Article Dans Une Revue Algebraic and Geometric Topology Année : 2023

The handlebody group and the images of the second Johnson homomorphism

Quentin Faes
  • Fonction : Auteur
  • PersonId : 1124741

Résumé

Given an oriented surface bounding a handlebody, we study the subgroup of its mapping class group defined as the intersection of the handlebody group and the second term of the Johnson filtration; A n J2. We introduce two trace-like operators, inspired by Morita's trace, and show that their kernels coincide with the images by the second Johnson homomorphism r2 of J2 and A n J2, respectively. In particular, we answer in the negative a question asked by Levine about an algebraic description of r2(A n J2). By the same techniques, and for a Heegaard surface in S3, we also compute the image by r2 of the intersection of the Goeritz group g with J2.
Fichier principal
Vignette du fichier
agt-v23-n1-p08-s.pdf (884.67 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04362169 , version 1 (20-09-2024)

Licence

Identifiants

Citer

Quentin Faes. The handlebody group and the images of the second Johnson homomorphism. Algebraic and Geometric Topology, 2023, 23 (1), pp.243-293. ⟨10.2140/agt.2023.23.243⟩. ⟨hal-04362169⟩
48 Consultations
9 Téléchargements

Altmetric

Partager

More