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CALABI-YAU METRICS ON RANK TWO SYMMETRIC SPACES
WITH HOROSPHERICAL TANGENT CONE AT INFINITY

TRAN-TRUNG NGHIEM

Abstract. We show that on every non-G2 complex symmetric space of rank
two there are complete Calabi-Yau metrics of Euclidean volume growth with pre-
scribed horospherical singular tangent cone at infinity, providing the first examples
of affine Calabi-Yau smoothings of singular and irregular tangent cone. As a corol-
lary, we obtain infinitely many examples of Calabi-Yau manifolds degenerating to
the tangent cone in a single step, supporting a recent conjecture by Sun-Zhang,
which was only proved for asymptotically conical Calabi-Yau manifolds in the
sense of Conlon-Hein.

1. Introduction

1.1. Background. Let (M, g) be a complete Ricci-flat Riemannian manifold of di-
mension d such that there is κ > 0 satisfying

vol(Br(p)) ≥ κrd

for any ball Br(p) of radius r > 0 centered at p. Under this volume condition, we say
that (M, g) has Euclidean (or maximal) volume growth. By Gromov’s compactness
theorem, any rescaled sequence (Mi, gi, pi) = (M,λ−1

i g, p) for λi → +∞ admits a
subsequence converging in the pointed Gromov-Hausdorff sense to a complete length
space C, called a tangent cone at infinity of (M, g), which might a priori depend on
the subsequence, but not on the base point p. An important result due to Cheeger-
Colding [CC97,CC00] asserts that under the maximal volume growth, any tangent
cone C is in fact a metric cone, that is, the metric completion of ]0,+∞[×Y , where
Y is some compact metric space called the link of C. If one tangent cone has smooth
link, then by Colding-Minicozzi [CM14], C is in fact independent of the subsequence.

If (M, g, J) is Ricci-flat Kähler and has maximal volume growth, then the tangent
cone at infinity has a complex affine cone structure (C, J0), and the singular set of
C is the same as the algebraic singular set by Donaldson-Sun [DS17], which is of
real codimension ≥ 4 [CCT02]. As remarked by Székelyhidi [Szé20], if the metric
on M is ∂∂-exact, then [DS17] can be applied to show that the cone is independent
of the scaling subsequence. From the algebro-geometric aspect, we can also view C
as a Fano cone singularity, that is an affine algebraic variety with klt singularities
and a unique fixed point under the effective action of some torus T0 ≃ (C∗)k, such
that every orbit closure contains the fixed point [LWX21]. The set of Reeb vectors
or polarizations of C is the set of elements ξ in the compact Lie algebra of T0 such
that ξ acts on the coordinate ring of C with non-negative weights (that vanish only
on constants).

On the regular set of C, the sequence of Ricci-flat Kähler metrics (M,λ−1
i g, Ji)

converges in the smooth pointed Cheeger-Gromov sense to a Ricci-flat Kähler metric
(C, g0, J0) [CCT02], and g0 actually arises from a (weak) Sasaki-Einstein metric gY

2020 Mathematics Subject Classification. 53C25, 53C55, 32Q25, 14M27.
Key words and phrases. Calabi-Yau metrics, symmetric spaces, horospherical tangent cone at

infinity, irregular and singular tangent cone at infinity, asymptotically conical.
1



2 TRAN-TRUNG NGHIEM

from the link Y , hence is a conical Calabi-Yau metric, or Ricci-flat Kähler cone
metric. To be precise, there is a vector ξ, called the K-stable Reeb vector or K-stable
polarization, such that −J0ξ is a homothetic scaling on C and

L−J0ξω0 = 2ω0.

In particular, the metric form of g0 can be written as a Kähler current as ω0 =
1
2dd

cr20,
where r0 is the distance to the vertex and also the coordinate on ]0,+∞[ such that
(C, g0) is the metric completion of the warped product (]0,+∞[×Y, dr20+r20gY ). The
Reeb element ξ is said to be quasiregular if it generates an S1-action on the link (and
regular if this action is free), and irregular otherwise.

1.1.1. Asymptotically conical Calabi-Yau manifolds. If one tangent cone at infinity
satisfies an integrability condition [CT94, Definition 0.11], then the cone has smooth
link (we simply say that the cone is smooth in this case), and (M, g) is in fact an
asymptotically conical (AC) Ricci-flat Kähler manifold in the terminology of [CH13].
This means that there are compact subsets K,K ′, λ > 0 and a diffeomorphism

Φ :M\K → C\K ′

such that ∣∣∣∇k
g0(Φ

∗g − g0)
∣∣∣ = O(r−λ−k0 ), ∀k > 0.

If the volume form Ω of an AC Ricci-flat Kähler manifold (M, g, J) also converges
to the canonical volume form Ω0 of C via Φ, i.e. there is some µ > 0 such that

|Φ∗Ω− Ω0|g0 = O(r−µ0 ),

then (M, g, J) is said to be an AC Calabi-Yau manifold. This condition already
implies C0-convergence of the complex structure J to J0 via Φ [CH13]. Moreover,
if (M, g, J) is AC Ricci-flat Kähler but not simply connected then passing to the
universal cover yields an AC Calabi-Yau manifold [CH22].

The existence, uniqueness and classification of AC Calabi-Yau manifolds have
now been relatively well understood thanks to the works of Conlon-Hein [CH13],
[CH15], [CH22]. Initially inspired by van Coevering’s papers [vC08, vC10, vC11],
they went on to optimize an earlier theorem in the important works of Tian-Yau
[TY90,TY91], culminating in the classification of asymptotically conical manifolds.
We can summarize the optimal Tian-Yau theorem due to Conlon-Hein as follows.

Theorem 1.1. [TY91, CH15] Let Xn be a compact Kähler orbifold without C-
codimension-1 singularities. Let D ⊃ Sing(X) be a suborbifold divisor in X such
that −pKX = qD, p, q ∈ N, q/p > 1, and such that D admits a Kähler-Einstein
metric of positive scalar curvature.

For every Kähler class k on X\D and for every t > 0, there is a unique Calabi-Yau
metric ωt ∈ k which is asymptotically conical to the metric tω0, where ω0 is built on
the Calabi ansatz Ricci-flat Kähler cone metric of pKD.

The Calabi ansatz for manifolds can be outlined as follows: If Dn−1 is a Fano
Kähler-Einstein manifold, then the radius function of the conical Calabi-Yau metric
on K×

D is given by r2 = ∥.∥
2
n , where ∥.∥ is a Hermitian norm on K×

D naturally
obtained from the Kähler-Einstein metric on D. A similar construction works for
( 1kKD)

× as well as for orbifolds [CH15].
As remarked in [CH15, Section 3], the following generalized or irregular Tian-Yau

problem was first proposed by van Coevering [vC08] but with an incorrect proof,
hence has not been solved in the literature.



CALABI-YAU METRICS ON SYMMETRIC SPACES 3

Type Representative Root system Multiplicities Satake diagram Hermitian

BDII SOr+2 / SO1×SOr+1 A1 r, r ≥ 1
if r even,

else
r = 1

AIII SLr+1 /SL1×SLr+1 BC1 (2r − 3, 1), r ≥ 2 yes

CII Sp2r / Sp2×Sp2r−2 BC1 (4r − 8, 3), r ≥ 3 no
FII F4/B4 BC1 (8, 7) no

Table 1. Symmetric spaces of rank one.

Problem 1.2. Produce AC Calabi-Yau metrics on X\D for pairs (X,D) as in The-
orem 1.1, where D is not Kähler-Einstein, yet the S1-bundle over D admits an ir-
regular Sasaki-Einstein structure inducing the CR structure (in particular (−ND)

×

is conical Calabi-Yau), and (X,D) is not a blow-up of (−ND)
×.

In [CH15, Theorem C], the authors solved Problem 1.2 for the smooth pair
(X,D) ≃ (BlpP3,Blp1,p2P2), producing the only known example of Calabi-Yau met-
rics of Euclidean volume growth with irregular asymptotic cone in the literature. To
the author’s knowledge, there has not been any counterexample to this problem.

1.1.2. Calabi-Yau manifolds with Euclidean volume growth and singular tangent cones.
The AC condition turns out to be very restrictive, as there have been existence re-
sults of Calabi-Yau metrics of Euclidean volume growth over Cn, n ≥ 3 with singular
tangent cones at infinity [Li19], [Szé19], [CR21].

The general strategy consists of viewing Cn as an affine smoothing of the potential
tangent cone at infinity, then building a smooth asymptotic solution of the Ricci-flat
equation from a suitably chosen conical Calabi-Yau metric. Since this model is only
smooth on the regular set of the cone, one needs to glue it with a model metric
near singularities to get a globally smooth asymptotic solution over Cn with good
geometry. After improving the Ricci potential decay rate, known existence theorems
of Tian-Yau-Hein [Hei10] [TY90] [TY91] then allow one to solve the Monge-Ampère
equation with the given asymptotic geometry as in the compact case to get a genuine
Calabi-Yau metric.

1.1.3. Known results on symmetric spaces. The geometric objects of interest to us
will be complex symmetric spaces. They are Stein complexifications of compact
Riemannian symmetric spaces, and can be viewed as their (co)tangent bundles with a
suitable complex structure. Our general setting consists of a non-identical involution
θ on a complex linear semisimple connected groupG with maximal compact subgroup
K, and a rank-k complex symmetric space G/H of dimension n, where Gθ ⊂ H ⊂
NG(G

θ). When H is not semisimple and G/H is indecomposable, we actually have
dimZ(H) = 1, and G/H is said to be Hermitian.

If k = 1, then there are only finitely many families of complex symmetric spaces up
to isomorphisms. They are exactly the cotangent bundles of the sphere, the complex
and quaternionic projective spaces, and the Cayley projective plane, cf. Table 1.

The K-invariant ∂∂-exact complete Calabi-Yau metrics on complex symmetric
spaces of rank 1 were constructed by Stenzel after translating the complex Monge-
Ampère equation to a one-variable ODE, which can be explicitly solved [Ste93].

Theorem 1.3. [Ste93] Every complex symmetric space G/H of rank 1 admits a
complete K-invariant ∂∂-exact Calabi-Yau metric.

In fact, we have a more geometric description of the K-invariant ∂∂-exact Calabi-
Yau metrics with maximal volume growth on rank one symmetric spaces, which
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should be well-known by experts, but we still include the proof as a prelude and
motivation for the rank-two part.

We offer an approach using the theory of equivariant degeneration for spherical
varieties [BP87]. While existence and uniqueness for Stenzel metrics are contained
in [CH15] (and in fact a similar result holds for every Kähler class), our strategy
has the advantage of yielding immediately the potential tangent cone and some of
its geometric properties, which might not be clear a priori, e.g. the spherical action,
smoothness of the link and the K-stable Reeb vector. The reader will find more
details in Subsection 2.4.

Theorem 1.4. Every rank one symmetric space G/H admits a complete K-invariant
∂∂-exact Calabi-Yau metric which is asymptotically conical to a regular and smooth
horospherical cone, obtained as an equivariant degeneration of the symmetric space.

Moreover, the metric is unique in the trivial Kähler class up to scaling, and the
tangent cone is unique given the metric.

In other words, any rank one symmetric space is an affine smoothing of its horo-
spherical tangent cone. This is consistent with Conlon-Hein’s classification result
in [CH22, Theorem A] which shows that AC Calabi-Yau manifolds can only arise as
deformations of the asymptotic cone (e.g. affine smoothing), possibly followed by a
crepant resolution.

By the works of Bielawski and later improvements by Koike, it is now known that
there is a Calabi-Yau structure on any complex symmetric space [Bie04] [Koi23].
Note that the result in [Koi23, Theorem A] is stated for rank two symmetric spaces,
but the proof can easily be extended verbatim to any rank. However, this existence
theorem is not very geometrically enlightening, and a more meaningful reformulation
of the problem can be stated as follows.

Problem 1.5. Given a complex symmetric space G/H and a prescribed G-spherical
(possibly singular) Calabi-Yau cone C, obtained as a G-equivariant degeneration of
G/H, find complete K-invariant Calabi-Yau metrics of Euclidean volume growth with
C as the tangent cone at infinity.

Remark 1.6. The choice of C is a priori reasonable, since the tangent cone at
infinity of a complete ∂∂-exact Calabi-Yau metric with Euclidean volume growth on
a complex manifold is in fact the central fiber of a C∗-degeneration in (at most) two
steps [Szé20] [DS17].

On complex Hermitian symmetric spaces, Biquard-Gauduchon obtained explicit
hyperKähler metrics with singular tangent cones [BG97]. Motivated by these exam-
ples, Biquard-Delcroix constructed Calabi-Yau metrics with singular tangent cones
by viewing the space as open subset inside a two-divisors compactification, then
gluing the Calabi ansatz (referred to as the Tian-Yau ansatz therein) on one K-
stable Fano boundary divisor (if any) with a specific ansatz on the other boundary
divisor [BD19]. Let us make a remark before recalling their main result.

In [BD19], the authors work with wonderful compactification which only exists
for symmetric spaces satisfying some condition on the isotropy group such as H =
NG(G

θ). However, since G/H → G/NG(G
θ) is a finite covering, one can in fact

suppose that H = NG(G
θ), then construct Calabi-Yau metrics which can be pulled

back to the original symmetric space.

Theorem 1.7. [BD19] Let G/H be a rank two symmetric space with H = NG(G
θ).

Let X be the wonderful compactification of G/H so that X\G/H is a smooth simple
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normal crossing divisor with irreducible components D1, D2. Let A1, A2 > 0 be as
defined in Subsection 2.1, and

C(D∨
1 ), C(D

∨
2 ) = (

1

A1
KD∨

1
)×, (

1

A2
KD∨

2
)×

be the Fano cone singularities over the equivariant blowdowns D∨
1 , D

∨
2 along the closed

orbits D1∩D2 of D1, D2. Then both cones have a regular conical Calabi-Yau structure
(equivalently, both D∨

1 , D
∨
2 are Fano Kähler-Einstein), except in the G2 cases, where

only one cone is Calabi-Yau.
Moreover, there is a complete K-invariant ∂∂-exact Calabi-Yau metric of Eu-

clidean volume growth and
• with singular tangent cone at infinity C(D∨

1 ) or C(D∨
2 ) on the non-Hermitian

symmetric spaces

SO5×SO5 / SO5, Sp8 / Sp4×Sp4, G2/ SO4, G2 ×G2/G2,

provided that C(D∨
i ), i = 1, 2 is Calabi-Yau;

• with singular tangent cone at infinity C(D∨
1 ) or C(D∨

2 ) on each Hermitian
symmetric space. More precisely, there is one choice of the tangent cone
that recovers the Biquard-Gauduchon metrics, while the other choice yields a
different metric on

SOr / SO2×SOr−2, r ≥ 5, SL5 / SL2×SL3 .

Although this partially answers Problem 1.5 for rank two symmetric spaces with
prescribed horosymmetric tangent cones, one main drawback of their ansatz is that
the metrics obtained have unbounded holomorphic bisectional curvature in some
cases, notably the simplest class of (restricted) root system A2, as well as the infinite
family Sp2r / Sp2×Sp2r−2, r ≥ 5 of non-Hermitian symmetric spaces with root sys-
tem BC2. The unbounded curvature prevents the application of any known a priori
estimate methods.

1.2. Main result. The issues in [BD19] can be remedied by using the conical Calabi-
Yau metric from a degeneration of G/H induced by a valuation in the interior of the
Weyl chamber. The theory of equivariant degeneration of spherical varieties [BP87,
Corollaire 3.8] tells us that any such direction defines an equivariant degeneration of
G/H to a horospherical cone C0, which always admits a K-stable polarization [Ngh23]
and can be taken to be the candidate of our tangent cone at infinity.

With this conical Calabi-Yau structure in hand, we generalize further the tentative
construction in [BD19] to obtain new Calabi-Yau metrics with singular tangent cones
at infinity. Our main result covers all the cases of symmetric spaces left by Biquard-
Delcroix, namely the spaces with restricted root sytem A2, the non-Hermitian infinite
family Sp2r / Sp2×Sp2r−2 and the finite family of multiplicity (8, 6, 1), but also all
the rank-two decomposable cases of type R1 × R1 not considered in [BD19], where
each factor R1 is any symmetric space of rank 1.

Theorem A. Every rank two symmetric space G/H, except of restricted root system
G2, admits a complete K-invariant ∂∂-exact Calabi-Yau metric of Euclidean volume
growth with singular G-horospherical tangent cone C0 at infinity, which is

• regular in the A2 cases.
• generally irregular in the BC2 and B2 cases.
• the product of the Stenzel asymptotic cones on each factor in the R1 × R1

cases.

Let us make some comments related to this theorem.
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• Our result provides a full answer to Problem 1.5 for rank two symmetric
spaces with prescribed horospherical Calabi-Yau cones. Geometrically, sym-
metric spaces up to rank two can all be interpreted as equivariant affine
Calabi-Yau smoothings of horospherical singular tangent cones. As a result,
we obtain the first examples of Calabi-Yau metrics on manifolds that are
affine smoothings of singular and irregular tangent cones, but also a solution
to the singular version of the irregular Tian-Yau problem 1.2 on BC2/B2

symmetric spaces. Based on numerical evidence, it is very likely that all the
tangent cones in the BC2/B2 cases are irregular.

Irregularity can apparently only arise in symmetric spaces with “asymet-
ric” root system, i.e. root system with one simple root strictly longer that
the other, which is the case for non-A-type symmetric spaces of rank two.
There should be some arithmetico-algebraic conditions, formulated only in
terms of the combinatorial data, that account for this behavior and allow
us to determine systematically the regularity of the Calabi-Yau cones, hence
systematically Calabi-Yau metrics with irregular tangent cones. This could
provide a partial answer to the singular version of the open question (1)
in [CH22], which asks to produce examples of such metrics but in the AC
context. We leave further exploration for the future.

• On a R1×R1-symmetric space, there is an obvious Calabi-Yau metric which
is the product of the Stenzel metrics on the factors, whose tangent cone at
infinity and K-stable Reeb vector are product. It turns out that the tangent
cone of the Calabi-Yau metric obtained by our ansatz has the same K-stable
Reeb vector as the product of the Stenzel tangent cones (cf. Subsection
2.4, Theorem 4.2 and Table 5), which implies that our metrics have the
same tangent cone at infinity as the product metric. This comes out of our
expectation, and we anticipate that the metrics on R1 × R1 can be related
to the product metric by scalings on each factor.

Example 3.2 provides the description of the horospherical tangent cone in
the A1×A1 case that coincides with the product tangent cone (up to a finite
covering).

• The symmetric spaces of type G2 are however excluded. This is practically
due to the K-stable Reeb vector lying outside the Weyl chamber (see Theo-
rem 4.2), hence the global potential is not well-defined if we try to expand
the potential of the Calabi ansatz near the boundary divisors using Stenzel
potentials.

While this explanation seems a practical one related to the construction,
we expect that the existence of a Calabi-Yau smoothing is actually prevented
by algebro-geometric conditions, and that in fact there is no K-invariant
Calabi-Yau metrics with horospherical tangent cone on G2 symmetric spaces,
yielding a negative example to Problem 1.2 when D is singular. This will be
addressed more thoroughly by means of algebraic geometry in a forthcoming
paper.

Since there is no nontrivial equivariant degeneration of a horospherical variety, the
following corollary is somewhat trivial, but worth mentionning.

Corollary B. Every Calabi-Yau symmetric space constructed in Theorem A degen-
erates to the horospherical tangent cone at infinity in only one step.

This supports a recent conjecture made by Sun-Zhang that there is no semista-
bility in the two-steps degeneration theory of Donaldson-Sun for the tangent cone
at infinity, i.e. any Calabi-Yau metric of maximal volume growth should degenerate
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Type Representative R Multiplicities Satake diagram Hermitian
AI SL3 / SO3 A2 1

A2 PGL3 × PGL3/PGL3 − 2
AII SL6 /Sp6 − 4

EIV E6/F4 − 8

AIIIa SLr /S(GL2×GLr−2) BC2 (2r − 8, 2, 1), r ≥ 5 yes

CIIa Sp2r / Sp4×Sp2r−2 − (4r − 16, 4, 3), r ≥ 3

DIIIa SO10 /GL5 − (4, 4, 1) yes

EIII E6/ SO10×SO2 − (8, 6, 1)

BDI SOr / SO2×SOr−2 B2 (r − 4, 1, 0), r ≥ 5
if r even,

else
yes

AIIIb SL4 /S(GL2×GL2) − (2, 1, 0) yes

DIIIb SO8 /GL4 − (4, 1, 0) yes

B2 SO5×SO5 / SO5 − (2, 2, 0)
CIIb Sp8 / Sp4×Sp4 − (4, 3, 0)

G G2/ SO4 G2 1

G2 G2 ×G2/G2 − 2

Table 2. Indecomposable symmetric spaces of rank two. See also
Convention 2.1 and Remark 2.2.

to the tangent cone at infinity in only one step [SZ22, Conjecture 6.4]. This was
proved in loc. cit. for tangent cones at infinity with smooth link, and the result is
quite unexpected since the 2-step degeneration theory works very similarly for local
tangent cone, but the semistable step can not always be eliminated in the local setting.
In the singular case, as mentioned above, there are already examples of Calabi-Yau
metrics on Cn, n ≥ 3 degenerating to the regular and singular cone C × A1 in one
step [Li19] [Szé20] [CR21]. Our new metrics provide many more examples of this
kind, but also new examples of degeneration to the irregular tangent cone in only one
step. However, we do not know if this phenomenon is true in general for noncompact
Calabi-Yau spherical manifolds.

1.3. Organization.
• In Section 2, we provide preliminaries on symmetric spaces and recall basic

facts about spherical cones, then prove Theorem 1.4.
• In Section 3, we provide details on the relevant geometric constructions in

rank two and prove that all the candidates for the tangent cone are singu-
lar. We view G/H as open Zariski subset of a (in general non-smooth and
non-Fano) one-divisor compactification X = G/H ∪ D0. In order to have
reasonable models near the singularities of the tangent cone, we consider
the blow-up of X along the two closed orbits, denoted by X̃. In particular,
we have X̃\(G/H) = D0 ∪ D1 ∪ D2, with D1, D2 being the two divisors
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corresponding to the two closed orbits (see Section 3 for more details on
the geometry of these divisors). The tangent cone at infinity C0 can be in-
terpreted as the equivariant degeneration of G/H along a direction in the
interior of the Weyl chamber.

The geometry at infinity of G/H contains: (i) the generic regular region
modeled on the open orbit G/H0 × C∗ of the cone, G/H0 being the open
orbit of D0; and (ii) the boundary regions, corresponding to D0∩D1\D2 and
D0 ∩D2\D1, which are also contained in the possible singularities of D0.

The readers should compare this approach with the recent work of Collins-
Li [CL22] where the compactification is Fano, and the Calabi ansatz is mod-
eled upon the boundary divisors similarly as in [BD19]. Here we are able
to choose a different ansatz, which is not a priori obvious by an analysis of
K-stable valuations inside the Weyl chamber of our model, already carried
out in the preparatory work [Ngh23].

• In Section 4, we produce the asymptotic solution from the conical Calabi-
Yau metric on C0 using a Calabi ansatz (which applies even in the irregular
horospherical case, cf. our previous work [Ngh23]), then analyze its behavior
near D1, D2.

• In Section 5, we build models near D1, D2 which are warped products of AC
metrics (Ansatz 5.1), with first order terms matching with the asymptotics
of the Calabi ansatz. The reader should compare this ansatz with the warped
AC product introduced in [CR21].

The next step is to improve the decay rate of the Ricci potentials (Propo-
sition 5.2), and glue these models with the Calabi ansatz. We verify that
there is no obstruction to the gluing process in Lemma 5.6. The rank two
assumption plays a crucial role in both part 4 and 5.

• In Section 6, we study the asymptotic geometry of the global asymptotic
solution obtained in the previous section, and prove that the tangent cone at
infinity of the metric is as expected.

• In Section 7, we prove our main Theorem A by appealing to Hein’s exis-
tence package. To guarantee a quasi-atlas, as well as C2-estimate for the
complex Monge-Ampère equation, we impose a condition on the injectivity
radius of the initial metric, which is equivalent to the holomorphic bisectional
curvature being bounded (cf. Proposition 7.2). It turns out that all of our
symmetric spaces have bounded holomorphic bisectional curvature with re-
spect to the metric (see Table 5, as well as Lemma 7.4, 7.5). This condition
depends only on the combinatorial data of the tangent cone, and should be
related to some fine properties of the cone’s singularities. For lack of any
meaningful interpretation at this moment, we proceed to check the condition
case by case, and hope to provide more details on this matter in a future
study. We provide in Table 5 the relevant constants.

1.4. Further discussions.

1.4.1. Uniqueness. We have not yet mentionned uniqueness of the Calabi-Yau metric
with a fixed tangent cone at infinity. We expect that the proof can be done in the
same lines as in Székelyhidi’s paper [Szé20] with input from Donaldson-Sun’s theory
adapted to spherical manifolds, and a finer understanding of the geometry of the
smoothing. We hope to come back to this question in a future paper.
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Related to this uniqueness question, we point out in Example 3.3 a Kähler-Einstein
log pair (X,D) where X is a smooth compactification of G/H, with finite automor-
phism group AutG(X,D), andD a singular divisor with strictly larger automorphism
group AutG(D).

By a recent result of Biquard-Guenancia [BG22], on a smooth pair (X,D) such that
D ∈ |−KX |, the conic Kähler-Einstein metrics ωβ with small angle 0 < β ≪ 1 on D
converges up to a rescaling factor to the Tian-Yau metric ωTY onX\D. This confirms
the folklore expectation that the Tian-Yau metrics on X\D are not fortuitous as they
appear, but arise in a canonical way from conic Kähler-Einstein metrics on the given
smooth compactification (X,D) with smooth divisor.

The author learned from Biquard-Delcroix-Guenancia that a similar result is ex-
pected to hold in the case where αD ∈ |−KX | with α > 1 and D being Kähler-
Einstein (this is proved for smooth horosymmetric pairs of rank one in [Del23]), or
even in the singular context. However, note that the Calabi-Yau metrics in our ex-
ample should arise in a two-parameters family (with parameters being the scaling
factor and translation in the real variables), while the metrics ωβ occur only in a
finite orbit by Matsushima’s uniqueness theorem. It would be interesting to obtain
examples of this kind but with smooth D.

1.4.2. Regularity of the horospherical Calabi-Yau cone structure. As mentionned, we
do not know how to systematically determine the regularity of the Calabi-Yau struc-
ture on the horospherical tangent cones at infinity. Explicit computations in rank
two suggest that all the tangent cones are irregular, except in the A2 or R1 × R1

cases. This leads us to conjecturing the following.

Conjecture 1.8. The horospherical tangent cones at infinity of the symmetric spaces
are irregular, except for the symmetric spaces with restricted root system of all the
factors being of type A.

To be precise, from our previous work [Ngh23], the K-stability condition on a
rank two horospherical cone (C, ξ) is in fact equivalent to the parameter of the Reeb
vector ξ being the unique positive solution to a one-variable polynomial. It is then
reasonable to speculate that the regularity conjecture can be reformulated in terms
of an algebro-arithmetic question. For instance, the conjecture for the tangent cones
of the infinite family SLr /S(GL2×GLr−2), r ≥ 5 can be translated as

Conjecture 1.9. For all r ≥ 5, the unique positive root of

Q(t, r) =

∫ 2r−6
1+t

−4
2+t

p(4+(2+t)p)2(4r−8−tp)2(2r−6−(1+t)p)2r−7(2r−2+p)2r−7dp = 0

(cf. Lemma 7.5) is irrational.

A possible approach is to show by induction that one can always factor out an irre-
ducible polynomial, but the difficulty lies in proving irreducibility of the polynomial
over Q.

Acknowledgements. This paper is part of a thesis prepared under the supervi-
sion of Thibaut Delcroix and Marc Herzlich, partially supported by ANR-21-CE40-
0011 JCJC project MARGE. I am grateful to Thibaut Delcroix for many helpful
discussions, and to Gábor Székelyhidi for valuable comments.

2. Complex symmetric spaces and spherical cones

2.1. General setup. Let G be endowed with a nontrivial involution θ ∈ Aut(G).
Let Ts be a maximal torus such that θ(t) = t−1 for all t ∈ Ts, and T be the maximal
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α1

α2

α̃1

α̃2

Figure 1. Restricted root system of A2 symmetric spaces and their
Weyl generators.

θ-stable torus containing Ts. The Cartan algebra a of the symmetric space G/H is
the Lie algebra of the maximal noncompact subgroup of Ts.

Let R̂θ be the set of roots fixed by θ and R̂ be the root system of (G,T ) with
positive root system R̂+ chosen such that if α̂ ∈ R̂+\R̂θ then −θ(α) ∈ R̂+. The
restricted root system is then defined as

R :=
{
α = α̂− θ(α̂), α̂ ∈ R̂\R̂θ

}
.

In general, the root system R is non-reduced (e.g. the restricted root system of type
BC2). The Weyl group W associated to R is called the restricted Weyl group. Given
R̂+, the set of positive restricted roots R+ is defined as

R+ :=
{
α = α̂− θ(α̂), α̂ ∈ R̂+\R̂θ

}
.

The choice of R+ on a semisimple symmetric space determines a strictly convex cone,
which is the fundamental domain of W , called the restricted positive Weyl chamber
(or simply the Weyl chamber when the context is clear).

The multiplicity of a restricted root α, defined as mα, is the number of α̂ ∈ R̂
such that (α̂ − θ(α̂))|a = α|a. If G/H is a (complex) symmetric space of dimension
n and of rank k, then

n = k +
∑
α∈R+

mα.

Convention 2.1. Throughout the text, we use the notation ⟨., .⟩ for the Killing form.
For a symmetric space of multiplicities (m1,m2,m3), we mean a symmetric space of
type BC2 with m3 ≥ 1 and B2 with m3 = 0, where (m1,m3) is the multiplicities of
(α1, 2α1), α1 being the short root, and m2 is the multiplicity of the long root α2.

The Duistermaat-Heckman polynomial of G/H is defined as

P (p) :=
∏
α∈R+

⟨α, p⟩mα .

We will denote by α̃2, α̃1 the generators or wall directions of the given positive
Weyl chamber, which write

(1) α̃2 = α2 + ζ2α1, α̃1 = α1 + ζ1α2,

where

(2) ζ2 = −⟨α2, α1⟩
⟨α1, α1⟩

, ζ1 = −⟨α2, α1⟩
⟨α2, α2⟩

.

An important constant is the sum of the positive restricted roots

ϖ :=
∑

α∈R̂+\R̂θ

2α̂ =
∑
α∈R+

mαα.
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In the rank two cases, we have in particular

ϖ = A1α1 +A2α2,

where
A1 =

⟨ϖ, α̃1⟩
⟨α1, α̃1⟩

, A2 =
⟨ϖ, α̃2⟩
⟨α2, α̃2⟩

.

The list of symmetric spaces of rank two, as well as their Satake diagrams, are
listed in Table 2. The support of a Satake diagram is the same as the Dynkin
diagram of G, but with black nodes corresponding to simple roots fixed by θ. The
extra arrows join pairs of simple roots (α̂, β̂) such that

(α̂− θ(α̂))|a = (β̂ − θ(β̂))|a.
The Satake diagrams will be used to determine which tangent cones are singular.

Remark 2.2. Compared with the list in [BD19, Table 1], we single out two classes
of symmetric spaces, namely the AIIIb type (which is tacitly assumed to be in AIIIa
with m3 = 0 in [BD19]) and DIIIb type. Even if they are redundant in terms of
restricted root system and multiplicities, they truly need to be distinguished from the
family SOr / SO2×SOr−2 (in terms of involution) because their tangent cones have
distinct spherical actions.

2.2. Spherical cones. Recall that a G-spherical variety is a normal variety contain-
ing a Zariski-open orbit under the action of a Borel subgroup B ⊂ G. A G-spherical
variety is the G-equivariant embedding of a homogeneous space G/H that contains
the open orbit of a Borel subgroup. Such homogeneous space is called a spherical.
The set D of irreducible components of the B-stable reduced divisor inside G/H is
called the set of colors of G/H.

An equivariant embedding of a spherical space is called simple if it contains a
unique closed orbit. To each simple spherical embedding G/H ⊂ E, the orbit-cone
correspondence in spherical variety theory then associates an object (CE ,DE), called
the colored cone, which consists of an Euclidean convex cone CE and a subset DE ⊂ D
with elements being the (closures of the) colors of G/H containing the closed orbit
in E. General spherical embeddings are classified by colored fans, i.e. collections of
colored cones with some compatibility conditions [Kno91].

We say that a G-equivariant affine embedding C of a spherical space G/H is a
spherical cone or conical embedding if C has a unique fixed point (which is also the
unique closed orbit) under the G-action. Every spherical cone is in fact a Fano cone
singularity [Ngh23].

Theorem 2.3. [Ngh23] The colored cone (CC ,DC) of a conical embedding G/H ⊂ C
consists of a strictly convex cone of maximal dimension CC with DC being the set of
all the colors of G/H.

Definition 2.4. [Del20b] A horosymmetric (resp. horospherical) space G/H of rank
k is an equivariant fibration with fiber a symmetric space of rank k (resp. a complex
torus (C∗)k) over a flag manifold G/P . A horosymmetric (resp. horospherical)
variety is an equivariant embedding of a horosymmetric (resp. horospherical) space.

There are two kinds of cones that appear in the G-equivariant degeneration of a
semisimple symmetric space G/H of rank two. First, the horosymmetric cone, which
corresponds to the degeneration of G/H along a valuation defined by a generator of
the restricted Weyl chamber (viewed as a convex cone). Second, the horospherical
cone, which corresponds to the equivariant degenerations of G/H along any valuation
in the interior of the restricted Weyl chamber.



12 TRAN-TRUNG NGHIEM

Both cones are conical embeddings of open orbits of the form G/H0, with H0 being
a closed subgroup of G endowing G/H0 with the corresponding fibration structure.

Example 2.5. Let G/H be a semisimple symmetric space of rank k such that
H = NG(G

θ). By [DCP83], G/H always admits a simple smooth G-equivariant
compactification X called the wonderful compactification.

The divisors of X consist of k connected components D1, . . . , Dk, each being a
smooth horosymmetric variety of rank k − 1. As described in [DCP83], each Di is
an equivariant fibration over a flag manifold G/Pi with fiber a symmetric variety Xi

of rank k − 1.
The canonical divisor of X can be represented as

KX =
k∑
i=1

(Ai + 1)Di, Ai ∈ N∗
+.

Taking the cone (with respect to the some canonical polarization) over an equivariant
blowdown of Di making Di a Fano variety yields a horosymmetric cone.

2.3. The Ricci-flat equation on symmetric spaces. Given the K-invariant vol-
ume form dVH associated to the standard Hermitian metric on the canonical bundle
of G/H [Del20a], our goal is to find a K-invariant metric in the trivial Kähler class
which has the same volume form as dVH .

Remark 2.6. In what follows, we only consider K-invariant ∂∂-exact Kähler met-
rics, but note that on non-Hermitian symmetric spaces, K-invariance already implies
∂∂-exactness by a result of Azad and Loeb [AL92].

Following [AL92], any K-invariant ∂∂-exact metric ω = ddcΦ on G/H is deter-
mined by a W -invariant convex function ρ on the Cartan algebra a. The problem
then amounts to solving the following real Monge-Ampère equation.

Theorem 2.7. [Del20a] A smooth K-invariant strictly psh function Φ defines a
Ricci-flat metric on G/H if and only if ρ(x) := Φ(exp(x)H) satisfies for all x ∈ a:

(3) det(d2ρ)
∏
α∈R+

⟨α, dρ⟩mα =
∏
α∈R+

sinhmα(α(x))

Definition 2.8. For a W -invariant convex function ρ on a, the function

(4) P(ρ) := ln det(d2ρ) +
∑
α∈R+

mα(ln ⟨α, dρ⟩ − ln sinhα)

is called the Ricci potential of ρ.

2.4. The rank one case.

Proof of Theorem 1.4. Let G/H be a rank-one symmetric space of dimension n with
positive roots (α, 2α) of multiplicities (m, m̂), where we allow m̂ = 0 for symmetric
spaces of restricted root system A1. In particular,

n = 1 +m+ m̂.

The candidate for the tangent cone at infinity of G/H can be obtained as follows.
Let ν be a G-invariant valuation on G/H. The spherical embedding of G/H × C∗

defined by (ν, 1) and all the colors of G/H × C∗ yields a degeneration with central
fiber the divisor corresponding to the ray (ν, 1), which is in fact a G-horospherical
cone C of rank one by [BP87] and Theorem 2.3.

The smoothness of the link is clear, because singularities occur in G-orbits, and
the G-orbits of a rank one cone are the fixed point and the open G-orbit. The cone
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C has the same weight lattice and Cartan algebra a as G/H. The total sum of the
positive root of G/H is

ϖ = (m+ 2m̂)α = (n− 1 + m̂)α,

given the relation n = 1+m+m̂. Using the root and fundamental coweight (α, ω∨
α) as

basis on (a∗, a), the K-invariant conical Calabi-Yau potential on C, which is uniquely
determined by a strictly convex positive function u : a → R, satisfies the following
equation

(5) u′′(x)u′(x)m+m̂ = e(m+2m̂)x = e(n−1+m̂)x,

where e(n−1+m̂)x is the volume density of the canonical volume form on C [Ngh23].
A generic solution is then

u(x) =
n2

(n− 1 + m̂)2
e

n−1+m̂
n

x +Ax+B.

The Reeb vector ξ = λω∨
α is uniquely determined by ⟨ϖ, ξ⟩ = n, i.e.

ξ =
n

n− 1 + m̂
ω∨
α .

The solution of Equation (5) suggests we take

u(x) = ce
n−1+m̂

n
x

as the Calabi ansatz for a suitable constant. The Ricci-flat ODE in rank one writes

(6) ρ′′(x)ρ(x)m+m̂ = sinhm(x) sinhm̂(2x).

Plugging the Calabi ansatz into Equation (6) yields an asymptotic solution with Ricci
potential decay of rate O(e−2x) = O(r−

4n
n−1+m̂ ), where r2 = e

n−1+m̂2
n

x is the distance
function on the cone. Also, one can average u by the action of W = {1,−1} to
obtain a smooth, even, strictly convex function (u(x) + u(−x))/2 on a, still denoted
by u, which is also an asymptotic solution to (6) having the same Ricci potential
decay as the Calabi ansatz, and defines a K-invariant trivial Kähler class [ddcu] on
G/H.

Since u′′ is asymptotic to r′′ at rate O(e−2(n−1+m̂)x/n) = O(r−4), the global (1, 1)-
form defined by u then decays at rate O(r−4). Note that in this case, the volume
density of G/H satisfies

V (x) = e(n−1+m̂)x(1 +O(e−x)),

which is asymptotically the density of the canonical volume form of C at rate
O(e−x) = O(r−

2n
n−1+m̂ ). Remark that there is an equivariant compactification X

of G/H such that X\G/H = D is a smooth Fano Kähler-Einstein manifold and
satisfies as a divisor

−KX = (A+ 1)D, A ∈ N∗
+.

Moreover the conormal bundle overD with zero section contracted (N∗
D)

× ≃ ( 1
AKD)

×

is in fact isomorphic to the regular Calabi-Yau cone C obtained by equivariant de-
generation. Since the trivial class contains a form with decay rate O(r−4), appealing
to Conlon-Hein’s existence theorem [CH15] then provides us a (unique up to scaling)
asymptotically conical Calabi-Yau metric on G/H in the trivial Kähler class whose
tangent cone at infinity is the horospherical tangent cone, with rate of convergence

2n

n− 1 + m̂
.

Smoothness implies that the cone is unique by Colding-Minicozzi’s uniqueness the-
orem [CM14]. □
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Example 2.9. The manifold M := T ∗Sn is homeomorphic to SO(n + 1)/ SO(n)
endowed with the symmetric space structure.

When n > 2, M is non-Hermitian with (m, m̂) = (n−1, 0) and admits a SOR(n+
1)-invariant (hence ∂∂-exact, cf. Remark 2.6) Calabi-Yau metric asymptotically con-
ical to the ordinary double point (C, g0) in Cn+1, where

C =
{
z21 + · · ·+ z2n+1 = 0

}
is Calabi-Yau with the SOR(n+ 1)-invariant cone metric ω0 = ddc |z|2−2/n. This is
the unique SOR(n+1)-invariant Calabi-Yau metric on C, viewed as a horospherical
cone under the induced SO(n+1)×C∗ action. Geometrically, M can be interpreted
as an equivariant smoothing of the ordinary double point.

Remark 2.10. The rate of convergence is likely to be optimal for all rank-one sym-
metric spaces in the following sense: there is a diffeomorphism Φ between G/H and
C outside of a compact subset such that h := Φ∗g − g0 satisfies the Bianchi gauge
condition

divg0(h− 1

2
trg0(h)g0) = 0.

This is proved for the case M = SO(n + 1)/ SO(n) with n > 2 by realizing Φ as a
projection of C onto M in some CN [CH13].

The following result is elementary, but important because it tells us how we can
choose the constants in the Calabi ansatz so that the latter agrees with the Stenzel-
like model during the gluing process, as the reader shall see.

Proposition 2.11. Up to an additive constant, the Stenzel potential w solution to

Aw′′(x)(w′(x))m+m̂ = sinhm(x) sinhm̂(2x),

where A > 0, has the asymptotic expansion

w(x) = Keax(1 +
∑
k≥1

cke
−2kx),

where a = n−1+m̂
n and

(7) K =
n

n− 1 + m̂

(
n

A(n− 1 + m̂)2n−1

) 1
n

.

Proof. Let v := w′. Remark that the equation is equivalent to

A

n
(v(x)n)′ = sinhm(x) sinhm̂(2x).

It follows that

(v(x)n)′ =
n

A

e(n−1+m̂)x

2n−1
(1− e−2x)m(1− e−4x)m̂,

hence

v(x) =

(
n

A(n− 1 + m̂)2n−1

) 1
n

e
n−1+m̂

n
x(1 +

∑
cke

−2kx).

Thus we obtain the result after suitably choosing a constant in the integration. □
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3. Geometric prelude

3.1. Geometric constructions. In higher rank, there are more choices of equivari-
ant degenerations, hence more candidates for the tangent cone at infinity. Compared
with the rank-one case, a new feature in higher rank is that the potential tangent
cones are singular in general, so the Calabi ansatz from the cone does not yield di-
rectly a global potential on the symmetric space. One must then appeal to gluing
techniques, and decay rate improvement methods to get a global potential with good
decay properties.

The candidates for tangent cones of the symmetric space in the rank-two cases
can be geometrically obtained as follows.

• First for a rational G-invariant valuation in G/H, one can embed G/H into
a symmetric projective variety X using (i) the valuation and (ii) either one of
the colors if the valuation is on the Weyl wall, or both colors if the valuation
is in the interior of the Weyl chamber. The former is the approach of [BD19],
and the latter is our approach (see Figure 2).

The variety X consists of the open dense orbit, two closed G-orbits of
codimension ≥ 2, and a unique G-invariant divisor D0.

• Taking the affine cone over X (with respect to its “canonical” G-linearized
polarization) yields the total space C(X) of the degeneration. The central
fiber of this cone yields the candidate for the tangent cone C0.

Remark 3.1. Let T0 be the connected component of AutG(C0) and tnc be the non-
compact Lie algebra of T0 as in [Ngh23]. Since C0 is an equivariant degeneration of
G/H, their function fields coincide as G-modules, hence their weight lattices coincide,
so tnc = a as duals of the weight lattices tensored over R. The fact that tnc = a allows
us to reduce questions of Gromov-Hausdorff convergence to equivalence of functions
on a.

By [BP87], the rational elements in the interior of the Weyl chamber yield isomor-
phic candidates (as G-horospherical varieties) for the tangent cones at infinity, so
the construction does not depend on the choice of such element. To “desingularize”
the Calabi ansatz from the cone C0, we view D0 as embedded in X̃, which is the
blow-up of X along the Weyl walls so that

X̃\(G/H) = D0 ∪D1 ∪D2,

where D1, D2 are the divisors corresponding to the Weyl walls α̃1, α̃2. Let us provide
some details on the geometry of the divisors.

• The open orbit G/Hi of each Di is a fibration over a flag manifold with
fiber a symmetric space of rank one Xi. From spherical variety theory
[DCP83][Theorem 5.2], each Di is a fibration over a flag manifold G/Pi with
fiber the wonderful compactification of Xi. The divisor D0 in X̃ is then a
three-orbits variety, which consists of the open dense orbit and two closed
orbits D0 ∩D1, D0 ∩D2 which are also the possible singularities of D0.

• The conical Calabi-Yau metric on C0 is only well-defined as a Kähler-Einstein
current over the singular loci. In order to obtain a smooth asymptotic solu-
tion from the Calabi ansatz, we proceed to build smooth models on neigh-
borhoods of D0∩D1, D0∩D2 based on the asymptotic behavior of the Calabi
ansatz near D1, D2. It turns out that the Calabi ansatz behaves like a warped
product of AC metrics near the singularities, cf (16) and Ansatz 5.1.
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α∨
1

α∨
2

Figure 2. The colored fan of the compactification X in the inde-
composable A2-cases. Here α∨

1,2 denote the restricted coroots which
are also the images of the colors of X. The colored fan of X̃ is ob-
tained by subdividing the fan of X using the rays −R≥0α̃1,2.

• To be precise, we build a model metric on an equivariant blowdown KD∨
i

of
KDi (which has open orbit C∗×G/Hi) that contracts G/Pi to a point. This
model is in fact equivalent to S1-invariant metrics near singularities of C0.

The roots α1, α2 as elements in a∗ represent directions to the divisors D1, D2 at
infinity of G/H. Namely, if xk = exp(vk) → x∞ ∈ ∩j∈JDj , where J ⊂ {1, 2}, then
αj(vk) → +∞ for all j ∈ J . To capture the behavior near D1 and D2, we will use
orthogonal coordinates (α̃1, α2), (α1, α̃2) in a∗.

Let β be a (possibly irrational) direction in the interior of the Weyl chamber. As
stated in the introduction, we will mainly consider the generic region where β ∼ α2 ∼
α1 ≫ 1, and the two boundary regions β ∼ α2 ≫ α1 ∼ 1 and β ∼ α1 ≫ α2 ∼ 1,
which are geometrically D0\(D1 ∪D2), D0 ∩D2\D1 and D0 ∩D1\D2, respectively.

Example 3.2. The (n − 1)-dimensional projective quadric Qn−1 defined by the
equation

∑n+1
j=1 z

2
j = 0 in Pn−1

z1,...,zn+1
, can be viewed as the compactification X of the

symmetric space (SOm1+1×SOm2+1)/H where H = Stab[1 : 0 · · · : 1 : · · · : 0].
Although the restricted root system is of type A1 × A1, this is not a product of two
symmetric spaces of type A1, but a finite covering of the latter, cf. [Ruz10][Theorem
5, (1)]. The compactification X of the product is thus a finite quotient of Qn−1. The
quadric Qn−1 is described in [Ruz10] in terms of Grassmannians. Here we provide
the more concrete description of Qn−1 in [Del22].

Let π1, π2 be the rational projections from Pn to Pm1 and Pm2. The open orbit
is formed by the points in Qn−1 where both π1, π2 are well-defined. The two closed
orbits are formed by the points in Qn−1 where π1 or π2 are not defined, which can be
identified with the quadrics

Qm1 =


m1+1∑
j=1

z2j = 0

 , Qm2 =


n+1∑

j=m1+2

z2j = 0

 .

The codimension one orbit D0 is formed by the points in Qn−1 where both π1, π2 are
defined and lie in the corresponding quadrics. In short, D0 is a finite covering of the
product divisor

(Qm1 ×Qm2) ∩Qn−1

on the corresponding compactification of SOm1+1 /S(O1 × Om1) × SOm2+1 /S(O1 ×
Om2),m1 ≥ 2.
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Example 3.3. Let us now describe the compactification X of O := SL3 /SO3. In
fact, O can be viewed as the projectivization of the quadratic forms in S2(C3)∗

with unit determinant. In other words, O is the following affine subset of P(C ⊕
S2(C3)∗)z0,...,z6 :

O = [Q ∈ P(S2(C3)∗),det(Q) = z0] ∩ [z0 = 1].

Let ω̂1,2 be the fundamental weights of G with highest weight vectors v1,2 where v1 ∈
S2(C3)∗, v2 ∈ S2(C3). The vector spaces S2(C3)∗, S2(C3) are in fact the simple
SL3-modules with highest weights ω̂1, ω̂2, respectively. Let Q∨ be the adjoint matrix
of Q. We embed O by the map

O ↪→ P(C⊕ S2(C3)∗ ⊕ S2(C3)) ≃ P12

Q→ [1, Q, Q∨].

Taking the closure of O inside this projective space then yields the compactification
X with the unique G-stable divisor

D0 := {det(Q) = 0} ∩X.
Alternatively, D0 is given by the closure in P(S2(C3)∗⊕S2(C3)) ≃ P11 of G(v1+v2),
so D0 is in particular horospherical. The G-valuation associated to D0 is −(ω̂∨

1 +
ω̂∨
2 )/2.
By [Ruz10, Theorem 3], Aut0(X) = SL3, hence

Aut0G(X) = Z(SL3) =
{
λI3, λ ∈ C, λ3 = 1

}
≃ Z3,

and Aut0G(C, ξ) is (C∗)2. In particular, there can only be finitely many Kähler-
Einstein metrics on the pair (X,D), while there is a two-parameters family of conical
Calabi-Yau metrics on C, hence a priori two-parameters choice of the Calabi ansatz
to build Calabi-Yau metrics.

3.2. Singularity of tangent cones. We will use Pasquier’s smoothness criterion
for horospherical varieties to prove that all of the tangent cones are in fact singular.
With the same setup as in 2.1, we denote by Ŝ the set of simple roots with respect
to the choice of a positive root system R̂+ of (G,T ).

A G-horospherical homogeneous space with open Borel orbit is uniquely deter-
mined by a sublattice M of ZŜ, and a subset I ⊂ Ŝ such that ⟨χ, α̂∨⟩ = 0 for all
χ ∈ M and α̂ ∈ I. The dual lattice N of M is called the coweight lattice.

The set I corresponds to the parabolic subgroup PI that left-stabilizes the open
Borel orbit, and there is a one-to-one correspondence between the set of colors D
and the coroots in Ŝ\I.

Theorem 3.4. [Pas06] Let σ be the map from D that sends a divisor to its valuation
viewed in N . A simple G-horospherical variety with colored cone (C,F) is locally
factorial if and only if the following two conditions are satisfied:

• The elements of F have pairwise distinct images by σ.
• C is generated by a basis of N containing σ(F).

Definition 3.5. [Pas06] Let I, J be two disjoint subsets of Ŝ. Let Γ
Ŝ

be the Dynkin
diagram of G, and ΓI∪J be a subgraph of Γ

Ŝ
whose vertices and edges consist of the

elements in I ∪ J and the edges in Γ
Ŝ

joining two elements in I ∪ J .
The couple (I, J) is said to be smooth if every connected component Γ of ΓI∪J

satisfies one of the following conditions.
(1) Γ is a Dynkin diagram of type An whose vertices are all in I, except one of

the two endpoints being in J .
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(2) Γ is a Dynkin diagram of type Cn whose vertices are all in I, except the
simple (i.e. not connected to the double edge) endpoint being in J .

(3) Γ is a Dynkin diagram of arbitrary type whose vertices are all in I.

Theorem 3.6. [Pas06] A simple embedding E with colored cone (C,F) of a horo-
spherical space G/H is smooth if and only if the following conditions hold.

• E is locally factorial.
• If we let JF =

{
α̂ ∈ Ŝ\I,Dα̂ ∈ F

}
, then the couple (I, JF ) is smooth.

Let β0 be the ray corresponding to D0 in the colored fan of the compactification
X. We view D0 as the base of the tangent cone C0 (with respect to the polarization
by β0), as well as the unique G-stable horospherical divisor inside X with open orbit
G/H0.

Since the tangent cone does not depend on the chosen valuation inside the Weyl
chamber [Ngh23], one can take β0 = α1 + α2. Thanks to [BP87, Théorème 3.6], we
can determine the combinatorial data of the homogeneous horospherical space G/H0

in terms of the data of G/H. The combinatorial data of the open orbit G/H0 × C∗

inside C0 then easily follows.

Lemma 3.7. Suppose that M(G/H) = Z ⟨ω1, ω2⟩, where ω1,2 are the restricted
fundamental weights of G/H with respect to Convention 2.1. Then

• The lattice M0 of G/H0 corresponds to Z(ω1 − ω2). In particular, N0 =

Zα∨
1 −α∨

2
2 .

• The subset I that determines G/H0 is the set
{
α̂ ∈ Ŝ, α̂ = θ(α̂)

}
. In partic-

ular, the roots in I correspond to the black nodes in the Satake diagram of
G/H.

Proof. If β0 = α1 + α2 generates the ray corresponding to D0 in the colored fan of
X, then M0 = β⊥0 ∩M. Hence M0 = Z(ω1 − ω2).

Since the left-stabilizer of the open Borel orbit of G/H is the same as that of G/H0

[BP87], Ŝ\I consists of positive simple roots α̂ such that α̂ ̸= θ(α̂) in the Cartan
algebra, hence I consists of the black nodes in the Satake diagram of G/H. □

A spherical Fano cone has smooth link iff it is smooth outside the unique fixed
point {0} of G. Since the cone C0\ {0} consists of two rank one simple embeddings,
it is enough to show that one of the embeddings is singular via their combinatorial
data.

Lemma 3.8. The colored cones associated to the rank one simple embeddings in
C0\ {0} are (Ci,Fi), i = 1, 2, where Ci = R≥0α

∨
i ,Fi =

{
Dα̂, α̂ ∈ Ŝ, α̂− θ(α̂) = αi

}
.

The couple of simple roots associated to each rank one embedding of C0\ {0} is

JFi =
{
α̂ ∈ Ŝ\I, α̂− θ(α̂) = αi

}
, Ii = Ŝ\JFi , i = 1, 2.

In particular, JFi corresponds to the white nodes in the Satake diagram that restrict
to the simple restricted root αi. The graphs ΓIi∪JFi

of the pairs (Ii, JFi) of the
indecomposable spaces are summarized in Table 3.

Proof. Following [Ngh23], the support of the colored cone of C0 is the convex cone
generated by α∨

1,2 and the colors of C0 are in bijection with Ŝ\I. The rank one
embeddings in C0\ {0} then correspond to the two one-dimensional colored cones
(Ci,Fi), i = 1, 2 by the orbit-cone correspondence. Since the embeddings are them-
selves horospherical cones, it follows from Theorem 2.3 and definition of JFi that
Ii = Ŝ\JFi . □
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Proposition 3.9. All the candidates for horospherical tangent cones at infinity of
the rank two symmetric spaces are singular. Moreover, the tangent cones at infinity
of the decomposable ones are product of the Stenzel asymptotic cones on each factor.

Proof. From Table 3 and Pasquier’s criterion, it is straightforward to see that the only
tangent cones with both couples (Ii, JFi), i = 1, 2 being smooth are the horospherical
tangent cones of the symmetric spaces of involution type AI and A2.

In these cases, suppose that our symmetric space has maximal weight lattice
Z ⟨ω1, ω2⟩. Since θ(α1) = −α1, we have α∨

1 = α̂∨
1 /2 (see [Vus90, Section 2.3],

or [Del20b, Definition 1.22]), so ω1 = 2ω̂1. But σ(Dα̂1
) = α̂∨

1 |M0 = 2α∨
1 |M0 , hence

σ(Dα̂1
)(ω1 − ω2) = 2, so C1 is not generated by σ(Dα̂1

), i.e. the cone is not locally
factorial. The same argument applies for symmetric spaces whose weight lattice is
an integer multiple of Z ⟨ω1, ω2⟩.

The same reasoning as in Lemma 3.7 and the fact that I = Ŝ\J for a horospher-
ical cone implies that the graph ΓI∪J of the Stenzel asymptotic cone is exactly the
Dynkin diagram of the symmetric space with (I, J) being (black nodes,white nodes)
in the Satake diagram. It follows that every Stenzel asymptotic cone has a unique
singularity since the graph of each space is not smooth, except for the A1 case where
r is odd (cf. Table 1). But the cone is not locally factorial in this case by the same
reasoning as above.

Finally, the asymptotic cones of the decomposable symmetric spaces have in fact
the same K-stable Reeb vector as that of the product of the Stenzel asymptotic cones
(cf. Theorem 4.2). The vector degenerates the decomposable symmetric space to the
product cone, which is singular as a product of two cones with an isolated singularity.
This terminates our proof. □

4. The horospherical Calabi ansatz

4.1. Horospherical cones. We recall briefly the setting in [Ngh23]. The colored
cone (C,D) of a horospherical cone in the orbit-cone correspondence consists of a
cone C of maximal dimension, and a set D containing all the colors of the open
G-orbit. Let Q be the left-stabilizer of the open Borel-orbit with Levi decomposition

Q = QuL

and R̂Qu = R̂Q\R̂L be the set of “unipotent” roots in Q. The Duistermaat-Heckman
polynomial of the cone is defined as

PDH(p) =
∏

α̂∈R̂Qu

⟨α̂, p⟩ .

Theorem 4.1. [Ngh23] Let C be an n-dimensional Q-Gorenstein G-horospherical
cone of rank k and ξ a Reeb vector polarizing C. Then the following are equivalent

• C admits a K-invariant conical Calabi-Yau metric compatible with ξ.
• (C, ξ) is K-semistable.
• (C, ξ) is K-stable.
• The real Monge-Ampère equation

det(d2v)PDH(dv) = eϖ, ∂v(Rr) = C∨

admits a positive strictly convex smooth solution v such that v(x+tξ) = v(x).
Here ϖ is the canonical linear function on C determined by the Q-Gorenstein
condition.
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Type R (I1, JF1), (I2, JF2)

AI A2 ,

A2 − ,
AII − ,

EIV − ,

AIIIa BC2 ,

CIIa − ,

DIIIa − ,

EIII − ,

BDI B2
, if r even,

, else
AIIIb − ,

DIIIb − ,

B2 − ,
CIIb − ,

G G2 ,

G2 − ,

Table 3. Graph data of of C0\ {0}. Here Ii = I ∪ {crossed nodes}
where I is the set of black nodes in the Satake diagram, and JFi is
one (pair) of the non-crossed white nodes.

Furthermore, a Q-Gorenstein G-horospherical cone is always K-stable, i.e. there is
always the choice of a Reeb vector such that

barDH(∆ξ) = ϖ,

where ∆ξ is the polytope C ∩ {⟨ϖ, ξ⟩ = n}, and barDH is the barycenter of ∆ξ with
respect to PDH .

Horospherical cones appear as a model at infinity of a symmetric space G/H when
we degenerate G/H along a direction in the interior of the Weyl chamber. In fact,
we can compute the (normalized) Reeb vector of the horospherical cone in terms of
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the combinatorial data on the symmetric spaces. For example, the Reeb cone CR of
C0 can be identified with the cone generated by the restricted simple roots of G/H
(in particular C∨

R is the Weyl chamber).
In the rank-two situation, let ξ ∈ CR be a Reeb vector and δ = α2 − tα1, t > 0

such that ⟨δ, ξ⟩ = 0. Note that PDH |a = P (up to a positive constant factor), since
R̂Qu = R̂+\R̂θ.

Theorem 4.2. [Ngh23]
• The horospherical cone C0 is Gorenstein, hence has canonical singularities

by [Pas17, Prop. 6.1].
• If G/H is a rank two symmetric space, the Reeb vector ξ defines a conical

Calabi-Yau metric on C0 if and only if t is a positive solution of∫ λ+

λ−

pP (ϖ + pδ)dp = 0,

where P is the Duistermaat-Heckman polynomial of the symmetric space, and

λ− = −⟨α2, ϖ⟩
⟨α2, δ⟩

< 0, λ+ = −⟨α1, ϖ⟩
⟨α1, δ⟩

> 0

are the intersections with α̃1, α̃2 of the line passing through ϖ and parallel to
δ.

• The K-stable Reeb vector of a horospherical degeneration arising from non-
G2 symmetric spaces of rank two lies in the interior of the restricted Weyl
chamber, and outside the Weyl chamber while being irregular for the G2-
symmetric spaces.

Proof. The first two points are already contained in [Ngh23]. The last point was
proved in [Ngh23] for all the finite families of non-G2 indecomposable symmetric
spaces, while for the infinite families it follows from a continuity argument. Indeed,
the function ξ → barDH(∆ξ) is continuous and its value lies on different positive
sides of ϖ when ξ = α̃1, α̃2 by [BD19], hence there is a ξ0 in the interior of the Weyl
chamber such that barDH(∆ξ0) = ϖ.

The setup is almost the same for the decomposable cases andG2-symmetric spaces.
A quick way to show that the vector is always rational and lies in the interior of the
Weyl chamber in the R1 × R1-cases is to use uniqueness of the volume minimizer
in [Ngh23]. In fact, the K-stable Reeb vector is exactly the product of two K-stable
Reeb vectors on each factor of the root system. Indeed, recall that the normalized
volume formula in [Ngh23] is

volDH(ξ) =

∫
C∨
R

e−⟨p,ξ⟩PDH(p)dλ(p).

From this formula and the fact that the polynomial PDH on R1×R1 is the product of
PDHi on each factor of the root system, it follows easily that if ξ = ξ1+ξ2 where ξi is
the Reeb vector of the factor i ∈ 1, 2, then volDH(ξ) = volDH1(ξ1) volDH2(ξ2). Hence
ξ minimizes volDH iff ξi minimizes volDHi , i.e. ξi = (mi+ m̂i+1)/(mi+2m̂i)ω

∨
i by

the proof of Theorem 1.4.
Let us now show that the K-stable Reeb vector lies outside of the positive Weyl

chamber in the G2-cases. The positive roots are α1, α2, α1 + α2, 2α1 + α2, 3α1 +
2α2, 3α1 + α2 with multiplicities all equal to m = 1 or m = 2 and ⟨α1, α1⟩ =,
⟨α2, α2⟩ = 1, ⟨α1, α2⟩ = 3, ⟨α1, α2⟩ = −3/2 . The data of the problem is then
ϖ = 10mα1 + 6mα2,

λ+ =
2m

2t+ 3
, λ− = − 2m

t+ 2
,
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and

P (p) =(2m− (2t+ 3)p)m(6m+ (3t+ 6)p)m(8m+ (t+ 3)p)m

(10m− tp)m(12m− (3t+ 3)p)m(18 + 3p)m.

For m = 1 and m = 2, the polynomial equations obtained from the K-stability
condition are respectively

2376 + 9225t+ 13407t2 + 9357t3 + 3179t4 + 424t5 = 0,

and
20558772 + 134444448t+ 374274594t2 + 590688162t3 + 587394519t4+

383740299t5 + 165293858t6 + 45384306t7 + 7221048t8 + 507988t9 = 0.

It is obvious that both equations have no positive solution since all the coefficients
are positive. Finally, one can show that there is no rational solution in both cases
by using the rational root theorem. □

4.2. The ansatz and its Ricci potential. We now let β be a direction in the
interior of the Weyl chamber. Let

δ := α2 − tα1

be such that ⟨β, δ⟩ = 0 and ⟨δ, α1⟩ < 0. Define

b =
⟨ϖ,β⟩
n ⟨β, β⟩

, d =
⟨ϖ, δ⟩
n ⟨δ, δ⟩

where n is the dimension of the symmetric space.

Ansatz 4.3. Consider the Calabi ansatz

ρ(0) = exp(φ), φ = bβ + ψ(δ).

Here ψ is a function defined in such a way that the function

u = nψ(δ)− ⟨ϖ, δ⟩
⟨δ, δ⟩

δ + log(b22n−2n1−n) = nψ(δ)− ndδ + log(b22n−2n1−n)

satisfies:

(8) u′′ > 0, u′(R) =]λ−, λ+[, u′′P (u′) = e−u.

Remark 4.4.
• Note that nφ = u+ϖ up to a constant. The choice of ρ(0) is justified by the

solution of the conical Monge-Ampère equation in [Ngh23], where we make
the change of variable v = eu+ϖ to reduce the equation to an analog of the
Kähler-Einstein problem on Fano horospherical varieties.

• By Remark 3.1, we can view ρ(0) as the locally bounded conical Calabi-Yau
potential restricted on a, while ψ can be interpreted as the (singular) Kähler-
Einstein potential of a Fano variety when the tangent cone is regular, or a
transverse Kähler-Einstein potential in the irregular case.

We now verify that ρ(0) is an asymptotic solution to the Ricci-flat equation on the
generic region. We have

dρ(0) = ρ(0)dφ = ρ(0)(bβ + ψ′(δ)δ)

This implies:

d2ρ(0) = ρ(0)(d2φ+ dφ⊗ dφ) = ρ(0)(ψ′′(δ) + ψ′(δ)2)δ ⊗ δ + b2β ⊗ β

+ bψ′(δ)(β ⊗ δ + δ ⊗ β)).
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hence by using n = 2 +
∑

α∈R+ mα, and ϖ =
∑

α∈R+ mαα = nbβ + ndδ, we obtain

det(d2ρ(0))
∏
α∈Φ+

〈
α, dρ(0)

〉mα

= (ρ(0))nb2ψ′′(δ)
∏
α∈R+

〈
α, bβ + ψ′(δ)δ

〉mα

= b2 exp(nbβ − log(b22n−2) + ndδ)

=
∏
α∈R+

(
eα

2

)mα

=
∏
α∈Φ+

sinh(α)mα
∏
α∈R+

(
1− e−2α

)−mα

It follows that ρ(0) is an asymptotic solution to the Ricci-flat equation in the generic
region. Indeed, consider the Ricci potential

(9) P(ρ(0)) = ln det(d2ρ(0)) +
∑
α∈R+

mα(ln
〈
α, dρ(0)

〉
− ln sinhα).

When α2 ≫ α1, resp. α1 ≫ α2 (so that β ∼ α2 ≫ α1, resp. β ∼ α1 ≫ α2), we have

(10) P(ρ(0)) = ln(1 +O(e−2α2)), resp. P(ρ(0)) = ln(1 +O(e−2α1)),

while on the region β ∼ α2 ∼ α1 ≫ 1,

(11) P(ρ(0)) = ln(1 +O(e−2β)).

It follows that on the generic region

P(ρ(0)) = O(e−2β),

and the same holds for all derivatives. Let r be the radius of the cone metric on C0

so that r2 restricts to ρ(0) = ebβ+ψ(δ) on the open orbit of C0. Since ψ(δ) is bounded
for α2 ∼ α1, we have e−2β ∼ r−4/b outside of a compact subset of G/H, hence on
the generic region

(12)
∣∣∣P(ρ(0))

∣∣∣ ≤ r−4/b.

Using Table 5, one can easily check that 4/b > 2, hence ρ(0) has faster than quadratic
decay in the generic region. We will later glue this asymptotic solution with two
potentials in the direction of D1 and D2 in such a manner that the Ricci potential
still behaves well in a neighborhood of the infinity direction near D1, D2. To justify
the choice of the model near D1, D2, we first need to study the asymptotic behavior
of the Calabi ansatz.

4.3. Asymptotic behavior of the transverse potential. Consider two real num-
bers λ− < 0 < λ+ and a one-variable polynomial P which is positive on ]λ−, λ+[ and
vanishes on λ± with multiplicities m±.

Theorem 4.5. Let u : R → R be a strictly convex smooth positive function such that

u′′P (u′) = e−u, u′(R) =]λ−, λ+[

and δ− < 0 < δ+ be the constants defined by

δ± =
λ±

m± + 1
.

Then there exist two sequences (C±
j )j∈N such that

(13) u(x) = λ±x+ C±
0 +

m∑
j=1

C±
j e

−jδ±x + o
(
e−mδ±x

)
when x→ ±∞.
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Proof. Let u∗(p) := supx∈R(xp − u(x)) be the Legendre transform of u. Since u is
smooth and that u′(R) =]λ−, λ+[, we have dom(u∗) =]λ−, λ+[. Moreover, λ+x−u(x)
(resp. λ−x− u(x)) is a strictly increasing (resp. strictly decreasing) function, hence

lim
x→±∞

(λ±x− u(x)) = lim
p→λ±

u∗(p).

By [Ngh23, Lemma 3.22], the solution u actually satisfies ∥u∗∥L∞(]λ−,λ+[) < +∞.
Therefore

C±
0 := lim

x→±∞
(λ±x− u(x)) <∞.

We thus obtain the first two terms in the expansion of u near ±∞. Suppose that
we have an expansion of u at order N . The goal is to obtain an expansion at order
N + 1. We have

e−u(x) = e−λ±x

 N∑
j=0

C
±,(0)
j e−jδ±x + o

(
e−Nδ±x

)
where C

±,(0)
j = eC

±
j +1. We only consider the behavior of u near +∞ since the

reasoning is the same near −∞. Integrating the equation we obtain

(14)
∫ +∞

x
u′′(t)P (u′(t))dt = e−λ+x

 N∑
j=0

C
+,(1)
j e−jδ+x + o

(
e−Nδ+x

)
where C+,(1)

j =
C

+,(0)
j

λ++jδ+
. LetQ be a primitive of P . We then have

∫ +∞
x u′′(t)P (u′(t))dt =∫ λ+

u′(x) P (p)dp = Q(λ+) − Q(u′(x)). Since (−1)m+Pm+(λ+) > 0, the following func-
tion

F (w) :=

(
(m+ + 1)!(Q(λ+)−Q(λ+ − w))

(−1)m+Pm+(λ+)

)1/(m++1)

is a well-defined analytic function and admits an analytic development of arbitrary
order with F ′(0) > 0. In particular F is invertible and the inverse of F is also
analytic in a neighborhood of 0. From the previous expansion, it follows that

F (λ+ − u′(x)) = C
+,(2)
0 e−δ+x

1 +
N∑
j=1

C
+,(2)
j e−jδ+x + o(e−Nδ+x)


where C+,(2)

0 = (C
+,(1)
0 )1/(m++1) and C+,(2)

j =
C

+,(1)
j

m++1 . Applying the inverse function
of F onto the above expression yields an asymptotic expression of u′ to the order N ,
hence of u to the order N + 1 near +∞. □

As an immediate corollary, the transverse potential ψ(x) admits the asymptotic
expansion

(15) ψ(x) =

(
d+

λ±
n

)
x+K±

0 +
m∑
j=1

K±
j e

−jδ±x + o(e−mδ±x),

where

K±
0 =

C±
0 − log(b22n−2n1−n)

n
, K±

j =
C±
j

n
, j ≥ 1.
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5. Construction of the global asymptotic solution

5.1. Asymptotic of the Calabi ansatz near the boundary divisors. View
G/H as an open orbit inside the compactification X̃. LetD1, D2 be the two boundary
divisors corresponding to the rays α̃1, α̃2. By an abuse of notation, we use (α̃1, α2)
(resp. (α̃2, α1)) as coordinates of C∗ ×G/H1 (resp. C×G/H2).

Let b±1 := (d+ λ±/n), a±0 be constants such that

a+0 α̃2 = bβ + b+1 δ, a−0 α̃1 = bβ + b−1 δ.

Recall that
ρ(0) = exp(bβ + ψ(δ)),

where δ = α2 − tα1. Formally, there exist two sequences (K±
j )j∈N such that

ρ(0) = exp(bβ + b±1 δ +K±
0 ) exp

∑
K±
j e

−jδ±(α2−tα1),

when δ → ±∞.
By the asymptotic behavior (15) of ψ, if α2 ≪ α1 and α1 → +∞ (hence δ → −∞),

then
ρ(0) ∼ ebβ+b

−
1 δ+K

−
0 exp

∑
j≥1

c−j e
−a−j α1

∼ ebβ+b
−
1 δ+K

−
0 (1 +

∑
j≥1

c−j e
−a−j α1).

Here c−j := K−
j e

jδ−α2 and a−j = −tjδ−. Similarly, when α1 ≪ α2 and α2 → +∞ (so
that δ → +∞),

ρ(0) ∼ ebβ+b
+
1 δ+K

+
0 exp

∑
j≥1

c+j e
−a+j α2

where c+j := K+
j e

−jδ+α1 and a+j = jδ+ > 0.
Thus we see that the first order asymptotic behavior of ρ(0) near D2 and D1 is of

the form

(16) eK
±
0 +a±0 α̃2,1(1 +

∑
j≥1

c±j e
−a±j α2,1).

5.2. Construction of the boundary potentials. The first step is to provide good
initial ansätze ρ(1)1 , ρ

(2)
1 near D1, D2 based on the asymptotic (16). Let w be the

Stenzel potential on the symmetric fiber of, say, G/H2, which satisfies

(17) Aw′′(x)(w′(x))mα1+m2α1 = sinhmα1 (x) sinhm2α1 (x),

where A is a constant choosen so that the solution of the ODE has an expansion
when α1 → ∞ of the form

(18) w(α1) = K+
1 e

a+1 ζ2α1

1 +
∑
k≥1

wke
−2kα1

 ,

where the constant K+
1 is exactly the constant in the asymptotic expansion (15)

of the transverse potential ψ. One can indeed always make such choice of A, see
Proposition 2.11. Note that the constant ζ2 appears due to the choice of coordinates
on the Cartan algebra. We also have a similar potential near D1 after replacing
K+

1 , a
+
1 , ζ2 by K−

1 , a
−
1 , ζ1.
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Ansatz 5.1. Define the following warped product of AC metrics

(19) ρ
(2)
1 := eK

+
0 +a+0 α̃2

(
1 + e−a

+
1 α̃2w(α1)

)
where ea

+
0 α̃2 is the potential of the metric ddc |z|2a

+
0 with α̃2 = log |z|2 on C, and w

is the Stenzel potential on the open orbit G/H2 of D2.

Let us give a brief explanation on this choice. Suppose that we have some hypo-
thetical global potential ρ on G/H that coincides with ρ(0) in the generic region. We
would then like ρ to behave like ρ(0) at the first order near D1, D2, i.e.

ρ ∼ eK
+
0 +a+0 α̃2(1 +

∑
j≥1

r+j e
−a+j α2)

at the first order near D2 (and similarly near D1), cf. (16). We would also like ρ
to be translated in terms of the coordinates (α̃2, α1) on C∗ × G/H2. This suggests
we rewrite each term r+j e

−a+j α2 as r+j e
−a+j α̃2ea

+
1 ζ2α1 , but the term r+j e

a+1 ζ2α1 can
be identified with the radius function of the Stenzel metric in (18). This somehow
justifies the choice of Ansatz 5.1.

It turns out that the Ricci potential of this initial ansatz might not have the decay
rate as we want, so the next step is to improve the decay rate of the Ricci-potential
by adding on new terms to kill off the badly-decaying terms in ρ(2)1 .

To be precise, as α2 → +∞ and α1 stays bounded,

ρ
(2)
1 = eK

+
0 +a+0 α̃2

(
1 + e−a

+
1 α2(r+1 +O(e−2α1))

)
, r+1 := K+

1 .

The idea of Proposition 5.2 is to successively add terms of the form

e−a
+
k α̃2Rk(α1) = e−a

+
k α2(r+k +O(e−2α1))

such that Rk mimics the Stenzel behavior at each order but with improved Ricci-
potential decay rate, and that the final first order term will have the form

eK
+
0 +a+0 α̃2(1 +

∑
k

r+k e
−a+k α2),

which is built to be the same as the first order asymptotic behavior (16) of ρ(0) near
D2, suggesting a consistency in some gluing region as we will see.

Proposition 5.2. There is a potential ρ(2) on C∗×G/H2 with asymptotic expansion
as α2 → ∞

ρ(2) ∼ eK
+
0 ea

+
0 α̃2

(
1 +

∑
k

e−a
+
k α̃2Rk(α1)

)
where

• R1 = w and for all k, Rk is an even function of α1 such that when α1 → ∞,
Rk has Stenzel-like behavior, that is,

Rk(α1) = ea
+
k ζ2α1(r+k +O(e−2α1)),

where r+k > 0 and O(e−2α1) is a function whose all derivatives behave like
O(e−2α1);

• 0 < a+1 < a+2 < . . . and a+i ∈ a+1 N+ 2N, ∀i ≥ 2;
• For every k ≥ 1, the Ricci potential P (cf. (4)) of the term ρ

(2)
k up to the

k-th order satisfies ∣∣∣∇lP(ρ
(2)
k )
∣∣∣ ≤ Ck,le

−a+k α2 .
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There is also an potential ρ(1) on C∗ ×G/H1 with similar properties.

The proof of Proposition 5.2 can be carried out in the same manner as [BD19].
We detail the arguments for the reader’s convenience. First we need the following
lemma (see also [BD19, Prop. 5.1]).

Lemma 5.3. Let L be the linearization of P at ρ(2)1 , i.e.

(20) L(f) := tr((d2ρ(2)1 )−1d2f) +
∑
α∈

mα
⟨α, df⟩〈
α, dρ

(2)
1

〉 .
To simplify the expression, we drop the ±-signs on the constants. Then as α2 → ∞,
we have asymptotically

(21)

L(f) =
1

eK
+
1 ea0α̃2

(ea1α̃2∆1f + a−2
0 ∂2

2̃
f + (n− 1− d1)a

−1
0 (∂2̃f)

+ a−2
0 (a0 − a1)

2 w(α1)

w′′(α1)
∂21f +

∑
α1∤α

a−1
0 (∂1f)

⟨α, α1⟩
⟨α, α̃2⟩

− 2a−2
0 (a0 − a1)

w′(α1)

w′′(α1)
∂2̃∂1f

+O(e−a1α2d2f) +O(e−a1α2df)).

where d1 :=
∑

α1|α α,

∆1f :=
∂21f

w′′(α1)
+ d1

∂1f

w′(α1)
,

and O(e−a1α2d2f) with O(e−a1α2df) are terms involving second and first derivatives
of f with coefficients growing like O(e−a1α2) as α2 → +∞. We also have a similar
expression when α1 → ∞.

Remark 5.4. In [BD19], two terms involving the first and second derivatives of
f were missing in the asymptotic formula for L (cf. Equation (32) in loc. cit.),
but this doesn’t alter the decay improvement, since the effect of the missing terms is
asymptotically insignificant in the given direction.

Proof. To make the proof more readable, we remove the + sign in the constants. By
definition of ρ(2)1 , we have

(22) dρ
(2)
1 = eK1+a0α̃2

(
(a0 + (a0 − a1)w(α1)e

−a1α̃2)α̃2 + w′(α1)e
−a1α̃2α1

)
.

It follows that

(23)

d2ρ
(2)
1 = eK1+a0α̃2((a20 + (a0 − a1)

2w(α1)e
−a1α̃2)α̃2 ⊗ α̃2

+ (a0 − a1)w
′(α1)e

(a0−a1)α̃2(α̃2 ⊗ α1 + α1 ⊗ α̃2)

+ w′′(α1)e
−a1α̃1α1 ⊗ α1).

A straightforward calculation then yields
(24)

det(d2ρ
(2)
1 ) = e2K1+(2a0−a1)α̃2a20w

′′(α1)

(
1 + a−2

0 (a0 − a1)
2e−a1α̃2

(
w(α1)−

w′(α1)
2

w′′(α1)

))
.

From the computation of dρ(2)1 , we obtain
(25)〈
α, dρ

(2)
1

〉
=

{
eK1e(a0−a1)α̃2w′(α1) ⟨α, α1⟩ , α1 | α,
eK1+a0α̃2a0 ⟨α, α̃2⟩ (1 + e−a1α̃2(a0−a1a0

w(α1) +
⟨α,α1⟩
a0⟨α,α̃2⟩w

′(α1))), α1 ∤ α.
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Now use α̃2, α1 as the orthogonal basis of the dual Cartan algebra a∗, we can write
df = ∂2̃fα̃2+∂1fα1, where ∂1f = ⟨df, α1⟩ / |α|2. Let us first compute the trace term
of L. Note that as α2 → +∞,

(26) det(d2ρ
(2)
1 )−1 = e−2K1−(2a0−a1)α̃2a−2

0 w′′(α1)
−1(1 +O(e−a1α2)).

Letting A be the adjoint matrix of d2ρ(2)1 , we obtain

(27)
tr(Ad2f) = eK1+a0α̃2(e−a1α̃2w′′(α1)∂

2
2̃
f − 2(a0 − a1)e

−a1α̃2w′(α1)∂2̃∂1f

+ (a20 + (a0 − a1)
2e−a1α̃2w(α1))∂

2
1f).

Now combining (26) and (27) gives us
(28)

tr((d2ρ
(2)
1 )−1d2f) = e−(K1+a0α̃2)(a−2

0 ∂2
2̃
f − 2a−2

0 (a0 − a1)
w′(α1)

w′′(α1)
∂2̃∂1f

+ ea1α̃2
∂21f

w′′(α1)
+ a−2

0 (a0 − a1)
2w(α1)

∂21f

w′′(α1)

+O(e−a1α2d2f) +O(e−a1α2df)).

On the other hand, for the term involving roots, when α1 | α, we have

⟨α, df⟩〈
α, dρ

(2)
1

〉 =
∂1f

w′(α1)
e−K1e−(a0−a1)α̃2 ,

while if α1 ∤ α,

⟨α, df⟩〈
α, dρ

(2)
1

〉 =
(∂2̃f) ⟨α̃2, α⟩+ (∂1f) ⟨α, α1⟩

eK1+a0α̃2a0 ⟨α, α̃2⟩ (1 + e−a1α̃2(a0−a1a0
w(α1) +

⟨α,α1⟩
a0⟨α,α̃2⟩w

′(α1)))
.

Summing up, we get

(29)

∑
α∈R+

⟨α, df⟩〈
α, dρ

(2)
1

〉 = e−(K1+a0α̃2)(d1
∂1f

w′(α1)
ea1α̃2 + (n− 1− d1)a

−1
0 (∂2̃f)

+
∑
α1∤α

a−1
0 (∂1f)

⟨α, α1⟩
⟨α, α̃2⟩

+O(e−a1α2df)),

where d1 :=
∑

α1|α α. Putting together (28) and (29) gives us the desired asymptotic
formula for L. □

Proof of Proposition 5.2. Denote by P(ρ
(2)
1 ) the Ricci potential of ρ(2)1 . Define the

algebra

Aδ =

∑
ak≥δ

e−akα̃2fk(α1)

 ,

where fk are some even functions satisfying when α1 → ∞

fk(α1) = ea
+
k ζα1(Ak +O(e−2α1)),

and all the derivatives of fk have the same expansion. Following (24), (25) and the
asymptotic of the Stenzel potential (18), there is a formal power series

P(ρ
(2)
1 ) =

∑
a+k ≥a+1

e−a
+
k α̃2fk(α1) ∈ Aa+1

.
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One would then like to construct a potential ρ(2)2 whose Ricci potential has a better
decay rate, i.e. such that

P(ρ
(2)
2 ) ∈ Aa+2

,

where a2 = inf(2a1, 2). This can be done by killing off the term that decays badly in
P(ρ

(2)
1 ) with a small perturbation of ρ(2)1 . The procedure is as follows. Let L be the

linearization of P. By Lemma 5.3, when α2 → +∞ (that is, near D2), the leading
order of L is given by

e−K
+
1 e(−a

+
0 +a+1 )α̃2∆1,

where ∆1 is the weighted Laplacian defined by

∆1 =
∂21

w′′(α1)
+ d1

∂1
w′(α1)

.

Given a sufficiently small perturbation ρ(2)2 of ρ(2)1 , one has

P(ρ
(2)
2 ) = P(ρ

(2)
1 ) + L(ρ

(2)
2 − ρ

(2)
1 ) +Q

= e−a
+
1 α̃2g(α1) + h+ L(ρ

(2)
2 − ρ

(2)
1 ) +Q,

where g is an even function satisfying g(α1) = ea
+
1 ζ2α1(A + O(e−2α1)), h ∈ Aa+2

,

and Q is some non-linear term. In order to obtain P(ρ
(2)
2 ) ∈ Aa+2

one then needs

a potential ρ(2)2 such that the term L(ρ
(2)
2 − ρ

(2)
1 ) + e−a

+
1 α̃2g is in Aa+2

. This can be
done by first considering the equation

∆1f = g.

We view f, g as one-variable functions in the weighted spaces

Ckη := cosh(x)ηCk(R), η > 0, and Ck
η−ζ2a+1

.

By surjectivity of ∆1 [LM85], viewed as a linear operator

∆1 : C
k
η → Ck−2

η−ζ2a+1
,

and the asymptotic behavior of g, the equation always admits a solution of the form
f(α1) = e2a

+
1 ζ2α1(B + O(e−2α1)) (compare with the Stenzel potential w). Next, by

taking ρ(2)2 as
ρ
(2)
2 := ρ

(2)
1 − eK

+
0 e(a

+
0 −2a+1 )α̃2f(α1),

one obtains by straightforward computation using the asymptotic form (21) of L

L(ρ
(2)
2 − ρ

(2)
1 ) + e−a

+
1 α̃2g(α1) ∈ Aa+2

, as α2 → ∞.

This is because applying the non-Laplacian term of L to e(a
+
0 −2a+1 )α̃2f(α1) yields only

function in Aa+2
. To sum up, we have killed the badly-decaying term g in P(ρ

(2)
1 ) by

solving an explicit Laplacian equation, and obtained:

P(ρ
(2)
2 ) ∈ Aa+2

.

A reiteration of the construction yields ρ(2)k+1 from ρ
(2)
k . Finally, we obtain as α2 ≫ α1

and α1 ≫ 1

ρ(2) ∼ eK
+
0 +a+0 α̃2

1 +
∑
j≥1

e−a
+
j α2(r+j +O(e−2α1))


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α1

α2

α̃1

α̃2
α1 − θ+α2 = 0

α1 − θ−α2 = 0

Figure 3. The pasting lines α1−θ±α2 = 0. We impose the condition
θ+ > θ− > 0 so that the lines are distinct, and that they stay in the
interior of the Weyl chamber. The larger (resp. smaller) is the η in
α1 − ηα2, the closer the line gets to the wall α̃1 (resp. α̃2) .

with first order terms

eK
+
0 +a+0 α̃2

1 +
∑
j≥1

r+j e
−a+j α1

 ,

as formal series. This matches with the first order term of ρ(0). The construction of
ρ(1) is identical. □

5.3. Global potential. Before gluing the potentials, we need to verify that the top
order terms of ρ(0) and ρ(2), ρ(1) coincide near the boundary regions. The potentials
ρ(2), ρ(1) can thus be interpreted somehow as expansions of ρ(0) along the divisors.

By the computation carried out above, we have all the ingredients needed to
reperform the arguments as in [BD19], and obtain:

Lemma 5.5. The top order term of ρ(2) coincides with ρ(0) near the region β ∼
α2 ≫ 1, that is

exp
∑
j≥1

c+j e
−a+j α1 = 1 +

∑
j

r+j e
−a+j α1

In particular,
ρ(0) − ρ(2) ∼ eK

+
0 +a+0 α̃2

∑
k≥1

e−a
+
k α2gk(α1),

where gk(α1) = O(e−2α1), i.e. a function such that all derivatives satisfy this asymp-
totic behavior. The same can be said for ρ(1) in the region β ∼ α1 ≫ 1.

Next, we paste ρ(0) with the boundary potentials ρ(2)k and ρ
(1)
k along the lines

α1 − θ−α2 = 0 and α1 − θ+α2 = 0, where

k ∈ N, θ+ > θ− > 0

are to be chosen so that the Ricci potential of the final metric has the decay rate
that we want. Note that here we abuse our notations by using α1, α2 as coordinates
rather than elements of the affine space a∗.

Let γ : R → R be a smooth nondecreasing cutoff function with bounded derivatives
such that γ(t) = 0 if t ≤ 0 and γ(t) = 1 if t ≥ 1 and define

(30) ρ = (1−γ(α1−θ+α2)−γ(θ−α2−α1))ρ
(0)+γ(α1−θ+α2)ρ

(1)
k +γ(θ−α2−α1)ρ

(2)
k .

Clearly,

ρ =


ρ(0), θ−α2 ≤ α1 ≤ θ+α2,

ρ
(1)
k , α1 − θ+α2 ≥ 1,

ρ
(2)
k , α1 − θ−α2 ≤ −1.
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In particular, on the region 0 ≤ α1 − θ+α2 ≤ 1, we have

ρ = (1− γ(α1 − θ+α2))ρ
(0) + γ(α1 − θ+α2)ρ

(1)
k .

Rewriting
ρ− ρ

(1)
k = (1− γ(α1 − θ+α2)(ρ

(0) − ρ
(1)
k )

on this region, we obtain from the asymptotic expression of L

L(ρ− ρ
(1)
k ) = O(e−2α2 + e(a

−
1 −a−k+1)α1).

Similarly, when −1 ≤ α1 − θ−α2 ≤ 0, we have

ρ = (1− γ(θ−α2 − α1))ρ
(0) + γ(θ−α2 − α1)ρ

(2)
k ,

and also
L(ρ− ρ

(2)
k ) = O(e−2α1 + e(a

+
1 −a+k+1)α2).

Since P(ρ) ∼ P(ρ
(i)
k ) + L(ρ− ρ

(i)
k ), the asymptotic of P(ρ

(i)
k ) in Proposition 5.2 and

of L together yield

P(ρ) =

{
O(e−2α2 + e(a

−
1 −a−k+1)α1), 0 ≤ α1 − θ+α2 ≤ 1,

O(e−2α1 + e(a
+
1 −a+k+1)α2),−1 ≤ α1 − θ−α2 ≤ 0.

Let us justify that our choice of θ± in Proposition 5.7 is a priori coherent.

Lemma 5.6. For all symmetric spaces of rank two, we have(
2

a−0
− ζ1

)(
2

a+0
− ζ2

)
> 1.

In particular, we can always choose θ+ > θ− such that
2

a−0
− ζ1 > θ+ > θ− >

1
2
a+0

− ζ2
.

Proof. Table 5 summarizes all the constants needed for the computation. In the
R1 ×R1 case, we have ζ1 = ζ2 = 0, hence the condition is equivalent to

a−0 a
+
0 < 4,

which is satisfied since a−0 = (m1+2m̂1)/(m1+ m̂1+1) < 2, and the same holds for
a+0 .

In the A2 case, ζ1 = ζ2 = 1/2, so it is enough to verify that
2

a−0
− 1

2
> 1,

2

a+0
− 1

2
> 1,

which translate to a−0 < 4/3 and a+1 < 4/3. Both conditions are equivalent to
8m/3n < 4/3, which is true for all m and n in this case.

Let us now verify the condition in the BC2/B2 cases, where ζ1 = 1/2 and ζ2 = 1.
Again, it is enough to check that 2/a−0 − 1/2 > 1 and 2/a+0 − 1 > 1, which translate
to a−0 < 4/3 and a+1 < 1, that is

4m2

n

1 + t

2 + t
+

2m1 + 4m3

n
< 4/3,

2m2

n
+
m1 + 2m3

n

2 + t

1 + t
< 1,

or equivalently,

t >
−2m1 − 2m2 + 4m3 − 8

5m1 + 2m2 + 2m3 + 8
, t >

2m3 − 2

m1 + 2
.

It is easy to check that the first condition is trivial in all cases, and the second
condition is satisfied for m3 = 0 (i.e. for all the B2 cases) and for all the families of
type BC2 with m3 = 1.
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It remains to check the condtion

t >
2m3 − 2

m1 + 2

for the infinite family (4r − 16, 4, 3) of type BC2, i.e. t > 4/(4r − 14) = 2/(2r − 7).
It is enough to verify that t > 1 for all r ≥ 5 in this family. This will be proved
together with the bounded geometry condition in Lemma 7.5 since the proof idea is
similar. □

Proposition 5.7. If we take
2

a−0
− ζ1 > θ+ > θ− >

1
2
a+0

− ζ2
,

and k large enough so that

a−k+1 − a−1 > a−0 (1 + ζ1/θ
+), a+k+1 − a+1 > a+0 (1 + θ−ζ2),

then outside of a compact subset, we have for ε > 0 small enough and for all l∣∣∣∇lP(ρ)
∣∣∣ ≤ Cle

−(1+ε)φ,

where φ = bβ + ψ(δ).

Proof. We already have such a control in the generic region θ−α2 ≤ α1 ≤ θ+α2, as
well as in the two boundary regions where α1 ≫ α2 ∼ 1, resp. α2 ≫ α1 ∼ 1, cf.
(12). We need to show that such a control persists in the regions 0 ≤ α1 − θ+α2 ≤ 1
and −1 ≤ α1 − θ−α2 ≤ 0.

We have when α1 → +∞, φ = a−0 α̃1 +O(1), hence
(1) If α1 ≤ θ+α2, then a−0 α̃1 ≤ a−0 (θ

+ + ζ1)α2, so

e−2α2 = O(e−(1+ε)φ)

on this region if θ+ < (2/a−0 − ζ1). Note that we can always make such a
choice of θ+ since 2 > a−0 ζ1 as we can check in Table 5.

(2) On the region α1 ≥ θ+α2, we have a−0 α̃1 ≤ a−0 (1+ζ1/θ
+)α1, so e(a

−
1 −a−k+1)α1 =

e−(1+ε)φ on this region if a−k+1 − a−1 > a−0 (1 + ζ1/θ
+).

On the other hand, when α2 → +∞, φ = a+0 α̃2 +O(1), hence
(1) On the region α1 ≥ θ−α2, we have a+0 α̃2 ≤ a+0 (1/θ

− + ζ2)α1, so

e−2α1 = O(e−(1+ε)φ)

on this region if θ− > 1/(2/a+0 −ζ2). One needs to verify that this is consistent
with our choice of θ+ and θ−, i.e.

2

a−0
− ζ1 > θ+ > θ− >

1
2
a+0

− ζ2
,

which turns out to be the case for all symmetric spaces of rank two (cf.
Lemma 5.6).

(2) Finally, on the region α1 ≤ θ−α2, we have

a+0 α̃2 ≤ a+0 (1 + θ−ζ2)α2,

so if a+k+1 − a+1 > a+0 (1 + θ−ζ2), we have

e(a
+
1 −a+k+1)α2 = O(e−(1+ε)φ).

This completes our proof. □

Next, we need to show the following.
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Lemma 5.8. There is a potential, still denoted by ρ, which is W -invariant, convex
and smooth outside of a compact subset, that restricts to the potential ρ defined by
(30) on the given positive Weyl chamber.

Proof. By construction, the potentials ρ(1)k , ρ
(2)
k are invariant under the reflection

through the Weyl walls α̃1, α̃2, respectively, and ρ(0) is smooth, strictly convex in
the interior of the given positive Weyl chamber. Thus extending ρ to the whole
Cartan algebra a using the Weyl action then results in a potential, still denoted
by ρ, which is smooth outside of a compact subset, and restricts to ρ on the given
positive Weyl chamber.

Since ρ(0) is strictly convex by definition, we only need to show that outside of a
compact subset in the boundary region, ρ is strictly convex. This can be shown in
the same manner as in [BD19], since near each boundary region (e.g. D2), ρ has the
form χρ

(2)
k + (1− χ)ρ(0). □

From this one can argue as in [BD19] to paste a potential in the compact subset
with ρ and obtain a global potential.

Proposition 5.9. There is a globally W -invariant, smooth and strictly convex po-
tential on a, still denoted by ρ, such that

• ρ = ρ(0) in the generic region,
• ρ coincides with ρ(1)k and ρ(2)k in the boundary regions (for k large enough so

that the Ricci potential P(ρ) has the desired decay rate).

6. Asymptotic geometry of the asymptotic solution

Throughout this section we denote by g = ddcρ the final metric on G/H coming
from the global K-invariant potential ρ in Proposition 5.9, constructed by gluing the
Tian-Yau potential ρ(0) with two models near D1,2.

Recall that the tangent space of G/H can be decomposed as

g/h = Ca
⊕

Cµα̂,

= Cl1 ⊕ Cl2
⊕

Cµα̂,

where µα̂ = eα̂ + θ(eα̂) with (2Hα̂/ |α̂|2 , eα̂, e−α̂) being a sl2-triple, and a is the
Cartan algebra of G/H with basis (l1, l2) dual to the basis (α1, α2). We can then
locally parametrize G/H by complex coordinates (z1, z2, (zα̂)) with respect to theses
bases under the exponential map. Let ωab =

i
2dza ∧ dzb and ωα̂α̂ = i

2dzα̂ ∧ dzα̂.

Proposition 6.1. [Del20b] The metric g has the following expression

g =
∑

a,b∈{1,2}

d2ρ(la, lb)ωab + 2
∑
α̂∈R̂+

s

coth(α̂)
⟨dρ, α̂⟩
|α̂|2

ωα̂α̂.

From the local expression of the metric, we have

Lemma 6.2. In the generic region, the metric g can be identified with the cone
metric from the Calabi ansatz ρ(0) = eφ = ebβ+ψ(δ), which is

g0 = ρ(0)

|dφ|2 + ψ′′(δ) |δ|2 +
∑
α̂∈R̂+

s

2

|α̂|2
coth(α̂) ⟨dφ, α̂r⟩ |dzα̂|2


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Proof. This is straightforward from the expression of the metric in local coordinates.
Note that since dρ(0) belongs to the interior of the cone generated by the fundamental
weights, we have

〈
dρ(0), α̂r

〉
= eφ ⟨dφ, α̂r⟩ > 0 for all simple restricted roots, hence

g0 is a well-defined metric. □

Let g2 be the metrics associated to the potential

ρ
(2)
1 = eK

+
0 +a+0 α̃2(1 + e−a

+
1 α̃2w(α1)),

and g1 the metric associated to ρ
(1)
1 . Then same computations as in [BD19] show

that

Lemma 6.3. As α2 → +∞, the highest order term of g2 takes the form

g∞2 := ρ
(2)
1 ((a+0 )

2 |α̃2|2 + 2a+0
∑
α1∤α̂r

coth(α̂)
⟨α1, α̂r⟩
|α̂|2

|dzα̂|2

+ e−a
+
1 α̃2(w′′(α1) |α1|2 + 2w′(α1)

∑
α1|α̂r

coth(α̂)
⟨α1, α̂r⟩
|α̂|2

|dzα̂|2)),

and moreover, when α2 → +∞

|g2 − g∞2 |g∞2 = O(e−a
+
1 α2).

A similar behavior holds for the asymptotic g∞1 of g1.

The (α1, α̂α1|α̂)-component corresponds to the Stenzel metric gX2 on the rank one
symmetric fiber X2 of the open orbit G/H2 ⊂ D2, while the component (α̂α1∤α̂)
corresponds to a metric on G/P2.

Lemma 6.4. As α1, α2 → +∞, the metrics g∞1 and g∞2 satisfy

(31) |g0 − g∞1 |g∞1 = O(e−a
−
1 α1), |g0 − g∞2 |g∞2 = O(e−a

+
1 α2).

In other words, g0 are equivalent to g∞1 and g∞2 near D0∩D1 and D0∩D2, respectively.
Finally, (C0, g0) is equivalent to (C, ddc |z|2a

±
0 ) near the singularities.

Proof. It is enough to compare g0 and g∞2 components by components as α2 → +∞.
In the |dzα̂|2 component, if α1 ∤ α̂r, the quotient g0/g∞2 reads

ρ(0) ⟨dφ, α̂r⟩
a+0 ρ

(2)
1 ⟨α̃1, α̂r⟩

.

Since dφ = bβ + ψ′(δ)δ and ψ′(δ) is bounded, the contribution of the term ⟨dφ,α̂r⟩
a+0 ⟨α̃1,α̂r⟩

is just O(1). From the ansatz (19) and asymptotic behavior of ρ(0) near D2, we have

ρ(0)

ρ
(2)
1

− 1 = O(e−a
+
1 α2).

On the other hand, if α1 | α̂r, the corresponding quotient is
eφ ⟨dφ, α̂r⟩

ρ
(2)
1 w′(α1) ⟨α1, α̂r⟩

.

Again by the same reasoning, the term ⟨dφ,α̂r⟩
⟨α1,α̂r⟩ is just O(1), and since w′(α1) =

O(ea
+
1 ζ2α1), the term ρ(0)/(ρ

(2)
1 w′(α1)) satisfies

ρ(0)

ρ
(2)
1 w′(α1)

− 1 = O(e−a
+
1 α2).
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It remains to compare the “Cartan component” |dφ|2 + ψ′′(δ) |δ|2 of g0 with the
Cartan component (a+0 )

2 |α̃|2 + e−a
+
1 α̃2w′′(α1) |α1|2 of g∞2 . Remark that

φ ∼ a+0 α̃2 +K+
0 +K+

1 e
−a+1 α2 +O(e−2a+1 α2),

and moreover in the region α2 ≫ α1 ∼ 1,

ψ′′(δ) ∼ ψ′′(α2) ∼ (a+1 )
2e−a

+
1 α2 ∼ e−a

+
1 α̃2w′′(α1).

One argues similarly on the region α1 ≫ α2 ∼ 1.
Finally, when we contract G/P2 to a point and go to the region 1 ∼ α1 ≪ α2, the

symmetric spaces X2 will be collapsed to a point due to the factor e−a
+
1 α̃2 ∼ e−a

+
1 α2 ,

hence the only significant component is the S1-invariant metric ea
+
0 α̃2 |α̃2|2 on C (and

likewise for X1 when 1 ∼ α2 ≪ α1). The lemma then follows. □

Proposition 6.5. The tangent cone at infinity of (G/H, g) is the horospherical cone
(C0, g0).

Proof. Since g, g0 are K-invariant and ddc-exact, and that the Cartan algebra a
coincides with tnc (cf. Remark 3.1), it is enough to view the potentials of g, g0 as
functions on a and show that outside of a large enough compact subset of a, their
components are equivalent as functions on a, i.e.

(32) |g − g0|g = O(ρ−µ), µ > 0,

where the global potential ρ has the form (30) outside of a compact subset. Then
(32) is obvious on the generic region α1 ∼ α2 where ρ = ρ(0). It is then enough to
verify (32) near the boundary regions α1 ≫ α2 ∼ 1 and α2 ≫ α1 ∼ 1, i.e. near
D1 and D2. Since g behaves exactly like g(1,2)k = ddcρ

(1,2)
k on these regions for k

large enough, and that ρ(1,2)k are equivalent to ρ
(1,2)
1 as α1,2 → +∞ as well as all

derivatives, it follows that g is equivalent to the metrics g∞1,2 near these regions.
By Lemma 6.4, the metrics g0 and g∞1 , g∞2 are equivalent nearD1∩D0 andD2∩D0.

This allows us to conclude. □

Remark 6.6. Outside of the fixed point, the tangent cone consists of the open G-orbit
and the singularities (which occur in two G-orbits of codimension ≥ 2). Heuristically,
the generic region GH-converges to the open orbit of the cone, and the two boundary
regions converges to the singularities of the cone by collapsing the symmetric fibers
X1, X2 of G/H1, G/H2 into two points, i.e. collapsing C∗ × (D0 ∩Di)

∨) to C∗.
The overall effect is a convergence towards the cone C0 with possible singularities

along C2. In fact the tangent cone is always of the form Cp ×C ′, where C ′ does not
split off a C-factor according to [CCT02, Remark 1.27].

Proposition 6.7. For a given integer l0, if θ± are chosen as in Proposition 5.7 and
k ≫ 1, then outside of a compact subset, we have for all l ≤ l0 and 1 ≫ ε > 0∣∣∣∇lP(ρ)

∣∣∣
g
≤ Cle

−(1+ε+l/2)φ,

where φ = bβ + ψ(δ) as defined in the Calabi ansatz. Moreover, the Ricci curvature
of g satisfies ∣∣∣∇l Ric(ρ)

∣∣∣
g
≤ Cle

−(3+ε+l/2)φ.

Proof. We already have a control of the “pure” derivatives of P (cf. Proposition 5.7).
Let us now control the derivatives with respect to the metric. Recall that if Ag is
the matrix of g in some coordinates (xi) , then

∇gP(ρ) = A−1
g ∇P(ρ),
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where ∇P(ρ) is the column vector of the pure derivatives of P(ρ). Similarly, if g is
diagonal, then the general term of ∇l

g0P(ρ) is

gi1i1 . . . gilil
∂lP(ρ)

∂xi1 . . . ∂xil
.

Each derivative with respect to g0 comes with a weight e−φ×(bounded term), hence
in the generic region, we obtain∣∣∣∇lP(ρ)

∣∣∣
g
= O(e−(l/2)φ−β).

Near a boundary region, say, D2, we have φ ∼ a+0 α̃2, hence each derivative with
respect to g∞2 comes with the weight

e−a
+
0 α̃2ea

+
1 α2 × (bounded term) ∼ e−φ+a

+
1 α2 × (bounded term)

(in the Hα2 direction) and e−φ×(bounded term) = O(e−φ+a
+
1 α̃2) in other directions.

Thus given the estimate P(ρ
(2)
k ) = O(e−a

+
k α2) in Proposition 5.2, which also holds

for all derivatives, we obtain near D2∣∣∣∇lP(ρ)
∣∣∣
g
= O(e(−a

+
k +a+1 l/2)α1−(l/2)φ).

The computation is carried out likewise near the other boundary region D1. We can
now take k large enough so that (−ak + a+1 (l/2)) is as negative as we want, and
proceed as in Proposition 5.7. □

7. Proof of the main theorem

7.1. Hein’s existence package. Recall that a Ck,α-quasi-atlas for (M, g) consists
of a given ball B = B(0, r) ⊂ Cn of radius r > 0, and local biholomorphisms
Φx : B = B(0, r) →M at each point x ∈M such that

(1) Φx(0) = x, and there is c > 0 satisfying inj(Φ∗
xg) ≥ 1/c, 1/cgeucl ≤ Φ∗

xg ≤
cgeucl,

(2) the Ck,α-Hölder-norm is bounded, i.e. ∥Φ∗g∥Ck,α ≤ c.
The following package of technical conditions in Hein’s thesis [Hei10] allow one to

solve the complex Monge-Ampère equation for Ricci-flat metrics.
• Bounded geometry condition, i.e. existence of a Ck,α quasi-atlas. This is

used in the Laplacian and C2-estimate.
• A sufficient condition for the weighted Sobolev inequality, called SOB(p).

Here p is the growth rate of the volume form, which is p = 2n in our case. A
complete manifold (M, g) is called SOB(p) if
(1) There is x0 ∈M and c ≥ 1 such that B(x0, s)\B(x0, t) is connected for

all s ≥ t ≥ c,
(2) vol(B(x0, s)) ≤ csp, for all s ≥ c,
(3) vol(B(x, (1 − c−1)d(x0, x)) ≥ c−1d(x0, x)

p, Ric(x) ≥ −cd(x0, x)−2 if
d(x0, x) ≥ c.

The SOB(2n) condition is used in the L∞-estimate.
• Existence of a function ρ̃ ∼ d(x0, .)+1. If furthermore p > 2, we require that
|∇ρ̃|+ ρ̃ |ddcρ̃| ≤ c.

Proposition 7.1. The Riemannian curvature of (G/H, g) is unbounded if either
a+0 < a+1 , or a−0 < a−1 .
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Proof. The situation being completely symmetric, we will omit the ± signs on the
constants in the proof. Remark that with the summation convention, we have

|Rm|g ≥ RabcdRabcd,

where a, b runs over {1, 2} in the local expression of the metric, Rabcd is d2gab(lc, ld),
and

Rabcd = gaigbjgckgdlRijkl = gaagbbgccgddRabcd.

In particular, when a = b, c = d, then RabcdRabcd is in fact the square of the holo-
morphic bisectional curvature of the planes (la, Jla), (lc, Jlc).

Since g behaves asymptotically near D2 like g∞2 , we only need to consider g∞2 .
The |α1|2-component of g∞2 is

e(a0−a1)α̃2(w′′(α1) + e−a1α̃2w(α1)w
′′(α1)).

The holomorphic bisectional curvature of the planes (α1, Jα1, α̃2, Jα̃2) then has lead-
ing term

w′′(α1)
2(∂2

2̃
e(a0−a1)α̃2)2

(e(a0−a1)α̃2w′′(α1))4
= O(e−2(a0−a1)α̃2).

Thus if a0 < a1, the curvature explodes as α2 → +∞. □

Proposition 7.2. The metric (G/H, g) satisfies Hein’s existence package if a±0 ≥ a±1 .

Proof. From Ansatz 5.1, ρ(2)1 ∼ ea
+
0 α̃2 when α̃2 → ∞. It follows that when we

consider the symmetric fiber X2 of C∗ ×G/H2 as α̃2 → +∞

g∞2 ∼ e(a
+
0 −a+1 )α̃2gX2 ,

hence in this direction

injg∞2 ∼ e
a+0 −a+1

2
α̃2 injgX2

.

The same reasoning applies near X1. Thus if a±1 ≤ a±0 , the injectivity radius of g is
bounded away from zero since the injectivity of radius of X1, X2 is bounded away
from zero as AC manifolds. This, combined with the Ck-Ricci bound in Proposition
6.7, shows that the harmonic radius is bounded below by Anderson’s lemma [And90,
Main Lemma 2.2], hence the harmonic Ck,α-norm of the manifold is bounded, which
implies that the total curvature is also bounded. This guarantees the existence of a
good quasi-atlas for (G/H, g), cf. [Hei10, Lemma 4.3] or [TY90, Proposition 1.2].

Connectedness of the annulus follows from the connectedness of C0 and the Gromov-
Hausdorff convergence of (G/H, g) to (C0, g0), cf. 6.5. The Ricci-estimate is already
in Proposition 6.7. To check the volume growth condition, it is enough to show that
for c > 0 large enough and any s > c, the volume ball B(x0, s) of (G/H, g) satisfies

c−1s2n ≤ vol(B(x0, s)) ≤ cs2n.

Since (G/H, g)
pGH−−−→ (C0, g0), this follows from Colding’s volume convergence theo-

rem [Col97, Theorem 0.1] (which is valid under a Ricci lower bound), and the fact
that C0 is non-collapsed.

In particular, our volume growth is maximal (of order 2n with n > 1), hence to
apply Hein’s existence package, we need to verify

|∇ρ|+ ρ |ddcρ| ≤ c.

Indeed, ∇ρ is bounded since ρ is asymptotically the distance function ρ(0) on the
cone, and ρ |ddcρ| is bounded since ∆ρ2 ∼ ∆ρ(0) ∼ n. □
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Remark 7.3. Propositions 7.1, 7.2 show that the holomorphic bisectional curvature
of (G/H, g) is bounded if and only if a condition depending only on the root data of
G/H is satisfied.

7.2. Existence. One can check by direct computation that a±0 ≥ a±1 for all finite
family of symmetric spaces of rank two (see Table 5 for the R1 × R1 and A2 cases,
and Lemma 7.4 with Table 4 below for the finite families of the BC2/B2 cases). On
the other hand, verifying this condition is non-trivial for the infinite families, but the
methods are more or less elementary, cf. Lemma 7.5.

The existence theorem in Hein’s thesis then allows us to perturb ω (in the Kähler
class consisting of K-invariant ∂∂-exact Kähler forms) to a genuine K-invariant
Ricci-flat metric ωu = ω+ddcu, where u is a smooth K-invariant ω-psh function and
has decay rate O(ρ2−µ), µ > 2 being the decay rate of P(ρ). The final metric ωu then
has the same tangent cone at infinity as ω (by a priori estimate). The conclusion
then follows.

7.2.1. Bounded geometry. We have chosen

δ = α2 − tα1,

such that ⟨δ, α1⟩ < 0 and β = xα2 + yα1 is a vector in the interior of the Weyl
chamber such that ⟨δ, β⟩ = 0. Since we want β as the normalized Reeb vector of a
K-stable horospherical cone, we can suppose that

(33) ⟨ϖ,β⟩ = n,

without loss of generality. A straightforward calculation then gives{
x
y = t⟨α1,α1⟩−⟨α1,α2⟩

⟨α2,α2⟩−t⟨α1,α2⟩ ,

x(A1 ⟨α1, α2⟩+A2 ⟨α2, α2⟩) + y(A1 ⟨α1, α1⟩+A2 ⟨α1, α2⟩) = n

Recall that

δ± =
λ±

1 +m±
,

where m± are the multiplicities of the roots in the polynomial equation∫ λ+

λ−

pP (p)dp = 0.

By analyzing the asymptotic behavior of the conical potential, we also obtained

a+1 = δ+ = − ⟨ϖ,α1⟩
(m+ + 1) ⟨α1, δ⟩

, a−1 = −tδ− =
t ⟨ϖ,α2⟩

(m− + 1) ⟨α2, δ⟩
.

By definition, we have a+0 α̃2 = bβ + b+1 δ (and a similar formula for a−0 ) with b =
⟨ϖ,β⟩ /n ⟨β, β⟩. It follows that

a+0 ⟨α̃2, β⟩ = ⟨ϖ,β⟩ /n = 1, a−0 ⟨α̃1, β⟩ = ⟨ϖ,β⟩ /n = 1.

In the BC2 or B2 cases, we have a+0 ≥ a+1 iff

t ≥ −2m3 − 2m2
3 − 2m2

(m1 +m3 + 1)(2m2 +m1 + 2m3)
,

which is always satisfied. Thus one only needs to verify the bounded geometry
condition a−0 ≥ a−1 . After a straightforward computation, this is equivalent to

t(m2m1 −m1 − 2m3) ≤ A1(m2 + 1).
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When m1m2 −m1 − 2m3 = 0, the condition is trivial, i.e. bounded geometry holds
for the infinite family SOr / SO2×SOr−2, as well as for SL5 / SL2×SL3. On the
other hand, when m1m2 −m1 − 2m3 > 0, we need to check that

t ≤ (2m1 + 2m2 + 4m3)(m2 + 1)

m1(m2 − 1)− 2m3
.

Recall that α2 is the long positive root with multiplicities m2, and α1 the short
one with multiplicity m1. The positive roots in the BC2 and B2 cases are α1, α1+α2

(with multiplicity m1), 2α1, 2α1+2α2 (with multiplicity m3), and α2, α2+2α1 (with
multiplicity m2). The Duistermaat-Heckman polynomial in this case is

P (p) =
∏
α∈R+

⟨α,ϖ + pδ⟩mα

= (2m2 + (2 + t)p)m2(2m1 + 2m2 + 4m3 − tp)m2

(m1 + 2m3 − (1 + t)p)m1+m3(m1 + 2m2 + 2m3 + p)m1+m3 .

From Table 5, by the result in [Ngh23] recalled in Theorem 4.2, the K-stability
condition is easily seen to be equivalent to t being the unique positive root of

(34) Q(t) =

∫ m1+2m3
1+t

−2m2
2+t

pP (p)dp = 0.

Lemma 7.4. Bounded geometry holds for all finite families of type BC2 and B2.

Proof. The proof is a straightforward case-by-case computation from the K-stability
condition of the horospherical cone and the data in Table 5. □

Before verifying bounded geometry for the infinite families, let us make a brief
digression on hypergeometric series. The reader might consult [WW21] for more
information. The Appell hypergeometric series F1 is defined for a, b1, b2, c, y, z ∈ C
with |y| , |z| < 1 by the double series

F1(a, b1, b2, c; y, z) =

+∞∑
m,n=0

(a)m+n(b1)m(b2)n
(c)m+n

ymzn,

where (α)m is the Pochhammer symbol

(α)m := α(α+ 1) . . . (α+m− 1), (α)0 = 1.

When z = 0, F1 is reduced to the more well-known Gauss hypergeometric series
F21(a, b1, c; z)

F1(a, b1, b2, c; y, 0) = F21(a, b1, c; y) :=
∞∑
m=0

(a)m(b1)m
(c)m

ym.

When ℜ(c) > ℜ(a) > 0, F1 admits an integral representation as

B(a, c− a)F1(a, b1, b2, c; y, z) =

∫ 1

0
ua−1(1− u)c−a−1(1− yu)−b1(1− zu)−b2du,

where B(s, t) is the beta function
∫ 1
0 u

s(1 − u)tdu with values p!q!
(p+q+1)! at integers

(p + 1, q + 1). We will only be concerned with values of F1 when a ≥ 1, b1, b2 <
0, c > a are integers, in which case F1 is just a finite sum and a rational expression
of a, b1,2, c, y, z.

The language of hypergeometric series might not offer more insight if our goal is
just to check the numerical conditions in Lemma 7.5. However, since the calculations
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get nasty very quickly when m3 = 3, such language makes the conditions easier to be
implemented on a computer software with inbuilt function to calculate the coefficients
of hypergeometric series, e.g. Mathematica.

For the two infinite families of type BC2, the condition is translated in terms of r
as in Table 4. Note that (12r − 27)/(2r − 10) ≥ 6 and (20r − 30)/(6r − 27) ≥ 10/3
for all r ≥ 5. Thus it is enough to show the following.

Lemma 7.5. For the infinite family (2r − 8, 2, 1), we have 0 < t < 6, and for the
family (4r − 16, 4, 3), we have 1 < t < 10/3. In particular, bounded geometry holds
for these families.

Proof. Let Q(t, r) :=
∫ λ+(r)
λ−(r) pP (p, t, r)dp. Since t is the unique root of Q for all r, it

is enough to show that Q(0, r) > 0, Q(t0, r) < 0 for t0 = 6, 10/3 in each case, and
Q(1, r) > 0 when m3 = 3.

A direct computation shows that Q(0, r) > 0 iff∫ m1+2m3

−m2

p(2m2 + 2p)m2(m1 + 2m3 − p)m1+m3(m1 + 2m2 + 2m3 + p)m1+m3dp > 0.

After a change of variable u := ((2m2 + 2p)/A1)
2, the inequality is equivalent to∫ 1

0
(A1u

1
2 − 2m2)u

m2−1
2 (1− u)(m1+m3)du > 0.

This is exactly Condition [BD19, (6)], which holds for all infinite families by virtue
of Lemma 3.4 in loc.cit..

In the case (m1,m2,m3) = (2r − 8, 2, 1), we have

Q(t, r) =

∫ 2r−6
1+t

−4
2+t

p(4+(2+ t)p)2(4r−8− tp)2(2r−6− (1+ t)p)2r−7(2r−2+p)2r−7dp,

and we need to verify that Q(6, r) < 0. Up to a positive constant

Q(6, r) =

∫ 2r−6
7

− 1
2

p(1 + 2p)2(2r − 4− 3p)2(2r − 6− 7p)2r−7(2r − 2 + p)2r−7dp.

After a change of variable p = (4r−5)u−7
14 and clearing positive constants, we can

suppose that

Q(6, r) = −
∫ 1

0
(1− 4r − 5

7
u)u2(1− 3

7
u)2(1− u)2r−7(1 +

1

7
u)2r−7du.

Consider the function defined on R by

Hr(z) :=

∫ 1
0 u

2(1− 3
7u)

2(1− u)2r−7(1− zu)2r−7du∫ 1
0 u

3(1− 3
7u)

2(1− u)2r−7(1− zu)2r−7du
.

Let us show that this is a convex function on ]−∞, 1] for all r ≥ 5. Indeed, for all
z1, z2 ∈]−∞, 1], 1− z1u and 1− z2u are positive for all u ∈ [0, 1], hence(

1− z1 + z2
2

u

)2r−7

≤ 1

2

((
1− z1u

2

)2r−7

+

(
1− z2u

2

)2r−7
)
.

Moreover we have

max

{(
1− z1u

2

)2r−7

,

(
1− z2u

2

)2r−7
}

≤
(
1− z1 + z2

2
u

)2r−7

.
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These two inequalities together show that

Hr

(
z1 + z2

2

)
≤ Hr(z1) +Hr(z2)

2
,

i.e. Hr is convex on ]−∞, 1].
In terms of the Appell series F1, the inequality Q(6, r) < 0 is equivalent to

Hr

(
−1

7

)
=
B(3, 2r − 6)F1(3,−2,−(2r − 7), 2r − 3, 37 ,

−1
7 )

B(4, 2r − 6)F1(4,−2,−(2r − 7), 2r − 2, 37 ,
−1
7 )

>
4r − 5

7
,

where B(3, 2r − 6)/B(4, 2r − 6) = (2r − 3)/3. By convexity, we have for all z < 0,

Hr(z) ≥ Hr(0) +H ′
r(0)z

where by computing the first two terms of the series expansion in the z-argument of
F1 at 0,

Hr(0) =
(−1 + 2r)(327− 371r + 98r2)

3(223− 315r + 98r2)
,

and

H ′
r(0) =

(−7 + 2r)(−88290 + 296949r − 400372r2 + 260141r3 − 80948r4 + 9604r5)

3r(223− 315r + 98r2)2
.

Finally,

H

(
−1

7

)
− 4r − 5

7

≥ −618030 + 2490711r − 3779540r2 + 2655919r3 − 866908r4 + 105644r5

21r(223− 315r + 98r2)2
.

Note that the leading coefficient on the polynomial numerator P1(r) is positive. We
can compute the root of P1 and show that they are all strictly smaller than 5, hence
P1(r) ≥ P1(5) > 0. Thus Q(6, r) < 0 for all 0 ≤ u ≤ 1.

In the case (m1,m2,m3) = (4r − 16, 4, 3), we have

Q(t, r) =

∫ 4r−10
1+t

−8
2+t

p(8+(2+t)p)4(8r−12−tp)4(4r−10−(1+t)p)4r−13(4r−2+p)4r−13dp,

and we need to check that Q(10/3, r) < 0, i.e.∫ 12r−30
13

− 3
2

p(3 + 2p)4(12r − 18− 5p)4(12r − 30− 13p)4r−13(4r − 2 + p)4r−13dp < 0.

After the change of variable p = (24r−21)u−39
26 , we can suppose that (up to positive

constants)

Q(10/3, r) = −
∫ 1

0
(1− 8r − 7

13
u)u4(1− 5

13
u)4(1− u)4r−13(1 +

3

13
u)4r−13du.

By the same reasoning as above, the function

Hr(z) :=

∫ 1
0 u

4(1− 5
13u)

4(1− u)4r−13(1− zu)4r−13du∫ 1
0 u

5(1− 5
13u)

4(1− u)4r−13(1− zu)4r−13du

is convex on ]−∞, 1] for all r ≥ 5. We then proceed to check that

Hr

(
− 3

13

)
=
B(5, 4r − 12)F1(5,−4,−(4r − 13), 4r − 7, 5

13 ,
−3
13 )

B(6, 4r − 12)F1(6,−4,−(4r − 13), 4r − 6, 5
13 ,

−3
13 )

>
8r − 7

13
,
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with B(5, 4r − 12)/B(6, 4r − 12) = (4r − 7)/5. Again, the series expansion in the
z-argument of the Appell functions at 0 and convexity of Hr show that for all z ≤ 0,

Hr(z) ≥ Hr(0) +H ′
r(0)z.

where

Hr(0) =
(−3 + 4r)(9009405− 21344609r + 18336838r2 − 6784336r3 + 913952r4)

5G(r)
.

and

H ′
r(0) =

2(−13 + 4r)

5(−1 + 2r)G(r)2
(−59648595700050 + 361147658887485r − 953718016145076r2

+ 1440364128450741r3 − 1370700222571316r4 + 852476267292676r5

− 346597132254464r6 + 88867036945024r7 − 13043659725824r8

+ 835308258304r9),

where G(r) = (5914845−15897921r+15254278r2−6221904r3+913952r4). Finally,
evaluating at z = −3/13 yields

Hr

(
− 3

13

)
− 8r − 7

13

≥ 1

G1(r)
(−2574310334032125 + 12163729606848990r − 19659125767233897r2

+ 3313560826702152r3 + 32935584407475308r4 − 54028266881305808r5

+ 43597604159841472r6 − 20860496268764672r7

+ 6010547069043712r8 − 966644418301952r9 + 66824660664320r10),

with G1(r) = 13(7 − 18r + 8r2)G(r)2. Note that the leading coefficient on the
numerator is positive. We can then apply the same argument as in the previous case
to show that Q(10/3, r) < 0.

It remains to show that Q(1, r) > 0 when m3 = 3. We have up to a positive
constant

Q(1, r) =

∫ 2r−5

−8/3
p(8 + 3p)4(8r − 12− p)4(2r − 5− p)4r−13(4r − 2 + p)4r−13dp,

and after the change of variable p = (6r−7)u−8
3 , we obtain up to a positive constant

Q(1, r) = −
∫ 1

0
(1− 6r − 7

8
u)u4(1− u

4
)4(1− u)4r−13(1 +

u

2
)4r−13du.

Consider now the function defined on R by

Hr(z) :=

∫ 1
0 u

5(1− 1
4u)

4(1− u)4r−13(1− zu)4r−13du∫ 1
0 u

4(1− 1
4u)

4(1− u)4r−13(1− zu)4r−13du
.

Again this is a convex function on ]−∞, 1] for all r ≥ 5. The inequality Q(1, r) > 0
is equivalent to

Hr

(
−1

2

)
=
B(6, 4r − 12)F1(6,−4,−(4r − 13), 4r − 6, 14 ,

−1
2 )

B(5, 4r − 12)F1(5,−4,−(4r − 13), 4r − 7, 14 ,
−1
2 )

>
8

6r − 7
,

where B(6, 4r − 12)/B(5, 4r − 12) = 5/(4r − 7). By the same argument as above,

Hr(z) ≥ Hr(0) +H ′
r(0)z
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Multiplicities a−0 ≥ a−1
SLr / SL2×SLr−2 (2r − 8, 2, 1), r ≥ 5 trivial if r = 5, t ≤ 12r−27

2r−10 if r ≥ 6

Sp2r / Sp4×Sp2r−4 (4r − 16, 4, 3), r ≥ 5 t ≤ 20r−30
6r−27

SO10 /GL5 (4, 4, 1) t ≤ 10
E6/ SO10×SO(2) (8, 6, 1) t ≤ 112

19
SOr / SO2×SOr−2 (r − 4, 1, 0), r ≥ 5 trivial
SO5×SO5 / SO5 (2, 2, 0) t ≤ 12
Sp8 /Sp4×Sp4 (4, 3, 0) t ≤ 7

Table 4. Bounded geometry condition for BC2 and B2.

where

Hr(0) =
5(15741− 48336r + 52928r2 − 24576r3 + 4096r4)

G(r)
,

and

H ′
r(0) =

10

(−1 + 2r)G(r)2
(−13 + 4r)(−367033275 + 2594714553r − 7943750640r2

+ 13824076800r3 − 15075823616r4 + 10689089536r5

− 4929290240r6 + 1426063360r7 − 234881024r8

+ 16777216r9),

where G(r) = (−3 + 4r)(27585 − 71832r + 67904r2 − 27648r3 + 4096r4). Finally,
evaluating at z = −1/2 yields

Hr

(
−1

2

)
− 8

6r − 7

≥ 1

G1(r)
(−157805645850 + 1283896287045r − 4637385570222r2

+ 9817511490024r3 − 13540927644160r4 + 12783832862720r5

− 8436522991616r6 + 3896079450112r7 − 1235710115840r8

+ 256859176960r9 − 31574720512r10 + 1744830464r11)

where G1(r) = (3 − 4r)2(−1 + 2r)(−7 + 6r)G(r)2. The polynomial numerator has
positive leading coefficient with all of the roots being strictly smaller than 5, hence
strictly positive for all r ≥ 5. Thus Hr(−1/2) > 8/(6r − 7), i.e. Q(1, r) > 0. □

Remark 7.6. One could try to bound the function Hr from below by using integra-
tion by parts and elementary inequalities, e.g. the trivial ones and/or the AM-GM
inequality, but such methods would only yield information up to the first derivative
of Hr. Here we need a precise information on the second derivative of Hr to obtain
a good lower bound.
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R1 ×R1 A2 BC2

t (m1+2m̂1)(m2+m̂2+1)
(m2+2m̂2)(m1+m̂1+1) 1 irrational in general

⟨α1, α2⟩ 0 −1/2 −1
⟨α1, α1⟩ 1 1 1
⟨α2, α2⟩ 1 1 2
α̃1 α1 α1 +

1
2α2 α1 +

1
2α2

α̃2 α2 α2 +
1
2α1 α2 + α1

ϖ (m1 + 2m̂1)α1 + (m2 + 2m̂2)α2 2m(α1 + α2) (2m1 + 2m2 + 4m3)α1 + (m1 + 2m2 + 2m3)α2

A1 m1 + 2m̂1 2m 2m1 + 2m2 + 4m3

A2 m2 + 2m̂2 2m m1 + 2m2 + 2m3

m+ m1 + m̂1 m m1 +m3

m− m2 + m̂2 m m2

n 2 +m+ +m− 2 + 3m 2(1 +m1 +m2 +m3)

β m2+m̂2+1
m2+2m̂2

α2 +
m1+m̂1+1
m1+2m̂1

α1
n
2m(α2 + α1)

n((2+t)α1+(1+t)α2)
2m2(1+t)+(m1+2m3)(2+t)

.

λ+
(m2+2m̂2)(m1+m̂1+1)

m2+m̂2+1 2m/3 m1+2m3
1+t

λ− −(m2 + 2m̂2) −2m/3 −2m2
2+t

a+0
m2+2m̂2
m2+m̂2+1 8m/3n 2m2(1+t)+(m1+2m3)(2+t)

n(1+t)

a+1 = δ+
m2+2m̂2
m2+m̂2+1

2m
3(m+1)

m1+2m3
(m1+m3+1)(1+t)

a−0
m1+2m̂1
m1+m̂1+1 8m/3n 4m2(1+t)+(2m1+4m3)(2+t)

n(t+2)

a−1 = −tδ− m1+2m̂1
m1+m̂1+1

2m
3(m+1)

2tm2
(m2+1)(2+t)

a±0 ≥ a±1 true true (m1(m2 − 1)− 2m3)t ≤ (2m1 + 2m2 + 4m3)(m2 + 1), cf. Table 4

Table 5. Relevant constants.
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