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Abstract

The complexity of analysing dynamical systems often lies in
the difficulty to monitor each of their dynamic properties. In
this article, we use qualitative models to present an exhaustive
way of representing every possible state of a given system,
and combine it with Bayesian networks to integrate quantita-
tive information and reasoning under uncertainty. The result
is a combined model able to give explanations relying on ex-
pert knowledge to predict the behaviour of a system. We il-
lustrate our approach with a deterministic model to show how
the combination is done, then extend this model to integrate
uncertainty and demonstrate its benefits.

Introduction
Reasoning about a specific system’s behaviour requires a
good understanding of the involved entities, their quanti-
ties (i.e. their relevant numerical properties), how these are
related and the value they can take on. Establishing a model
able to explain those relations and the general behaviour of
the studied system is a complex task, hindered further by
the introduction of uncertainty: quantities are not always ob-
served and values tainted with errors can frustrate the inter-
pretations.

Bayesian Networks (Pearl 1985) (BNs), thanks to their
graphical aspect, allow to understand the underlying prob-
abilistic dependencies between the quantities (denoted as
variables in this context). However, they can be impaired
by the lack of physical understanding. While the models
learned with BNs offer a good quantitative description of the
studied system, they might lack explainability (i.e. their re-
sults do not always match human logical reasoning). This is
due to the fact that BNs build correlations, and not causation:
in practice, a model could learn RainÑGrass (”The rain
soaked the lawn”) as well as GrassÑRain (”The soaked
lawn provoked the rain”). To prevent such unwanted results,
(Pearl 2009) defined interventions (i.e. modifying one quan-
tity without touching the others) to construct causal mod-
els. This however is not always doable for practical, ethical
or economic reasons: for instance, studying the impact of
smoking on health would require to intervene on people to
force them to smoke.

Integrating external sources of knowledge can be useful to
guide the learning and prune impossible models. The most
common way of doing so for BNs is to impose a complete

(Baudrit et al. 2022) or partial (Munch et al. 2022) structure,
built with experts. This structure is denoted as theory, as it
reflects the experts’ (often causal) knowledge over the con-
sidered system. This approach helps to select the relevant
variables, and reduces the learning to the parameters (the
probabilities). However, this raises the question of the cor-
rectness and/or completeness of the fed causal theory: de-
pending on the experts, their number, their area of expertise,
... several can be proposed, each with possible distinct im-
pact over the learning.

On the other hand, qualitative reasoning (QR) builds
sound models with solid grounding on causality. By reason-
ing over quantities and defined relations, they can generate
all possible states of a system without relying on data (For-
bus 2011). Instead, they allow to define quantity spaces,
in order to consider only relevant values (e.g. {Ø, Low,
Medium, High}) and to reason on a symbolic level. As such,
they give a complete description of the system which can be
used to assess the validity of the expert knowledge integrated
in the BN’s learning.

In this article, we combine BNs with knowledge of the
system physics represented as qualitative models (QMs) to
learn models able to apprehend uncertain systems with ex-
plainable answers. Below, the first section presents the nec-
essary notions and state of the art on QM, BNs and the use of
QM for quantitative modeling. The second section presents
the principle of our approach illustrated by an example. Fi-
nally, the third section compares the results of our approach
compared to naive BN learning in order to demonstrate the
gain in explainability.

Modeling and simulation have been done using the Dy-
nalearn environment (Bredeweg et al. 2013), which is based
on the Garp3 software (https://dynalearn.nl/). BN learning
and computing have been done using the PyAgrum library
(Ducamp, Gonzales, and Wuillemin 2020).

Background
Qualitative Modeling with Garp3
Garp3 (Bredeweg et al. 2009) defines a qualitative system
through (1) the use of entities and their associated quanti-
ties and (2) their relations. Quantities are described by their
value (magnitude, e.g. +) and direction of change (derivative,
e.g. 0). Values are picked from associated quantity spaces,



which holds every possible values they can take. While mag-
nitudes’ quantity spaces can be defined as desired by ex-
perts, derivatives’ are fixed: negative, null or positive. Fol-
lowing Garp3’s notation, they are denoted as {▼, ,▲}, or
{-, 0, +}. A combination of magnitude and derivative for
each quantity (e.g. ă0,`ą) defines a state, i.e. the be-
haviour of the system at a certain time. Each state is a
unique qualitative behaviour of the system, characterized by
a unique set of quantity values and derivatives. Passing from
one state to the other represents the evolution of the system:
a graph of state is defined by a graphical representation of
all possible transitions between the different states, where
each node is a state and the edges the possible transitions.

In order to compute this graph, Garp3’s inference engine
reasons over two types of qualitative relations which defines
causal relations between each other (Forbus 1984): propor-
tionalities (changes caused by processes, denoted as P -/+),
and direct influences (causal propagation of changes, de-
noted as I-/+). Additional constraints can be added: cor-
respondences and inequalities allow the user to describe
the relations between certain quantity’s values and quanti-
ties (e.g. force the zero value, or force a value to be always
higher than another). Finally, reasoning is done over scenar-
ios, which define (some) values for the initial state.

Bayesian Networks
Bayesian Networks (BNs) (Pearl 1985) are acyclic graphs
G=(V,E), with V and E respectively the sets of all their nodes
(representing random variables) and arcs (representing the
conditional dependencies). To each variable, a conditional
probability table (CPT) is associated, giving the probability
distribution for each possible value it can take and how the
values of its parents (i.e. variables that have an oriented path
toward that variable) influence it (as shown in Fig.1). A joint
probability over all nodes V is defined as the product of local
probabilities given as:

P pX1, ...Xnq“

n
ź

i“1

P pXi|PapXiqq

with P pXi|PapXiqq being the conditional probability
function associated with random variable Xi, conditioned
on its parents PapXiq. A probability of 0 describes an im-
possible event, while a probability of 1 is associated to a
certain event.

While models have been proposed to take into account
continuity within BN’s structure, this article focuses on the
discrete part. BN’s learning is usually done is two steps:
considering a discretized database, the structure G is first
learned, then the probabilities. In this study, this last part is
tackled, as structure is provided by the addition of expert
knowledge from the QM.

Combining Quantitative and Qualitative
Explainable Artificial Intelligence has gained a tremendous
attention over the past years (Guidotti et al. 2018), as the
need of justifications for supporting a model’s predictions
is a key-question. More generally, there is an increase in
the need of understanding things correctly (e.g. science).

(a) BN (b) Marginal
Distribution

(c) Conditional Dis-
tribution

Figure 1: (a) Example of a BN composed of three variables
A, B and C. (b) Marginal distributions associated to A and
B. (c) CPT associated to C: in this example the probabilities
of C’s values (columns) depend on A and B’s values (rows).

Thanks to their graphical component BNs offer explainabil-
ity for their prediction. However, the lack of causality in
their approach leads to inaccurate models, unable to describe
real systems. Algorithms such as PC (Spirtes, Glymour, and
Scheines 2000) or more recently MIIC (Verny et al. 2017)
have been developed to tackle this issue and learn causal
structures from data alone. These approaches are however
costly in data. On another hand, integrating expert knowl-
edge (e.g. as partial node ordering (Parviainen and Koivisto
2013)) during the learning helps reducing the data cost by
reducing the search space (Munch et al. 2017). Yet, different
causal models lead to different BNs, whose correctness can
be difficult to evaluate.

In this article, QM is proposed to define a stable structure
able to frame the quantitative reasoning and integrate it into
quantitative learning. Such combination has been proposed,
for instance to improve simulations based on dynamic equa-
tions (Pang, Bruce, and Coghill 2018). In this case, QM al-
lows to define constraints that reduce intervals of simulation
for already known equations. It is often proposed to model
systems in order to bypass equations and simplify the simu-
lations (Soberl and Bratko 2022; Struss, Reiser, and Kreuz-
pointner 2018). (Klenk, Nabi, and Arvay 2016) proposes a
methodology to compare different explanatory models for
co-morbidities, using QM to develop mechanistic explana-
tions. While they do not rely on data, they raise the question
of inferences: given a patient and a validated causal model, is
it possible to derive conclusions? In the frame of this article,
the combination of BNs et QM would allow to answer quan-
titatively to these questions with probabilities, i.e. proposing
different possible answers with probabilities of their hap-
penstance. More generally, it aims at answering the three
advantages defined by (Forbus and Falkenhainer 1990) for
the combination of quantitative simulation with qualitative
knowledge: (1) increased automation (i.e. no need for man-
ually defining each relevant equation), (2) improved self-
monitoring (i.e. consistence checking with reality) and (3)
better explanations (i.e. justifications of predictions based on
causal reasoning).

Combining BNs and QMs
This section presents the combination of BNs and QMs as
showed in Fig.2, illustrated with a system.



Figure 2: Summary of the approach. From a given system, a QM is constructed then used in a simulation to extract the different
possible qualitative states. From a dataset observing the different values of the systems quantities, an annotated dataset is
constructed, using the qualitative states to describe the dataset. This dataset is then transformed to allow the learning of a BN.

Example: the Container System
Consider a container with a floating cap being filled with
water described by three quantities (illustrated in Fig.3 (a)):

Q The inflow of water going in the container through a tap.
Initial flow is denoted Qin.

V The current volume of water in the container. Maximum
volume is denoted Vmax.

H The current height of the floating cap. Maximum height
is denoted Hmax.

Starting with an empty container, water is introduced at
a given flow, which arbitrarily decreases while height in-
creases. A floating cap is present such that, once the con-
tainer is filled, it interrupts the flow. For the following,
a dataset describing the values of the different quantities
through different simulation is considered. Each simulation
is initialized using:

• Hmax = 3
• Vmax = 3π
• Qin ãÑ N (10, 1)

While this approach is able to address deterministic sys-
tems, randomness is introduced to demonstrate its robust-
ness when facing uncertainty. Fig.3 (b) shows the influence
of Qin on the filling rate speed.

Qualitative Model and States
The first step propose for the dynamic of this system a QM.
Following the system’s description, we consider two objects
and three quantities:
• The tap, associated to the inflow quantity Q. The quan-

tity space is {Ø,`}, referring respectively to the absence
and presence of flow.

• The container, associated to the amount V of wa-
ter and height H of the cap. Their quantity spaces is
{Ø,`,Max}, with ăMaxą respectively the maximum
volume and height. For both, ăØą refers to the null

(a) Container system (b) Impact of Qin

Figure 3: Qualitative modeling of the container system. (a)
System. (b) Impact of the initial inflow Qin value over the
time required to reach the maximal height.

value (i.e. no water), while ă`ą refers to the amount
and height in between.

Fig.4 (a) presents the relations existing between the de-
fined objects and variables as well as the initial values used
for the simulation: Inflow is ă`ą, while the Amount is
ăØą. This creates three possibles states for the system, de-
noted in the rest of this article as s1, s2 and s3:

s1 The tank is empty: water starts flowing through the tap.
The volume and height are null, but increasing.

s2 The tank is being filled: the volume and height are not
null and increasing, while the flow decreases.

s3 The tank is filled: water stops flowing. All quantities’
derivative are null, the system is at equilibrium.

Table 1 recaps the states different values, while Fig.4 (b)
and (c) presents the simulation’s results.

Annotated Dataset
While QM reasons over states and transitions between those,
quantitative models such as BNs are dedicated to the study



(a) Qualitative modeling of the container system. (b) Evolution of
quantities’ values

(c)
States

Figure 4: Qualitative modeling of the container system. (a) Model and initial conditions. (b) Evolution of the quantities’ values
during simulation. (c) State graph of the simulation.

State Q V H
s1 ă`,▼ą ăØ,▲ą ăØ,▲ą

s2 ă`,▼ą ă`,▲ą ă`,▲ą

s3 ăØ, ą ă`, ą ăMax, ą

Table 1: Description of the quantities ăMagnitude,
Derivativeą for each state.

variable’s evolution across fixed intervals. This difference
of focus requires the definition of a novel quantity in order
to bridge between the two representations: the Time Step.
In practice, learning a quantitative model requires values
to reflect on; when learning a dynamic model, it helps to
have data describing the system at regular intervals (the time
steps). This is particularly important as the aim of the final
model is to be able to describe precisely the evolution (i.e.,
the passage or not from one state to the other) of the system:
irregular time steps would scramble the predictions. For the
following, the time step quantity refers to the time at which
the system is described.

Using Table 1 states, each time step is associated to one:

1. By discretizing the quantity’s value with its quantity
space. For instance, if Height = 0, then its discretized
value is ăØą; Hmax becomes ăMaxą; otherwise, it is
discretized to ă`ą.

2. By looking at the derivative for each quantity: if the dif-
ference between the quantity’s value at time t and t ` 1
is negative, then the derivative is also negative (▼); if the
values are equal, then the derivative is null ( ); if it is
positive, then the derivative is positive (▲).

In the end, using the combination of the discretized value
and the derivative for each quantity, each time step can be as-
sociated to a QM state. A new quantity is also introduced for
interval of Time Steps: the Period. While Time Step marks
the passing of time, the Period indicates how long the sys-
tem has been in the current state. For the rest of this article,

Time H V Q dH dV dQ State Period
1 0 0 10 ▲ ▲ ▼ s1 1
2 2.9 9.1 7.3 ▲ ▲ ▼ s2 1
3 4.6 14.4 3.7 ▲ ▲ ▼ s2 2
4 5 15.7 0    s3 1
5 5 15.7 0 ? ? ? s3 2

Table 2: Example of a discretization using the QM, consid-
ering Qin=10, Hmax=5 and 5 time steps. Since Step 3 is an
equilibrium state, we assume that the observation at time 5
still matches state 3, although the derivatives are unknown.

Statet Statet`1 Periodt Statet Statet`1 Periodt

s1 s2 1 s3 s3 1
s2 s2 1 s3 s3 2
s2 s3 2

Table 3: Transformation of the database of Table 2 into a
database suitable for the BN learning.

given a quantity X, the variable Xt denotes its value at time
step t. Table 2 shows an example of the whole discretization
process.

Reduced Dataset
Since the model aims to learn the evolution of the system,
i.e. the transitions between steps, a new dataset is composed
from the Statet, Statet`1 and Periodt. This way, each lines
brings information of the system’s state, how long it has
been this way, and whether it will remain the same (or transi-
tion) in the next time step. Table 3 shows the transformation
applied to Table 2 in order to be able to learn a BN.

Bayesian Network
Structure Definition Once the database is prepared, a
structure is manually defined to guide the BN learning,
based on two assumptions:



Table 4: Excerpt of the CPT showing the probabilities of
passing from Statet to Statet`1 if Periodt = 22.

• The Periodt value depends only on the value of Statet;

• The probability of passage from Statet to Statet`1 de-
pends on Statet and the Periodt;

This defines the following structure: Statet Ñ Statet`1

Ð Periodt Ñ Statet.

Parameters Learning Once the structure defined, param-
eters are learned through a statistical learning whose goal
is to maximize the likelihood by estimating the probabil-
ity of an event according to its frequency in the considered
database. In case an event is never observed (e.g. if the sys-
tem never stays more than one time step in s1, then the com-
bination {Statet=s1, Period=10} is never observed), the
probabilities are by default equiprobable: all possible out-
comes are considered as likely. The learned BN thus encom-
passes the QM model in its structure, and heavily depends
on the data only for its parameters.

Combined Model

In this article, two applications are presented in order to
demonstrate the reasoning offered by the learned model:

1. State Prediction. Reading the CPT, the probability of
passing from one state to the other knowing the period
can be deduced. Table 4 presents an excerpt, focusing on
the passage from one step to the other after a period of
22 (Periodt = 22). It shows that depending of Statet, the
most probable value of Statet`1 depends: if Statet = s2,
then it has a probability of 0.69 of staying s2; on another
hand, if Statet = s3, then it will stay s3 (which is logical,
since it is a equilibrium state). To be noted, if Statet =
s1, then the probability of transitioning is equiprobable
between s1 and s2 (s3 is not considered as s1Ñs3 is not
possible according the state graph): this is due to the fact
that the system has no information about cases where a
system has stayed 22 time steps in s1.

2. Period Prediction. Another way of exploiting the proba-
bilistic relations is to make inferences: knowing the value
of some variables, it is possible to compute the most
probable values of the others. Fig.5 presents such an ex-
ample: knowing that Statet = s2 and Statet`1 = s3 (in
orange to indicate it is observed), the most probable pe-
riod (in grey to indicate it is computed) is 22.

Figure 5: Example of an inference using the BN.

Comparison to Naive BN1

In order to evaluate its performances, the combined model is
compared to naive BNs. To do so, two naive BNs integrat-
ing different expert constraints are presented. Evaluation is
done for both (1) the graph and (2) predictions, which are
compared against a ground truth.

Naive BNs Learning
”Naive” refers to the fact that the QM’s model is not known
during the learning, the main difference being that state
knowledge is not taken into account. This section presents
two versions, with different degree of the model’s under-
standing:

1. Learning is approached with no information from the
system at all. Discretization is made using quantiles (in-
stead of the system space’s values), and the structure is
constrained only so that variables from the past (Qt, Vt,
Ht) can be used to predict the future (Qt`1, Vt`1, Ht`1),
but not the contrary. This approach represents the most
naive learning, and gives an idea on how BNs handle this
kind of data without prior knowledge of the system. It is
denoted as the unguided approach.

2. A second learning is made to include more system’s
knowledge. The QM’s space’s values is used for the dis-
cretization, and the structure is forced in order to tran-
scribe the expert knowledge used in the QM. This ap-
proach is denoted as the guided approach.

Unguided Approach Seven variables are considered: six
to capture the values of the quantities Q, V and H at times t
and t ` 1, and one to capture the Time Steps. To be noted,
the Time Steps variable in this context is different from
the Periodt one presented until now: since states are not
known, time refers here to the beginning of the simulation,
and not to the time passed in a certain state. The structure

1All code used in this article are available at
https://gitlab.com/melanie.munch/qr23-submission



is learned through a classical greedy algorithm (Chickering
2003), with the only constraint that variables at time t can
explain variables at time t ` 1, but not the contrary (tem-
poral constraints). Discretization is done such that (1) Q, V
and H are discretized in 5 quantiles; (2) Vmax and Hmax

are a 6th category in order to capture when the tank is filled;
Time Steps is not categorized to keep track of the time as
precisely as possible.

Guided Approach This approach still considers seven
variables, but handles them differently. First, discretization
is done following the QM’s space values; secondly, structure
is oriented so that additionally to the temporal constraints
forced in the naive version, it also takes into account (1) the
expert knowledge integrated in the QM (QÑVÑH), (2) the
influence of the Time Steps variable over the values mea-
sured at time t and (3) for each variable its value at time t to
predict its value at t ` 1.

Simulations
Given a database of 1000 simulations, three models are
learned using the same sample of 100 experiments:
1. Combined Model: A model learned using the method

presented in the previous section.
2. Unguided Model: A model learned using the unguided

approach presented in this section.
3. Guided Model: A model learned using the guided ap-

proach presented in this section.
The database of 1000 experiments represents the ground
truth that the learned models aim to reach.

Graph Evaluation
Result of the learning are presented in Fig.6. For the sake
of explainability, variables Q, V and H have been repre-
sented in the combined model (a), so that it can be compared
to the other structures. Since it was learned without knowl-
edge, unguided structure (b) differs the most from the QM
structure of Fig.4 (a), leading to non causal relations (e.g.,
VtÑHtÑQt). As such, the learned relation are not able to
explain the system in a causal way: it only displays correla-
tions, and cannot generate sound explanations to justify the
model’s prediction. On another hand, the guided approach
(c) presents a structure coherent with the QM. Moreover, on
the contrary of the combined structure, it directly displays
the relations between the variables, instead of having them
hidden between the states transitions. While this is an ad-
vantage in term of readability for systems with only a few
variables, this can become a hassle when considering bigger
systems.

Predictions Evaluation
Generation For each model, 1000 simulations are done
using the principle illustrated in Fig.7: starting from
the same initialization (Qtą0, Vt=0, Ht=0, Time Pe-
riod/Periodt=1), marginal laws for the next step are com-
puted (i.e., probabilistic distribution for the possible values).
Using these laws, new values for the variables Qt`1, Vt`1

and Ht`1 are drawn. If either Ht`1 takes the maximal value

(a) Combined Structure (b) Unguided
Structure

(c) Guided Approach
Structure

Figure 6: Models’ structures comparison.

or the number of time steps exceed 100, then the simula-
tion is finished. In the first case, the number of time steps is
kept; in the second, it means that the model could not reach
the end of the simulation and thus the run is incorrect. Fre-
quency of the number of time steps required to conclude the
simulation (i.e. to fill the container) are compared to the fre-
quency measured in the initial dataset.

Results Results are presented in Fig.8. The first notable
thing is that despite the fact that only 10% of the origi-
nal dataset was used to learn the models, all models have
an average time of filling close to the ground truth’s. A
Kolmogorov-Smirnov goodness of fit test is performed in or-
der to compare each distribution to the baseline: H0 means
that both distributions are identical, while H1 means they
are distinct. H1 is rejected for both combined and guided
models (with p-values respectively of 0.6 and 0.3), while it
is validated by the unguided approach (p-valueă10´5). This
means that the unguided approach did not manage to capture
the underlying distribution of the dataset. On another hand,
both combined and guided are statically indistinguishable,
both having an average expectancy of time steps (i.e. the av-
erage time taken to fill the container) close to the truth’s (re-
spectively 24.3 and 23.2 against 24.7).

The main difference between combined and guided mod-
els lies in the evolution of the different values. Fig.9 shows
three independent simulation results for each model. Guided
and unguided are characterized by (1) a decorrelation be-
tween the three variables (e.g. V reaches Max value be-
fore H); and (2) impossible evolution of the values (e.g. Q
increasing). This shows that even if the guided model is
close in structure and (for this particular problem) of the
ground truth’s predictions, it fails at providing an explana-
tion grounded into the causal model. Combined model, on
the contrary, is able to provide a description of the system
which is consistent with the QM.



Figure 7: General flowchart for the simulations. To be noted, in the case of the combined model, variables are encompassed in
the State variable and Time is replaced by the Period variable.

(a) Combined Model (24.3)

(b) Unguided Model (21.6)

(c) Guided Model (23.2)

Figure 8: Frequency of the times taken to finish the simu-
lation (average number of time step). Truth has an average
number of time step of 24.7.

Figure 9: Example of three independent simulations for each
model.

Discussion
Comparison to naive BNs has shown that grounding causal
knowledge from QM to BN’s learning results in a model able
to provide simulation close to the reality of the studied sys-
tem. This is particularly due to the distinction between Pe-
riod and Time Steps quantities: while the combined model
is able to reason only on state transitions, naive models can
only consider total times. As such, they cannot reason about
the state they are in, but only how long the simulation has
been running. In this simulation, the simplest case was con-
sidered, as only s2 had a non-constant time: s1, for instance,
always lasts one time step. Further experiments should be
done on systems with more complex state graphs (e.g. with
cycles and branching paths), in order to assess whether the
combined model can adapt. While the approach presented
in this article only requires a dataset and a QM as inputs,
more work should be done on its automation. More broadly,
it should be interesting to see how the combined model can
scale on systems with more quantities. Especially, it is im-



portant to also take into account the challenges brought by
introducing more quantities, as some could be uncertain or
missing from the dataset: states could then be uncertain as
well, if not all quantities are known.

Another lead to explore would be to use the combine
model to assess the adequacy between a theory and a dataset.
(Kansou et al. 2017) proposes two tests to define whether a
model can be well described by a QM or not: the encom-
passment (the adequacy between the QM and the dataset)
and the sufficiency (the adequacy between the QM and the
model’s behaviour). To pass this verification, it is important
to consider technical aspects:

• The choice of time steps has an influence: if too great, it
is possible to skip some combinations of value (and thus
states) when annotating the dataset. This would result in
a model not respecting the state graph. For instance, if
passing from states takes 2 time steps (s1Ñs1Ñs2Ñ

s2Ñs3), then having a time step of 3 would lead to a
model predicting a passage from 1 directly to 3 (s1Ñs3).

• Another critical point is the computation of derivatives.
The same way the choice of time steps influences the
model’s learning, data’s sensibility can influence the
derivatives’ precision. Indeed, depending of the precision
of measurement, zero derivative can be hard to catch, as
it usually concerns one data point.

Finally, it is important to consider that the data depends on
multiple parameters not represented as quantities in the QM.
For instance, the required time to fill the container depends
on Vmax (maximal height and radius): if a model is learned
only on high and/or large containers, its predictions will not
be relevant for smaller containers.

Conclusion
In this article, a new approach of combining BNs with QM
has been presented, with the goal of improving BN’s model-
ing by integrating expert knowledge. Comparison with naive
BNs has displayed better results for the combined model
in term of prediction and explainability. In conclusion, the
resulting model is able to provide explainable answers and
simulations over an uncertain system. The learning is based
only on a dataset and the expert knowledge encompassed in
the QM, which dispenses the modeller with the prior defini-
tion of system equations.
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