Supervised task learning via stimulation-induced plasticity in rate-based neural networks - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Supervised task learning via stimulation-induced plasticity in rate-based neural networks

Résumé

Synaptic plasticity dynamically shapes the connectivity of neural systems and is key to learning processes in the brain. To what extent plasticity mechanisms, which are intrinsically unsupervised, can be exploited to make a neural network achieve any computational task remains unknown. Here, we present a self-contained procedure which, through appropriate spatio-temporal stimulation control of the neurons, is able to drive rate-based neural networks with arbitrary initial connectivity towards a desired functional state. We illustrate our approach on two different tasks: a non-linear association between multiple input stimulations and activity patterns (representing digit images), and the construction of a continuous attractor encoding a collective variable in a neural population. Our work thus provides a proof of principle for emerging paradigms of in vitro biological computation, e.g. based on brain organoids.
Fichier principal
Vignette du fichier
paper_23_supervised_stimulation.pdf (2.64 Mo) Télécharger le fichier
paper_23_supervised_stimulation_SI.pdf (1.62 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04339067 , version 1 (12-12-2023)
hal-04339067 , version 2 (28-11-2024)
hal-04339067 , version 3 (12-12-2024)

Licence

Identifiants

  • HAL Id : hal-04339067 , version 1

Citer

Francesco Borra, Simona Cocco, Rémi Monasson. Supervised task learning via stimulation-induced plasticity in rate-based neural networks. 2023. ⟨hal-04339067v1⟩
143 Consultations
182 Téléchargements

Partager

More