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ABSTRACT
Faced with environmental challenges, district heating networks

have been identified as a viable solution to decarbonize the heat-

ing sector. However, they raise various challenges regarding the

optimization of their control given their size and the operational

constraints of the energy systems involved. As a result, the nu-

merical simulation of these networks is computationally heavy,

which hinders near-instantaneous optimal control. In this work, we

present the first brick of an optimization framework for the control

of district heat networks using a surrogate model based on geomet-

ric deep learning. More precisely we trained specific architectures

of Graph Neural Networks to emulate a thermo-hydraulic simula-

tor of district heating network. This statistical inference method

allows us to drastically reduce simulation time by 1 to 4 orders of

magnitude.
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1 INTRODUCTION
In Europe, the production of heat and cold represents half of the

energy consumption and is mainly based on fossil fuels [6]. In this

context, the 4th generation of district heating networks (DHN) have

been identified as a viable option to decarbonize the heat produc-

tion sector [9, 7] as they take advantage of various heat sources

including renewable and recycled ones such as biomass, geother-

mal, solar thermal, and waste heat. However, the use of various

heat sources, some of which are intermittent, adds a new complex-

ity to controlling the system including the stochastic character of

some variables such as resources availability, weather conditions

and electricity price. Therefore, an intelligent control strategy is

required in order to optimally operate these systems, such that the

operational costs are reduced, the energy efficiency is maximised
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and the environmental impacts are limited.

A detailed review on control strategies for DHN can be found in

[16]. This study shows that all these strategies make use of several

simulations because of the iterative nature of control algorithms

that need to understand and predict the behavior of the system

and its response to various scenarios of control variables. However,

physical simulators of such systems are computationally heavy

as they often need to solve non linear equations (e.g. hydraulic

equations). Thus, accurate and yet fast numerical models of the

network’s different components and their interactions are needed.

Our proposition to overcome this limitation is the formulation of a

numerically efficient and stable surrogate model of DHN simulation.

Recently, different studies investigated the application of machine

learning (ML) algorithms as surrogate models for different energy

systems [15, 10, 11]. For example, the study in [10] consisted on

training a graph neural network (GNN) to approximate the optimal

solution of power flow optimization problem for electric grids. The

results showed that the surrogate model is 10
5
faster than clas-

sic optimization methods and exhibited much better scalability to

larger networks.

In the field of DHN control optimization, ML was applied at two

different levels. The first one focuses on predicting the thermal load

[20, 18] and the second, more recent, applying deep reinforcement

learning to train autonomous agents to optimally operate DHN [21].

However, to the best author’s knowledge, no attempt to formulate

a surrogate model of DHN simulation using ML have been made. In

this paper, we present a complete pipeline that was developed for

simulating DHN using spatio-temporal graph convolution neural

networks (STGCN).

2 PROBLEM STATEMENT
The topology of a DHN can be defined using graph theory. In the

development of DHN project, there are two major challenges. First

a design problem, where the production power is sized with respect

to the heat demand of all connected consumers, and the network

topology is optimized with regards to heat losses and investment

costs. The second, which is the subject of this work, is a control

problem. In the latter, given a DHN with a specific topology, the

objective is to simulate its dynamic response to different scenarios.

A scenario corresponds to a set of exogenous and control variables.

More precisely, we want to know the temperature and mass flow
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Figure 1: DHN topology of the study case adapted from [1].
The site includes buildings of different usage profiles.

rates at each node of the network. Throughout this study, the DHN

shown in Figure 1 is used to evaluate our approach. This choice is

based on the availability of data needed by the physical simulator.

The site includes buildings of different usage profiles where the

number under each node indicates its index.

Therefore, the topology of any DHN can be defined using graph

theory. Let G = (𝑉 , 𝐸) be a graph with a set of 𝑁 nodes𝑉 and a set

of 𝑁𝑏 edges 𝐸. Physically, the edges are the pipes of the network,

while the nodes can be either consumers, producers or 3-ways

valves (i.e. T junctions). More precisely, the network is completely

defined through two variables:

• Incidence matrix 𝑀 ∈ R𝑁×𝑁𝑏
, which has a row for each

node 𝑖 and a column for each edge 𝑗 such as𝑚𝑖 𝑗 = 1 if edge

𝑗 enters the vertex 𝑖 ,𝑚𝑖 𝑗 = −1 if the edge leaves the node
and𝑚𝑖 𝑗 = 0 if the two elements are not connected.

• Node type vector 𝑉0 ∈ R𝑁 that defines the type of each

node with regard to a predefined set of supported node types

within the physical simulator.

Once the topology is defined, to simulate the operation of the

DHN, the physical simulator then requires other physical parame-

ters to solve the thermo-hydraulic equations (Navier Stockes and

Energy balance [4]). Mainly, the thermo-physical properties of each

branch, the heat demand at each consumer node and the external

temperature. The solver then outputs the evolution of the variables

of interest through a given time horizon induced from the length

of heat load matrix. In our case, the variables are: incoming and

outgoing temperatures (𝑇𝑓 ,𝑇𝑟 ) and mass flow rates ¤𝑚 at each node.

To this purpose, and with a vision to publish it further as a data

generator for DHN simulation, we developed a physical simulator.

We used TESPy (Thermal Engineering Systems in Python) package

[19], an open-source physical solver. To simulate both steady (i.e.

constant regime) and transient (i.e. variable regime) dynamics of

DHN, a customised code layer has been built upon this physical

solver.

The inputs of the surrogate model are heterogeneous. They are

distinguished according to their static or dynamic character and

then according to whether they are local or global, in other terms

whether they are defined at nodes/edges levels or at the graph level.

First, let H be the horizon of prediction of the surrogate model

(SM) and Δ𝑡 the time-step such that H = 𝑝 × Δ𝑡 and 𝑝 the number

of data points. We define:

• Static nodes attributes: here we simply map the node types

to a predefined scalars set that don’t change over time. This

input will be noted 𝑋𝑠 ∈ R𝑁
• Static edges attributes: as each edge represents a pipe, the

attributes are the pipe length 𝐿, inner diameter 𝐷 and its

equivalent thermal resistance 𝐾𝑆 , they remain constants

during the simulations. Subsequently, this variable is noted

𝐸𝑠 ∈ R𝑁𝑏×3
.

• Dynamic nodes attributes: it consists of a matrix containing

the temporal evolution of heat demand at each node, it will

be noted 𝑋𝑑 ∈ R𝑁×𝑝
. For T-junctions and producers, the

heat demand is computed as the sum of the heat load at their

children nodes.

• Global dynamic attributes: this input includes the control

signals that affect the whole network, in our case these will

be the evolution of the supply temperature 𝑇𝑠 ∈ R𝑝 and

total mass flow rate 𝐺𝑡𝑜𝑡 ∈ R𝑝 . This input also holds the

evolution of the external temperature along the prediction

horizon 𝑇𝑒𝑥𝑡 ∈ R𝑝 .
Finally, the inference problem can be stated as a supervised

learning problem schematized in figure 2. The network topology

is implicitly included during the learning phase via the adjacency

list that is used by the graph attention mechanism (explained in

section 3.1) in order to select the neighbors of each node.

Figure 2: Supervised learning problem to train the surrogate
model

3 SURROGATE MODELS
During the development phase of this framework, different types

of models were evaluated for the studied problem. Here we present

the two architectures offering the best performance. The choice of

these architectures is the result of an extensive literature study on

surrogate models and in particular graph neural networks [2, 13, 3,

8, 22, 17]. The following sections show the evaluated architectures.

They were implemented using Pytorch geometric package [5]

and its extension for temporal models [12].

3.1 Encoder-Decoder model
The first architecture that has been explored is in the form of an

encoder-processor-decoder as shown in figure 3. The encoder con-

sists of two MLPs that transform the input data and project it into

a latent space where each node is assigned two hidden vectors



A ML framework for District Heating Networks Simulation 39th BDA conference, October 23–26, 2023, Montpellier, France

representing respectively its local attributes (heat demand) and also

information from global variables updated with neighbors represen-

tations using three graphmulti-head attention layers. The processor

parts consists on transforming the node hidden representations

using three multi-headed attention operations, found to be more

efficient than single headed attention in [17]. In the graph attention

layer, the hidden representation of each node 𝑖 is computed as a

weighted sum of its neighbors’ 𝑗 ∈ N (𝑖) representations, where the
weights are learned using an attention mechanism (Eq 1). Finally

the decoder is composed of two linear layers that maps the nodes

representation to the output space. operation is written as:

x(𝑙+1)
𝑖

= 𝜎
©­«𝛼𝑖,𝑖Wx(𝑙 )

𝑖
+

∑︁
𝑗∈N(𝑖 )

𝛼𝑖, 𝑗Wx(𝑙 )
𝑗

ª®¬ , (1)

where 𝛼𝑖, 𝑗 is the attention coefficient for each neighbor 𝑗 of node 𝑖

and 𝜎 a non-linear activation function.

3.2 Recurrent model
The inference problem involves data with temporal dependencies.

It is known that recurrent neural networks are suited to this type

of data. Therefore, the second architecture that was implemented

is a spatio-temporal graph convolution neural network (STGCN)

inspired from [22]. In addition to the spatial convolution where

the nodes exchange information with their neighbors, this model

incorporates a temporal cell based on Gated Recurrent Unit (GRU)

in order to update the node representations using their previous

hidden states too. In figure 4,𝐺𝐶 refers to graph convolution, which

updates the node features spatially before feeding them to the GRU

cell that consists of an update𝑢𝑡 gate, a reset gate 𝑟𝑡 and a candidate

new hidden state 𝑐𝑡 .

𝑥𝑡 = GraphConv (𝑥𝑡 ) (2)

𝑟𝑡 = 𝜎 (𝑊𝑟 · [𝑥𝑡 , ℎ𝑡−1] + 𝑏𝑟 ) (3)

𝑐𝑡 = tanh (𝑊𝑐 · [𝑥𝑡 , 𝑟𝑡 · ℎ𝑡−1] + 𝑏𝑐 ) (4)

𝑢𝑡 = 𝜎 (𝑊𝑢 · [𝑥𝑡 , ℎ𝑡−1] + 𝑏𝑢 ) (5)

ℎ𝑡 = 𝑢𝑡 · ℎ𝑡 + (1 − 𝑢𝑡 ) · 𝑐𝑡 (6)

4 RESULTS AND DISCUSSION
The two architectures above are evaluated agains the physical

model on the study case of the Figure 1. The site includes buildings

of different usage profiles. Given the annual heat demand for each

consumer and a typical external temperature variation, an hourly

consumption profile is generated for each building using the geo-

metric series approach implemented in demandlib library [14], a

Python package that allows to create heat profiles from annual val-

ues. The control variables are chosen to be the supply temperature

and the total mass flow rate leaving the producer node.

The network operation is then simulated for one year with a time

step Δ𝑡 = 10𝑚𝑖𝑛. The outputs are time series of 8760 × 6 = 52560

data points for each node, representing the evolution of temper-

atures. The simulation time using the physical model is equal to

𝑡𝑠𝑖𝑚,4𝑐 = 3h2min using a 4-cores CPU processor with a 32-GB

RAM. For the encoder-decoder model, we decided a split of 75% for

training and 25% for validation. As this model needs a predefined

time horizon of prediction, it is set to 1 week = 7 × 24 × 6 = 1008

data points. Thus, 39 weeks are used for training and 13 weeks for

validation. On the other hand, as the STGCN is an auto-regressive

model, we do not need to define the prediction horizon, and the

same splitting is used. Without loss of generality, here we show

the predictions for return temperatures only. Moreover, we plot its

normalized value:

𝑇 ∗ =
𝑇 −𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 −𝑇𝑚𝑖𝑛
, (7)

First, the models were evaluated on data with slow frequency con-

trol laws, i.e. supply temperature and the total mass flow rate remain

almost constant for a given time span. In this case the variable hav-

ing the strongest weight on the values to be predicted (forward

and return temperatures) is the heat demand profile. In this case,

both models performed very well in predicting the variables of

interest. An example is given in Figure 5. The root mean squared

error (RMSE) is used to evaluate the model performances. It can be

seen from table 1 that the error stays below 0.7 Kelvin (0.7K) for all

nodes, which is acceptable for the end users, i.e. network operators.

In order to test further the models adaptability and sensitivity

to control laws, we tested them with new simulations where the

supply temperature curve and the total mass flow rate were changed

more often. Physically, this implied that the return temperature at

each node was more affected by the control variables than the heat

load itself. The Encoder-Decoder model was not able to capture the

correct patterns as illustrated in Fig.6. This limitation originates

from an imbalance between the two encoding blocks where the

local MLP seems to affects more the prediction. On the other hand,

the STGCN model captured well enough the system dynamics as

shown in Fig. 7. This is the direct result of using GRU to better

incorporate the notion of temporality and time dependence into

the inference function.

In Figure 8 we compare the two models using RMSE over each

node in the validation dataset. This confirms that temporal depen-

dencies are a key feature to have in the surrogate model as the

STGCN clearly outperforms the Encoder-Decoder model. This re-

sult is consistent with the physics of DHN, which are known to

have a big inertial effect. However, the inference time is different

for both models. To simulate one week of operation, the Encoder-

Decoder model needs 𝑡𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 = 0.019𝑠 against 𝑡𝑠𝑖𝑚,4𝑐 = 336𝑠 for

the physical simulation on the validation dataset which accounts for

approximately 1.8 × 10
4
time gain. On the other hand, the STGCN

model needs 𝑡𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 = 7.71𝑠 , this accounts for approximately

43 time gain. Finally, although these results need further analysis,

and deeper sensitivity and ablation studies, they suggest that a

combination of the two models with regards to the variations of the

control laws may be a good compromise between fast computation

and accurate predictions.

5 CONCLUSION
In this paper, we presented a work in progress for the application

of geometric deep learning as framework for surrogate modeling of

district heating networks simulation. The bottleneck to control such

systems is their heavy simulations. Therefore, the aim of the surro-

gate model is to reduce computation time while preserving a high

accuracy. Depending on the architecture, the time gain varies in our

experiences from a factor of 43 to 1.8 × 10
4
. The next line of work
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Figure 3: Surrogate model encoder-processor-decoder architecture
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𝑒(3)

A cell of 
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Figure 4: Spatio-temporal model architecture. The STGCN cell schematic is adapted from [22].

Table 1: RMSE for return temperatures prediction on validation dataset for the Encoder-Decoder model

node 0 1 2 3 4 5 6 7 8 9 10 11 12 13

RMSE (K) 0.5 0.3 0.7 0.2 0.3 0.3 0.5 0.3 0.2 0.1 0.1 0.1 0.1 0.1

is to deepen the analysis of these models and to fuse more physical

constraints during the training phase to respect the physical laws

in the predicted values.
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Figure 5: Normalized temperature (𝑇 ∗) prediction over 1week
for node 13 using Encoder-Decoder model with moderate
control laws, in this case the supply temperature remains
constant.

Figure 6: Normalized temperature (𝑇 ∗) prediction over 1week
for node 13 using Encoder-Decoder model and with sharp
control laws. The model doesn’t capture well the dynamics
of the DHN system.
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