An End-to-End Machine Learning Framework for District Heating Networks Simulation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

An End-to-End Machine Learning Framework for District Heating Networks Simulation

Résumé

Faced with environmental challenges, district heating networks have been identified as a viable solution to decarbonize the heating sector. However, they raise various challenges regarding the optimization of their control given their size and the operational constraints of the energy systems involved. As a result, the numerical simulation of these networks is computationally heavy, which hinders near-instantaneous optimal control. In this work, we present the first brick of an optimization framework for the control of district heat networks using a surrogate model based on geometric deep learning. More precisely we trained specific architectures of Graph Neural Networks to emulate a thermo-hydraulic simulator of district heating network. This statistical inference method allows us to drastically reduce simulation time by 1 to 4 orders of magnitude.
Fichier principal
Vignette du fichier
bda_paper_gnn_vf_camera_ready.pdf (1.25 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04462676 , version 1 (16-02-2024)

Identifiants

  • HAL Id : hal-04462676 , version 1

Citer

Taha Boussaid, Vasile-Marian Scuturici, François Rousset, Marc Clausse. An End-to-End Machine Learning Framework for District Heating Networks Simulation. BDA - Conférence sur la Gestion de Données – Principes, Technologies et Applications, CNRS; LIRMM; INRIA; Université de Montpellier, Oct 2023, Montpellier, France. ⟨hal-04462676⟩
34 Consultations
56 Téléchargements

Partager

More