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Abstract—Kalman filter (KF) is a priori unsuitable for the
estimation from sample covariance matrices as they cannot be
formulated analytically as a function of state parameters to be
estimated. In this work, we propose a novel KF adapted to sample
covariance matrices under the unconditional signal model. It is
evaluated on simulated data representative of a dynamic radio
astronomy framework, considering multiple uncorrelated sources
and Gaussian noise. The results show that our method is capable
of effectively tracking moving sources in complex scenes with
greater accuracy than a KF regularized in a standard way, i.e.,
without proper formalization of the noise model.

Index Terms—Estimation, Kalman filter, Visibility matrix,
Radio astronomy

I. INTRODUCTION

The design and use of techniques for estimating a dynamic
state from multiple observations is fundamental in a plethora
of applications, such as robotics, tracking systems, guidance,
and navigation [1] [2] [3] [4]. For a linear dynamic state
and measurement system, the Kalman filter (KF) provides
the best linear unbiased estimator in terms of mean squared
error in a recursive form, under certain conditions of non-
correlation of the state and measurement noise. The most
common solution for nonlinear measurement systems is to
resort to a linearization of the system, leading to what is
called the extended Kalman filter (EKF). In the presence of
strong non-linearities, the EKF loses its optimality, and other
more robust solutions (such as sigma-point filters [5] [6]) have
been introduced recently. In all cases, the main assumption
is a perfect knowledge of the system: (i) known state and
measurement models, as well as their parameters, (ii) known
inputs, and (iii) known noise statistics (i.e., first and second-
order moments).

The novelty of this communication resides in addressing
a scenario where the measurement model is unknown. Par-
ticularly when the measurement is represented by a com-
plex empirical covariance matrix (Sample Covariance Matrix,
SCM) based on a finite number of samples. In such cases,
although each individual sample may adhere to a linear para-
metric model, the finite horizon SCM cannot be analytically
expressed in terms of the parameters of this linear model
which a priori makes it unsuitable for incorporation into
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a state/measurement model. In fact, this lack of analytical
formulation can be circumvented in the case of instantaneous
linear observations from multiple sources in the presence
of additive noise (stochastic observation model), when the
sources are uncorrelated and the state to be estimated is the
power of the sources.

Under the assumption of a deterministic dynamic state
model (no state noise) and i.i.d. instantaneous observations,
we propose a statistical linear fitting for the measurement
model, allowing the SCM to be expressed in terms of the state.
This linear fitting introduces an additive noise, equivalent to
the measurement noise, and whose covariance matrix depends
on the current state, a non-standard case for a measurement
model. We first derive a general form for the covariance of
the linear fitting noise and explicit it for Gaussian random
vectors.

It is shown that an implementable version of this linearly
fitted system allows for an accurate estimation of the dynamic
state of the system if the initial state estimator is sufficiently
accurate. In addition, the robustness to initialization is investi-
gated by considering a degraded initialization. A lower bound
on the achievable MSE matrix is given when considering the
measurement covariance matrix perfectly known.

This new KF formalization for complex SCMs through sta-
tistical linear fitting is applied to dynamic imaging in a radio
astronomical context. The series of images to be estimated
represents dynamic celestial sources that emit incoherent,
monochromatic signals. Observations acquired over time are
complex SCMs of the signals received by the antenna array.

II. UNDERLYING MEASUREMENT MODEL

At each instant tk, we consider the observation of the linear
mixture of Q sources, denoted sk ∈ CQ×1, in the presence of
additive noise nk :

zk = Aksk + nk, (1)

where Ak ∈ CM×Q is the system response matrix, sk and nk
are complex circular centered random vectors, and zk is the
underlying observation vector. The covariance matrix of the
observations is denoted Czk

,

Czk
= E

[
zkz

H
k

]
= AkCskA

H
k +Cnk

, Csk = E[sksHk ].
(2)



However, in some applications, estimation is based only on
the sample covariance matrix (SCM) of given observations. In
that case, it is commonly assumed that the observation vector
zk is sampled N times within a short time interval around tk
during which the sources are considered static, resulting in N
i.i.d samples zk(n) from which the SCM is computed as:

Ĉzk
=

1

N

N∑
n=1

zk(n)zk(n)
H , (3)

which converges in probability to Czk
as N tends to infinity.

Assuming that all nk and sl for k, l ≥ 1 are independent
and that the sources sqk, q ≥ 1, are mutually independent,
the goal is to estimate instantaneous intensities E[sksHk ] =
diag (xk) based on the SCM at the time slots {t1, · · · , tk}
when the intensities xk are governed by a dynamic model.
The N observation samples are obtained conditionally on a
specific realization of the state xk, which may be stochastic in
the general case. However, in this communication we restrict
ourselves to the case where the state xk is deterministic (no
additive state noise).

III. LINEAR FITTING OF THE MEASUREMENT MODEL

In order to benefit from the performance improvement
brought by Kalman filtering regarding the estimation of xk,
it is necessary to resort to a dynamic system described by
state and measurement equations, ideally linear, that is for
deterministic state estimation:

xk = Fk−1xk−1 (4a)
yk = Hkxk + vk. (4b)

The evolution matrices Fk−1 and the observation matrix Hk

are assumed to be known. One can show that, in order to
obtain a KF yielding the lowest minimum MSE matrix, the
complex empirical covariance matrix should be considered via
its real and imaginary parts. Hence, we then define yk as:

yk =

 Re
{
vec

(
Ĉzk

)}
Im
{
vec

(
Ĉzk

)}  . (5)

In a non-asymptotic regime, when working with the finite
horizon SCM Ĉzk

, the validity of the measurement model (4b)
is compromised. Consequently, our approach involves seeking
a linear model that can effectively capture the properties
of the SCM. For the measurement matrices, the asymptotic
relationship (2) linking Czk

= E[Ĉzk
] and xk suggests taking

Hk of the form:

Hk =

[(
Re(a∗k,1 ⊗ ak,1)

Im(a∗k,1 ⊗ ak,1)

)
· · ·
(
Re(a∗k,Q ⊗ ak,Q)

Im(a∗k,Q ⊗ ak,Q)

)]
, (6)

where ak,q are the column vectors of the matrix Ak (1). The
statistical linear fitting noise is then defined as

vk ≡ yk −Hkxk. (7)

This defines a linear discrete state space (LDSS) model for
which a Kalman Filter is derived in the following section.

IV. IDENTIFICATION OF FIRST AND SECOND ORDER
STATISTICS OF THE LINEAR FITTING NOISE

The next step consists of evaluating the first and second-
order statistics of the linearization noise vk involved in KF
recursion. Since xk is deterministic, the linear model (4b) is
characterized by the identities

E[vk] = E[yk −Hkxk] = E[yk]−Hkxk (8a)
Cvk

= Cyk−Hkxk = Cyk
(8b)

A. Mean of the linear fitting noise

Since Ĉzk
is an unbiased estimate of Czk

, one has

E[yk] =
[
Re
{
vec (Czk

)
T
}
, Im

{
vec (Czk

)
T
}]T

= Hkxk + vak,
(9)

where

vak =
[
Re
{
vec (Cnk

)
T
}
, Im

{
vec (Cnk

)
T
}]T

. (10)

Which from (7), implies that E[vk] = E[yk] − Hkxk and
therefore

E[vk] = vak. (11)

B. Covariance of the linear fitting noise

As the state xk is deterministic, one gets Cvk
= Cyk

with

Cyk
=

1

4N
C( Re {z∗

k ⊗ zk}
Im {z∗

k ⊗ zk}

), (12)

where ⊗ denotes the Kronecker product, such that z∗k ⊗ zk =
vec(zkz

H
k ). Equivalently, one can write

Cyk
=

1

4N
VCψk

VH , ψk =

(
z∗k ⊗ zk

(z∗k ⊗ zk)
∗

)
, (13a)

where

Cψk
=

[
Cz∗

k⊗zk
Cz∗

k⊗zk,zk⊗z∗
k

C∗
z∗
k⊗zk,zk⊗z∗

k
C∗

z∗
k⊗zk

]
(13b)

and

V =

[
IM2 IM2

−jIM2 jIM2

]
. (13c)

C. Case of Gaussian random vectors

For complex circular Gaussian sources sk ∼
CN (0, diag(xk)) and Gaussian noise nk, the underlying
observations are also centered complex circular Gaussian, i.e.
zk ∼ CN (0,Czk

). Hence (13b) simplifies from identities:

Cz∗
k⊗zk

= CT
zk

⊗Czk
, (14a)

Cz∗
k⊗zk,zk⊗z∗

k
=
(
CT

zk
⊗Czk

)
P (14b)

where

P =

M∑
m=1

M∑
m′=1

(em ⊗ em′) (em′ ⊗ em)
T
, (14c)



and em, 1 ≤ m ≤ M , are vectors of the canonical basis of
RM . Finally, Cyk

takes the form

Cyk
=

1

4N
V

[
CT

zk
⊗Czk

(
CT

zk
⊗Czk

)
P((

CT
zk

⊗Czk

)
P
)∗ (

CT
zk

⊗Czk

)∗ ]
VH .

(15)
Thus, the KF taken into account mean and covariance matrix
of the linear fitting noise calculated in (11) and (15) reads

Algorithm 1 Kalman Filter recursion
Inputs : x̂k−1|k−1, Pk−1|k−1, yk

Outputs: x̂k|k, Pk|k

Prediction :
Pk|k−1 = Fk−1Pk−1|k−1F

H
k−1

x̂k|k−1 = Fk−1x̂k−1|k−1

Update :
ŷk|k−1 = Hkx̂k|k−1 +mvk , where mvk is given by (11)
Sk|k = HkPk|k−1H

H
k +Cvk , where Cvk is given by (15)

Kk = Pk|k−1H
H
k S−1

k|k
Pk|k = (I−KkHk)Pk|k−1

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1)

V. APPLICATION IN RADIO ASTRONOMY

We consider a radio interferometric array similar to the Very
Large Array (VLA), located in New Mexico [7]. The VLA
consists of a three-branch interferometric array, as shown in
Fig 1a, with a total of p = 3 × 9 antennas. This instrument
is designed to capture signals from celestial sources, resulting
in a composite signal due to the superposition of multiple
astrophysical sources. The image we are interested in has Q
pixels, representing a discretization of the sky. Each pixel
corresponds to a specific direction of arrival (DOA) from
which the signal intensity needs to be estimated.
Let sq(tk) denote the signal emitted by the q-th pixel at
a time slot tk. The signals sq(tk)1≤q≤Q are assumed to
be mutually independent and identically distributed (i.i.d.),
circular complex Gaussian signals, which are concatenated
in s(tk) ∈ CQ. Here, sq(tk) ∼ CN (0, (xk)q), where (xk)q
represents the intensity of the q-th pixel at time slot tk. The
objective is to estimate these intensities xk from the measured
visibilities at each time slot tk, which will be achieved by the
newly introduced KF.
The measurement noise originating from the interferometer is
modeled as a centered i.i.d. complex Gaussian signal. Noises
are also concatenated in a M × 1 dimensional vector denoted
as M(tk) ∈ Cp. Under the narrowband condition, the signal
received at the j-th antenna can be represented by (1) [8]

zk = Aksk + nk =

Q∑
q=1

aq(tk)sq(tk) + nk, (16)

where Ak = exp
(
−j2π/λRLT

)
is the steering vectors

matrix, R is the M × 2 matrix of antenna positions, and
L is the Q × 2 matrix of source direction vectors. At each
tk, the received signal is composed of N i.i.d. samples
{z(n)tk}1≤n≤N from which the SCM Ĉzk

(also refered to
as astronomical visibilities) is calculated [9].

Fig. 1: (a) VLA antennas positions in terrestrial coordinates (each branch is
21km long), and (b) image representing the sky at the initial time t = 0

A. Simulations

The considered images have a size of Q = 128 × 128
pixels and consist of ten astrophysical sources modeled by
bivariate normal distributions (Figure 1b). At each time slot
tk, a rotation of angle θk is applied to the previous image,
simulating a dynamic state model. Recall that the main con-
tribution of this study is to statistically characterize the linear
fitting noise when the measurements are complex SCMs.
While obtaining the mean (11) of the linear fitting noise is
trivial, the expression of its covariance matrix is unknown
since it depends on the current state to be estimated. The
proposed method is therefore compared to a KF in which the
measurement noise covariance matrix is fitted in a standard
way. In fact, since the matrix is positive definite, it is often
parameterized as a diagonal matrix [10]. More precisely, under
the assumption of independent and identically distributed
(i.i.d.) measurement noise, this matrix takes the form r × Id,
where the coefficient r is empirically adjusted. In this case,
the measurement model is misspecified, and we refer to it as
the misspecified Kalman filter (MKF).

B. Initialization and practical implementation

In practice, implementing a KF requires an appropriate
initialization of the state x̂1|1. In our approach, we initially
attempt to initialize it using normalized beamforming, as it
is commonly used in this context. The estimated image and
the resulting KF and MKF performances initialized with the
normalized beamforming are presented in Fig 2 and Fig 3a-3b.
However, an unbiased estimator x̂1|1 is of particular interest
since this property is conserved by the KF. It can be obtained
by a distortionless response filter (DRF). Among the DRFs,
the minimum variance distortionless filter (MVDRF)

K1 =
(
HH

1 C−1
v1

HH
1

)−1
HH

1 C−1
v1

(17)

minimizes the covariance and is thus preferred in this work.
The MVDRF estimation is constrained by the number of
antennas of the interferometric network. In particular, for M
antennas the MVDRF is able to efficiently reconstruct images
of size M(M − 2) pixels. Therefore, we consider reduced
images of size Q = 30× 30 pixels when initializing with the
MVDRF. We assess the impact of MVDRF initialization on
the performance in Fig 3c-3d.



Since the measurement noise covariance matrix Cvk
de-

pends on the state xk, the initialization of the KF requires the
estimation of an initial state x̂1. In this work, Ĉv1 is obtained
with a beamforming estimator of x1 [11] for both the MKF
and the KF. At each recursion step, the filter is computed
by substituting Cvk

by an estimate Ĉvk
built from the KF

prediction x̂bk|k−1.

C. Results

The estimates provided by both MKF and KF are shown
in Figure 2. It can be observed that the use of the KF visu-
ally improves the initial estimation obtained through spatial
filtering, while this improvement is not evident in the case of
the MKF. These results are further supported by numerical
calculations of two reconstruction error measures: the root
mean squared error (RMSE) [12] and the normalized cross-
correlation (NCC) [13]. The RMSE is sensitive to pixel-wise
intensity estimation errors, while the NCC is sensitive to errors
in the image structure estimation. The KF demonstrates better
performance in both measures. The results are displayed in
Figure 3.

Fig. 2: Estimated images at different time slots. Each row corresponds to
a short time interval, with the true image on the left column, the image
estimated by the MKF in the middle, and the image estimated by the KF on
the right.

It can be observed that the MKF is more sensitive to
initialization compared to the KF Fig 3. While the MKF
performs poorly when initialized with a degraded estimate
obtained through beamforming Fig 3a-3b, it performs rea-
sonably well when initialized with the MVDR Fig 3c-3d.
This highlights the importance of choosing an appropriate
initialization technique for the MKF to achieve satisfactory
results. On the other hand, the KF demonstrates consistently

good performance in both cases. This emphasizes the greater
robustness and reliability of the KF compared to the MKF.

(a) (b)

(c) (d)

Fig. 3: Evolution of the RMSE and NCC. The first line shows KF and MKF
performance with normalized beamforming initialization, while the second
line presents performance with MVDR initialization.

The achievable performance of a system can be bounded
when assuming perfect knowledge of the state parameters. A
lower bound on the RMSE is obtained by substituting the
true state vector, xk, into the covariance matrix Cvk

. The
lower bound in Fig 4 provides insights into the minimum level
of error that can be expected when the true state is known.
Furthermore, it is noteworthy that the KF with the linear fitting
noise converges to this lower bound after a few iterations.

Fig. 4: Performances of the proposed KF with estimated (red) and true
(green) Cvk .

VI. CONCLUSION

In this paper, we introduced a statistical linear fitting model
for the formalization of a Kalman filter when dealing with
second-order observations. Our focus was on developing the
required calculations to characterize the linear fitting noise
in the case of a Gaussian distribution for the sources. The
performance of the proposed algorithm is evaluated in a radio
astronomy context. Results demonstrate that our approach
outperformed a conventional misspecified Kalman filter with
a standard model of the measurement noise covariance matrix.
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