Communication Dans Un Congrès Année : 2023

Kalman filter for dynamic imaging based on complex empirical covariances

Résumé

Kalman filter (KF) is a priori unsuitable for the estimation from sample covariance matrices as they cannot be formulated analytically as a function of state parameters to be estimated. In this work, we propose a novel KF adapted to sample covariance matrices under the unconditional signal model. It is evaluated on simulated data representative of a dynamic radio astronomy framework, considering multiple uncorrelated sources and Gaussian noise. The results show that our method is capable of effectively tracking moving sources in complex scenes with greater accuracy than a KF regularized in a standard way, i.e., without proper formalization of the noise model.
Fichier principal
Vignette du fichier
CAMSAP_2023_radio_astronomy (1).pdf (853.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04399532 , version 1 (17-01-2024)

Identifiants

Citer

Nawel Arab, Cyril Cano, Isabelle Vin, Mohammed Nabil EL KORSO, Eric Chaumette, et al.. Kalman filter for dynamic imaging based on complex empirical covariances. CAMSAP 2023 2023 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Dec 2023, los suenos, Costa Rica. ⟨10.1109/camsap58249.2023.10403483⟩. ⟨hal-04399532⟩
57 Consultations
83 Téléchargements

Altmetric

Partager

More