Grounding Causality in Bayesian Networks Using Qualitative Reasoning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Grounding Causality in Bayesian Networks Using Qualitative Reasoning

Résumé

The complexity of analysing dynamical systems often lies in the difficulty to monitor each of their dynamic properties. In this article, we use qualitative models to present an exhaustive way of representing every possible state of a given system, and combine it with Bayesian networks to integrate quantitative information and reasoning under uncertainty. The result is a combined model able to give explanations relying on expert knowledge to predict the behaviour of a system. We illustrate our approach with a deterministic model to show how the combination is done, then extend this model to integrate uncertainty and demonstrate its benefits.
Fichier principal
Vignette du fichier
QR_Workshop_2023_FINAL.pdf (1.8 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04401966 , version 1 (18-01-2024)

Identifiants

  • HAL Id : hal-04401966 , version 1

Citer

Mélanie Munch, Kamal Kansou, Bert Bredeweg, C Baudrit, Pierre-Henri Wuillemin. Grounding Causality in Bayesian Networks Using Qualitative Reasoning. QR@ECAI23, Sep 2023, Krakow, Poland. ⟨hal-04401966⟩
87 Consultations
68 Téléchargements

Partager

More