Morphologic for knowledge dynamics: revision, fusion and abduction - Archive ouverte HAL
Article Dans Une Revue (Article De Synthèse) Journal of Applied Non-Classical Logics Année : 2023

Morphologic for knowledge dynamics: revision, fusion and abduction

Résumé

Several tasks in artificial intelligence require the ability to find models about knowledge dynamics. They include belief revision, fusion and belief merging, and abduction. In this paper we exploit the algebraic framework of mathematical morphology in the context of propositional logic, and define operations such as dilation or erosion of a set of formulas. We derive concrete operators, based on a semantic approach, that have an intuitive interpretation and that are formally well behaved, to perform revision, fusion and abduction. Computation and tractability are addressed, and simple examples illustrate the main results.
Fichier principal
Vignette du fichier
2023-2-Morphologic for knowledge dynamics revision fusion and abduction-JANCL-2023.pdf (556.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04452810 , version 1 (12-02-2024)

Identifiants

Citer

Isabelle Bloch, Jérôme Lang, Ramón Pino Pérez, Carlos Uzcátegui. Morphologic for knowledge dynamics: revision, fusion and abduction. Journal of Applied Non-Classical Logics, 2023, 33 (3-4), pp.421-466. ⟨10.1080/11663081.2023.2244360⟩. ⟨hal-04452810⟩
117 Consultations
66 Téléchargements

Altmetric

Partager

More