirichlet domains for the Bolza surface (g = 2). The domain on the left has 4g = 8 sides and the one on the right has 12g -6 = 18 sides. Figure from [3].
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 2 Figure 2: Thick and thin (red) parts of a hyperbolic surface. Disks of radius ε are shown in blue.

Figure 3 :

 3 Figure 3: Example of a triangle ∆ having three lifts with one vertex in D b (the hyperbolic triangles are schematically represented with straight edges).

  i-1 ), we need to find the lift c b of c that lies in D b . If c lies in D b , then c b = c. Otherwise, the algorithm walks in the tiling {γD b } γ∈Γ of H 2 along the geodesic segment p ∆ ε 0 c. The first copy of D b traversed by p ∆ ε 0 c is found by looking for the side s j1 , j 1 ∈ {0, . . . , k -1} of D b intersecting it. 3 The walk along p ∆ ε 0 c continues in γ j1 D b , and so on, until the copy γ jn . . . γ j1 D b containing c is found. Then c b = γ -1 j1 . . . γ -1 jn c. Note that the walk still works when p ∆ ε 0 c goes through a vertex of a copy of D b .

Lemma 8 ]

 8 , p ∆ ε 0 c traverses at most 2k sides of copies of D b . If an intersection occurs at a vertex of degree d of a copy of D b , then this counts for d intersections. Searching the copy of D b containing c hence requires k 2 ⩽ (12g -6) 2 elementary operations. Computing c b costs 1 operation.

Figure 4 :

 4 Figure 4: Illustration of the proof of Lemma 2 in Euclidean geometry (for simplicity). The points c and x belong in each other's disk of radius r. Right: If no vertex of ∆ lie on C ∆ ∩ D x (bold), x is separated from ∆ by the dashed geodesic.

The common basepoint is denoted as b ′′ in[START_REF] Despré | Computing a Dirichlet domain for a hyperbolic surface[END_REF].

Construction of the ε-netThe input of the algorithm consists of the Delaunay triangulation of S with a single vertex b, together with the Dirichlet domain D b of a lift b and the group Γ generated by side-pairings. As mentioned in Section 2.1, this does not induce any loss of generality.

Of course a priority queue could be used to improve the complexity of this search. We accept a linear complexity for simplicity, as this is not the dominant operation in the algorithm.

To check whether two geodesic segments x 1 x 2 and y 1 y 2 intersect, we check whether x 1 and x 2 lie on opposite sides of the supporting line of y 1 y 2 , and we run the same test, swapping the roles of x and y.

A distance path on S is a shortest path between two points. It is necessarily a geodesic segment, but not all geodesic segments are distance paths since they only locally minimize distances.

Our constant C ′ h equals 8C h , where C h is the constant in[START_REF] Despré | Flipping geometric triangulations on hyperbolic surfaces[END_REF].
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A Lemma for the proof of correctness (Section 4)

Lemma 2. Let ∆ be a triangle of H 2 and x ∈ ∆. Denote r as the radius of the circumcircle of ∆. Then there exists a vertex of ∆ whose distance to x is at most r. This lemma holds in both the Euclidean and the hyperbolic planes, as the following proof uses arguments that function in both settings.

Proof. Let D x be the closed disk of radius r centered in x, D ∆ be the circumdisk of ∆, and c be its circumcenter. If x = c, the two disks are equal and the result is trivial.

Suppose that x ̸ = c. Denote C ∆ (resp. C x ) as the circle bounding the disk D ∆ (resp. D x ). The distance between x and c is at most r because x lies in ∆, so x ∈ D ∆ and c ∈ D x . Therefore, the two disks intersect and their intersection is not a singleton. Moreover, D ∆ ̸ = D x , so C ∆ and C x intersect exactly twice (Figure 4). The three vertices of ∆ lie on the circle C ∆ . But if their distance to x is greater than r, i.e. if they belong to C ∆ \ D x , then the geodesic passing through the two intersection points of the circles, that is, the perpendicular