Calabi-Yau metrics on rank two symmetric spaces with horospherical tangent cone at infinity - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Calabi-Yau metrics on rank two symmetric spaces with horospherical tangent cone at infinity

Résumé

We show that on every non-$G_2$ complex symmetric space of rank two there are complete Calabi-Yau metrics of Euclidean volume growth with prescribed horospherical singular tangent cone at infinity, providing the first examples of affine Calabi-Yau smoothings of singular and irregular tangent cone. As a corollary, we obtain infinitely many examples of Calabi-Yau manifolds degenerating to the tangent cone in a single step, supporting a recent conjecture by Sun-Zhang, which was only proved for asymptotically conical Calabi-Yau manifolds in the sense of Conlon-Hein.
Fichier principal
Vignette du fichier
CYSS.pdf (680.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04428381 , version 1 (31-01-2024)

Identifiants

  • HAL Id : hal-04428381 , version 1

Citer

Tran-Trung Nghiem. Calabi-Yau metrics on rank two symmetric spaces with horospherical tangent cone at infinity. 2024. ⟨hal-04428381⟩
86 Consultations
49 Téléchargements

Partager

More