On certain partial sums involving squares of Hecke eigenvalues
Résumé
Let $a(n)$ be the $n$th Fourier coefficient of a cuspidal Hecke eigenform of even integral weight $k\ge 2$ and trivial character that is a normalized new form for some level $N$. We show that the partial sums
$$
H_n=\sum_{m=1}^n a(m)^2/m^k
$$
are not integral for $n\ge n_0$.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|---|
Licence |