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ABSTRACT

Synaptic plasticity dynamically shapes the connectivity of neural systems and is key to learning processes in the brain. To what
extent plasticity mechanisms, which are intrinsically unsupervised, can be exploited to make a neural network achieve any
computational task remains unknown. Here, we present a self-contained procedure which, through appropriate spatio-temporal
stimulation control of the neurons, is able to drive rate-based neural networks with arbitrary initial connectivity towards a desired
functional state. We illustrate our approach on two different tasks: a non-linear association between multiple input stimulations
and activity patterns (representing digit images), and the construction of a continuous attractor encoding a collective variable in
a neural population. Our work thus provides a proof of principle for emerging paradigms of in vitro biological computation, e.g.
based on brain organoids.

Introduction

Recent progress makes now possible to grow, preserve, and study brain organoids1, raising a surge of interest in in vitro
biological computation2, 3. The capabilities of stimulating and recording neural populations4–6 allow for interfacing these
systems, potentially turning brain organoids into miniature biological computers. Computing with organized assemblies of
neurons could offer considerable advantages with respect to electronics-based devices, in particular in terms of low energy
consumption, massive parallel computation, and continuous learning. However, besides the challenges raised by organoid
technologies7, it remains conceptually unclear how they could be, in practice, best used and controlled to achieve high-level
computation.

Computation with neural cultures has been largely based so far on the framework of reservoir computing8, 9, in which the
readout of the high-dimensional neural activity is trained to perform the desired task. However, reservoir computing falls short
from fully realizing the computational potential of neural systems, as it does not exploit their capability for reconfiguration of
biological connectivity across time. The presence of plasticity mechanisms, involving multiple molecular and cellular processes,
is crucial to the formation and maintenance of experience–related changes to neural function and circuitry10. These mechanisms
can potentially be exploited to shape, through appropriate stimulations, the activity and the connectivity of networks11. In this
respect, a key question emerges: what spatio-temporal stimulation patterns are capable of remodeling a plastic neural network
and make it achieve a desired computational task (Fig. 1A)? Deriving guiding principles and practical tools to answer this
question is crucial to future progress in biological computation.

From a machine-learning point of view, supervised learning of a task is generally cast as an optimization problem in very
high dimensions. One looks for the minimum of the cost (loss) function expressing the mismatch between the target and
actual computation carried out by the network. In artificial nets, the cost can be gradually reduced through gradient descent
(or one of its stochastic variants) in the space of connections, until a minimum with good performance is reached. A key
point here is that all moves in the connectivity space, in particular the one along the gradient of the cost, are allowed during
learning. The situation is much more constrained in the case of biological networks, in which the learning dynamics can
obviously not be arbitrarily chosen, and plasticity mechanisms set strong limitations about feasible directions. As a concrete
example, consider the case of Hebbian-like plasticity rules, in which the changes in the connections are functions of the firing
rates of the neurons. As the number of neurons is generally much smaller than the number of synaptic interactions, plastic
changes of different connections are highly inter-dependent, and cannot be individually tuned to match the gradient components.
This fundamental limitation makes learning in biologically-plausible networks conceptually much more intricate than in their
artificial, unconstrained counterparts. In addition, the magnitude of synaptic modifications is hard to control in biological
networks, while the capability to implement adaptive learning rates is generally regarded as a key ingredient in machine
learning.

In the present work, we show how to bypass these intrinsic limitations, and how to train plastic networks to accomplish



desired computations in the case of neural rate-based models. We determine time and neuron dependent control stimulations
capable of inducing adequate neural activity, progressively driving the network connectivity through its intrinsic Hebbian-like
plasticity towards a desired state (Fig. 1A). Figure 1B summarizes our learning protocol, which relies on multiple cycles of
stimulations and recordings of the neural population. At the beginning of each cycle, the responses of the network to few short
probing stimulations are recorded, and used to infer the connectivity of the network. Based on this estimate of the connectivity,
we plan a control stimulation pattern, which is subsequently applied to the neurons. Under this control, plastic changes to the
connections take place and enhance the network performance in achieving the desired computation. The procedure is iterated
until the computational target is reached.

Modeling framework: neural activity, connectivity, target, and stimulation protocol
Dynamics of neural activity
We consider a network of N neurons, characterized by their firing rates r(t) = {ri(t)} at time t and the time-dependent synaptic
connectivity matrix J(t) = {Ji j(t)} (Fig. 2). By convention, Ji j refers to the coupling from the pre-synaptic neuron j to the
post-synaptic neuron i. The neural population includes NE excitatory (E) and NI inhibitory (I) neurons, which constrains the
signs of the corresponding synaptic interactions. The activities of the neurons obey the dynamical rate equations

τn
dri

dt
(t) =−ri(t)+Φ

(
∑

j
Ji j(t)r j(t)+ fi(t)

)
(1)

where τn is the membrane relaxation time, and fi(t) is a time-dependent control stimulation on neuron i, which can be
dynamically controlled at will in the range [ fmin; fmax]. The input-to-rate transfer function Φ is a sigmoidal function, ranging
between zero and maximal frequency rmax (Methods and SI, Section 1). Control stimulations fi are expressed in units of rmax,
while connections Ji j are dimensionless (SI, Section 1).

Synaptic plasticity
Plasticity induces activity-dependent changes in the interactions. We assume that these changes derive from a Hebbian-like
covariance rule with a post-synaptic threshold depending on the neuron type, ε = E or I12, and are stabilized by two homeostatic
feedbacks13–16. The first one biases the activity of the post-synaptic neuron towards a baseline activity θ0, while the second one
imposes a soft clipping of synaptic amplitudes outside the range [−J̄;+J̄]. The resulting equation for the synaptic dynamics is

τs
dJi j

dt
(t) = η(ε j) (ri −θ(ε j)) r j︸ ︷︷ ︸

hebbian

−β1 |Ji j| (r2
i −θ0(ε j)

2)︸ ︷︷ ︸
homeostasis 1

−β2 sign(Ji j) h2
(
|Ji j|− J̄

)︸ ︷︷ ︸
homeostasis 2

(2)

where ε j is the pre-synaptic neuron type, and h2(u) = u2 if u ≥ 0, 0 if u < 0. Plasticity for excitatory and inhibitory connections
are assumed to have different learning rates η(E) and η(I) and are associated to different thresholds θ(E) and θ(I)) to enhance
the stability of the network activity states. The parameters β1 and β2 control the strengths of the homeostatic constraints.

The learning rule in Eq. (2) is flexible, and can describe Hebbian as well as anti-Hebbian learning. The former is obtained
when η(ε j) is positive, independently of the pre-synaptic neuron type ε j. To accommodate for anti-Hebbian inhibition17, one
chooses η(E)> 0,η(I)< 0. We report results with both choices of rules below. We stress that anti-Hebbian here refers to a
negative feedback between correlations and synaptic strength change.

While the associative learning rule above can be easily modified, a key assumption we rely on is that synaptic changes
are slow compared to the fast variations in the activity, i.e. τn ≪ τs (Methods and SI, Section 2). Due to this assumption only
the slow variations (on the τs time scale) of the stimulations f(t) = { fi(t)} matter. Furthermore, the neural activities ri are
quasi-stationary and locked to the slowly varying inputs. In mathematical terms, the r.h.s. of Eq. (1) vanish.

Target state of the network
Our goal is to drive the neural network connectivity J(t) in order to achieve some target, either structural or functional (Fig. 1A).
In the former case the network connectivity is asked to reach some value, say, Jtarget . The control stimulation should ensure
that the loss

Utask
(
J(t)

)
= ∑

i, j
wεi,ε j

[
Ji j(t)− Jtarget

i j

]2 [structural target] (3)

decays towards zero over time. We use weights wεi,ε j depending on the neuron types to ensure that the four classes of
connections E, I → E, I are equally contributing to Utask (Methods).
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In the functional case, the target is not the connectivity itself as above, but the computation carried out by the network. The
neurons i in the network are partitioned into three subpopulations, referred to as input (in), processing (proc), and output (out).
The network is required to implement a set of npairs input/output mappings, that is, produce desired activities rµ

i of the neurons
i in the out subpopulation in response to specific input stimulations fµ applied to the neurons j in the in subpopulation, with
µ = 1, ...,npairs. A possible loss associated to this association task reads

Utask
(
J(t)

)
=

npairs

∑
µ=1

∑
i ∈ out

[
ri
(
J(t), fµ

)
− rµ

i

]2
, [functional target] (4)

where ri(J, f) refers to the stationary solution of Eq. (1); see Methods for alternative choices of the loss. The task may be made
harder by requiring that the in and out neurons share no direct connections, and communicate through the neurons in the proc
subnetwork.

Control of network connectivity through stimulations
Training protocol. Driving the connectivity J(t) is done by applying piecewise constant external control stimulations f∗(t) to
the neurons over successive intervals of duration ∆t (Fig. 2). Informally speaking the control stimulation f∗(t) is such that the
synaptic changes induced by plasticity decrease the loss as much as possible, that is,

f∗(t) = argmin
f

U
(
J(t)+∆J(f)

)
, (5)

where the change ∆J in the connectivity depends on the applied control stimulation f through their Hebbian-like dynamics in
Eq. (2) over the period ∆t. f∗ in Eq. (5) is such that the change in connectivity is best aligned along the gradient of the loss, see
Fig. 3.

The determination of f∗ is a non trivial computational problem due to the non-linearities in the neural and synaptic dynamics,
see Methods. Choosing ∆t ≪ τs (SI, Section 1) and additional regularization terms (Methods) ensure that the changes in J
remain small at the end of the training cycle. The learning process stops when the value of the loss U is considered small
enough and the target has been reached.

Recordings of the activity and estimation of the network connectivity. Determining and updating the optimal control
stimulation f∗(t) requires to know, to some degree of accuracy, the connectivity J18. To mimic realistic conditions, J is not
accessible through direct measurements, but is inferred through a simple procedure requiring multiple recordings of the activity
(Fig. 2). We probe the network stationary activity states rν = {rν

i } corresponding to various random stimulation patterns
fν = { f ν

i }, where ν = 1, ...,nprobes. The connectivity matrix is then estimated so that the stationary equations

rν
i = Φ

(
∑

j
Ji j rν

j + f ν
i

)
(6)

are fulfilled for all i = 1, ...,N and ν = 1, ...,nprobes, see Eq. (1) and Methods. Increasing the number nprobes of recordings
reduces the error over the estimated connectivity matrix, but the duration of the whole process should be sufficiently short not
to induce any plastic modification to J: hence nprobes should not exceed τs/τr,where τr is the relaxation time of the network
activity, which can be estimated from τn and J (Methods). In practice, the connectivity varies little after each control stimulation
period, and few recordings are needed to update our estimate.

Results
We apply below our learning procedure to two computational tasks; a third task defined on a small network is detailed in SI,
Section 6, and in the Discussion section.

Task 1: Non-linear association between all-or-nothing inputs and digit-like outputs
Definition of the task. A fundamental computation carried out by neural circuits in organisms is the association of diverse
behavioural (or motor) responses to multiple sensory inputs. This task is particularly non trivial to learn when it is non additive,
as it cannot be realized by linear networks19, and may require to recruit dedicated brain areas20.

We consider here a toy version of a non-linear associative task, in which a subset of Nin input neurons can be stimulated in
npairs distinct ways. Each input stimulation is expected to elicit an associated activity pattern over Nout output neurons, see
Fig. 4A. For the sake of visual clarity, the output patterns are represented as digits, with grey/black pixels corresponding to
neurons with low/high activities arranged on a 5×3 grid. To render this task harder, we impose that
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• there is no direct connection from the input to the output neurons, see Fig. 4B. The information about the input must
be processed and conveyed by an intermediate processing (proc) region of the network, which contains most of the N
neurons. This arrangement mimics the idealized structures of a modular chip.

• the association is non-linear. For instance, adding the input stimulations associated to digits 0 and 1 is required to
elicit digit 2, which is quite distinct from the superimposed 0 and 1 digits, see Fig. 4A. As a result of non-linearity the
association task cannot be simply implemented through separate neural pathways, activated by one input and silent for
the other ones.

Training: costs and dynamics. To learn this task we introduce a cost over the connectivity matrices favoring the desired
input/output associations, see Methods, Eq. (19). An additional cost aiming at regularizing the connectivity and speeding up
convergence towards stationary states of activity is introduced, see Methods.

We start from a network with weak, random connections. As our spatio-temporal control stimulation is applied to the
neurons (Fig. 4C), the connectivity gets modified, and the costs associated to the task and to the regularization decrease, as
shown in Fig. 4D. The activities of neurons progressively cluster into two categories, depending on their expected values in
the output patterns (Fig. 4E). The learning process is characterized by three stages. First, the activities of all output neurons
approximately reach the same low activity level independently of the input pattern, as regularization tends to decrease the
amplitudes of the connections and of the activities. Then activities start to separate according to the output patterns. At this
stage one can already guess the output digits, see Fig. 4F. We let the protocol proceed until the two groups (active, inactive) are
clearly separated, and the output neuron activities match the target patterns, compare Fig. 4A&F.

Transfer of information and neural representations. How the information is transferred from the input to the output neurons
and represented in the proc area is investigated in Fig. 5. While the input and output sub-populations in our network both
include Nin = Nout = 15 neurons, the associative task effectively takes place in a lower-dimensional space with npairs = 4
dimensions. We show in Fig. 5A that learning takes place through the strengthening of a 4-dimensional communication
‘channel’ linking the input and outputs.

From a circuit point of view, this functional channel is supported by a network of connections, whose histogram is reported
in Fig. 5B. We observe that, during learning, the E and I subpopulations strengthen their connections, with the exception of
recurrent interactions within the I neurons that remain weak.

We stress that, within this low-dimensional space, the network computation is not linear as imposed by the non-additivity
of the task. We show in Fig. 5C how the network response to linear combinations of the inputs may largely differ from the
superimposition of the responses to the single inputs, see case 0−1 (left). This result confirms that the network is capable of
learning complex behaviour beyond the superimposition of patterns in the low-dimensional subspace spans by the patterns. On
the contrary, in the absence of any specific constraint imposed by the task, computation appears to be approximately linear, see
combinations of inputs 0 and 3 producing the 8 digit (right), .

Furthermore, we may ask how the network, after training, is able to process and differentiate the patterns outside the input
and output sub-populations. We see in Fig. 5D that inputs produce the activation of a significant fraction of the neurons in
the proc area and that many of those neurons respond specifically to distinct inputs, with stronger correlations in the evoked
activities for more correlated inputs. In particular, the role of inhibitory neurons is key to the differentiation of input 2 from
both 0 and 1, and to depart from additivity as imposed by the task. Further information about how neurons in the proc region
participates to the association task can be found in SI, Figs. 5.

Task 2: Ring-like connectivity supporting continuous attractor dynamics
Definition of the task. We now aim at reshaping network connectivity into a target matrix Jtarget through learning. The target
connectivity defines a ring attractor, capable of supporting a bump of activity coding for a continuously varying angle. Ring
attractors were first theoretically hypothesized21, 22, and have recently been observed in the ellipsoid body of fly23. Neuron
connections are organized along two rings, see Fig. 6A. Excitatory neurons form the outer ring, with connections decays with
their distance, while inhibitory neurons compose the smaller inner ring. The connections between the two rings are such that a
bump of activity of one side of the outer ring induces inhibition on the diametrically opposite side (see Fig. 6A). The position
of the bump is arbitrary in the absence of external input, and is otherwise attracted by a weak and localised input to the outer
neurons.

Control stimulations are computed with the cost function given by Eq. (3). The time behaviour of the cost is shown in
Fig. 6B for ten different random initial networks (see Fig. 6C, left, for a realization of the naive connectivity). After a fast
initial decay the cost relaxes to very low values, signalling the success of the learning procedure.

Training: network connectivity and stimulations. Snapshots of the connectivity at different steps of the learning process
are displayed in Fig. 6C. The strong similarity between the network connectivity at the end of learning (compare Figs. 6A and
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C, step (4)) confers the desired functional properties of continuous attractors to the network. We report in Fig. 6D the average
firing activities of neurons when a weak input stimulation (intended to pin the bump of activity at a specific angle) is applied.
At the initial state of learning (1), the network responds by a weak excess activity simply reflecting the localized pinning input
stimulation. Through training, a sub-population of neurons emerges, whose activity is supported by the recurrent connections.
This sub-population varies with the angle associated to the input stimulation, see (2) and (3). The emergence of receptive fields
is improved with further training cycles (4). Notice that, even when the target structure is very well reconstructed, the direction
of the polarization is not perfect, due to tiny correlated defects in the connectivity structure. The presence of these defects does
not preclude the accuracy of the coding of angular information in the network24.

The time behavior of the control stimulations applied to neurons during learning are shown in Fig. 6E. We observe the
presence of long-distance (large angle) correlations at small times, which disappear at the end of the training. To better
characterize this angular structure, we plot the Fourier transform (along neuron indices) of the control stimulations in Fig. 6F.
In the initial stage of training, the stimulation is essentially represented by cosine and sine waves, with periods matching the
E and I ring extensions. As learning proceeds, higher and higher wave number modes are recruited to refine the short scale
structure of the synaptic matrix. This observation is in agreement with the progressive emergence of connectivity in Fig. 6C.

Discussion
We have shown how appropriate stimulations can induce plastic reconfiguration in a network and make it capable of accom-
plishing a prescribed computation. Our approach could successfully be applied to different tasks (see also SI, Section 6) and
plasticity rules (Hebbian and anti-Hebbian, see SI, Sections 5.3 and 4.2). These results can be thus seen as a proof-of-concept
for general-purpose neural training, which would compile a task into a neural network by externally guiding the intrinsic
learning mechanisms. At its core, our training method addresses and solves a sort of inverse Hebbian problem: instead of
looking for how synaptic interactions change under external inputs, we search for an appropriate set of inputs, or control
stimulations implementing desired changes in the interactions through plasticity mechanisms.

The idea of learning through stimulations is not new to biology, and is the basis for the concept of vaccination. The immune
system in endowed with learning mechanisms that allow it to respond to pathogens after appropriate stimulations, e.g. following
the administration of a pathogen protein or its coding RNA sequence. The vaccination scheme (timing and dosage) is crucial
to the quality of the immunization25, and can be designed to enhance the production of the so-called broadly neutralizing
antibodies having large response spectra26. By analogy, one may expect that stimulation protocols optimized to the learning
dynamics of neural systems could drive them to desired operational states.

From this point of view, our work addresses a fundamental conceptual issue in the emerging field of neuro-biological
computation. Reservoir computing8, 9, 27–29, which exploits the capability of randomly connected neural populations to produce
highly variable patterns of activity, has been linked to plausible neuro-biological mechanisms30, 31. Associative effects of
plasticity can be exploited for the sake of learning, and reach performance beyond standard reservoir setups32, 33. More targeted
approaches have been proposed to directly exploit plasticity for task-training, for instance by choosing familiar/unfamiliar
inputs as rewards/punishment3 or by exploiting stimulation avoidance34. Our approach, on the contrary, aims at directly
controlling and training the neural structure through the determination of adequate stimulations to be imposed to the neurons.

Our training procedure involves high–dimensional optimization over the control stimulation f, and requires careful numerical
implementation. A number of parameters in the optimization loop have to be set, whose choice impacts not only the outcome
but also the speed of learning, see SI, Sections 4&5. Of crucial importance is the range of variation of the control stimulation
applicable to the neurons, fmin ≤ fi ≤ fmax. If the range is wide, a lot of variability in the control stimulation schemes is possible,
and learning is easy and fast. As fmax − fmin decreases, the cost decays more slowly (SI, Fig. 3A). Further investigations
would be needed to better understand if a minimal value of fmax − fmin exists below which the target task is not reachable any
longer and, more generally, how reachability depends on the task. Notice that the protocol we have implemented corresponds
to a control strategy with zero time horizon, which optimizes the cost change ∆U at each cycle. Global protocols, derived
in the framework of optimal control35, could possibly achieve higher performance. However, our high-dimensional setting
with incomplete knowledge (of connectivity) could suffer from serious error propagation over large time horizons, making
implementation difficult.

As stressed in the introduction, plasticity rules strongly constrain the manifold of possible changes in the connectivity
matrix and straightforward gradient descent of the loss is generally not feasible (Fig. 3). This fundamental limitation is clearly
present even in the case of very simple tasks trainable on small networks (SI, Section 6 and SI, Fig. 7). As the number N of
neurons increases, the ratio between the number of control variables (N) and the dimension of the connectivity space (N2,
or a fraction of N2 depending on network sparsity) diminishes, and the situation ought to become less and less favorable.
Fortunately, this effect is counterbalanced by the huge increase in the multiplicity of the networks realizing the task with
N36. We observe, indeed, that Task 1 is easier to learn when the size Nproc of the processing area (Fig. 4B) increases, see SI,
Section 4.1 and SI, Fig. 3. As a result, functional targets are easier to reach than structural ones, as the latter cannot benefit from
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any multiplicity of solutions. The nature of the cost U has also deep impact on the time course of performance throughout the
learning process. Any task could, in principle, be given a structural cost, e.g. by running gradient descent of the functional cost
on a computer and finding an adequate network J∗ implementing the target task. However, in the structural case, the value of U
is not immediately informative about the computation carried out by the network. Good functional performance, such as the
ability to create angle-specific receptive fields in Task 2, see Fig. 6D, may be reached for vanishing U only (SI, Section 5.3 and
SI, Fig. 6A&B), which is difficult to achieve in practice. For this reason, functional costs, for which low values of U directly
imply good performances, are preferable. Accordingly, we find that defining U from the worst input-output mismatch, see
Methods, Eq. (19), rather than from the average over all pairs as in Eq. (4), gives better performance for Task 1.

Our work relies on a number of assumptions, whose technological and biological plausibility needs to be discussed. First, we
have considered that stimulations could be done at the level of individual neurons. In practice, the resolution of optogenetic4, 37

and electrophysiological38 techniques rather allow one to target groups of nearby neurons. This limitation could be taken into
account in our approach by imposing spatial correlations between the components of f. Second, our protocol could be adapted
to constrained controls f, e.g. whose components have a given sign (though excitatory and inhibitory tools are available4, 39, 40),
or discrete (on/off) rather than continuous values.

An important hypothesis is the separation between a fast time scale τr associated to the relaxation of neural activity, and the
duration of the control stimulation during a cycle, ∆t. Under this assumption, the neural activity is stationary, and the estimate
of the connectivity can be updated by probing the network response to few random stimuli without inducing synaptic changes
(Methods, Eq. (11)). Physiological time scales related to single-neuron dynamics (τn in Eq. (1)) are expected to be of the order
of tens of milliseconds. It is then crucial that network effects do not slow down the relaxation of the population activity on
times τr ≫ τn, see Methods, Eq. (8). This is ensured in practice in Task 1 through the introduction of a regularization cost
on the connectivity, Ureg, which prevents the emergence of slow dynamics modes in the network (Methods, Eq. (12)). We
have checked that τr remains comparable to τn throughout the learning process for all the tasks considered here (SI, Section 2).
While it is difficult to estimate with precision the time scale τs associated to plasticity effects in Eq. (2) and, consequently, the
duration ∆t of control stimulation, a biologically plausible order of magnitude for ∆t is of a few tens of seconds (SI, Section 1).
We conclude that the hypothesis τr ≪ ∆t is satisfied. Furthermore, this estimate of ∆t would imply that running hundreds of
learning cycles would take few hours. We are well aware that these considerations are speculative and indicative of orders of
magnitude at best.

As emphasized above, having a large range of stimulation values at our disposal is crucial for reaching the target task
at the end of learning. The values of fmax we have employed in Tasks 1 & 2 are a few tens of rmax, see Figs. 4C and 6D;
details about how to convert input currents into rates can be found in SI, Section 1.2. Ultra-fast optogenetics can elicit spikes
in genetically-modified neurons with high probability (for sufficient light pulse intensity) up to hundreds of Hz41. Hence,
ratios fmax/rmax close to unity are experimentally accessible. It remains to be seen whether these techniques can be applied to
organoids with similar results.

From a modelling point of view, we have resorted to a coarse-grained description of activity at the level of firing rates,
rather than of spiking events. Both descriptions are compatible with one another, both in terms of in terms of plasticity42–44

and of activity45–47, to the point that artificial spiking networks may be trained by proxy rate-based models48. Plasticity
at the spike level is a complex process involving multiple timescales, delayed effects and spike train patterns49, possible
co-existing with non-synaptic plasticity50, different effects depending on the origin of the neuron51 and meta-plasticity44. The
coarse-grained plasticity rules we consider respect some general principles: associativity (covariance rule with a threshold,
compatible with experiments52), locality (dependence on the post and pre-synaptic neurons51), and homeostasis15. In addition,
we test the robustness of our approach with two different plasticity scenarios, based on Hebbian and anti-Hebbian rules for
inhibitory synapses in, respectively, Tasks 2 and 3; see SI, Section 5.3 for reverse choices of the rules for inhibitory synapses.
In this context, Hebbian and anti-Hebbian learnings induce, respectively, the weakening and the strengthening of connections
between inhibitory neurons with correlated activity, and result in increased or diminished14 activity. It would be interesting to
exhaustively study the performances of our stimulation protocol over a wider class of plasticity rules.

Last of all, a key point to be addressed in future works is noise and uncertainty. Noise could be taken into account, both in
the dynamics of the neural activity and of synaptic interactions, through a probabilistic formulation of the control problem. In
addition, one should consider measurement errors in the activity recordings, affecting the estimation of the connectivity, or in
the stimulation process, leading to inaccurate control of the network. Model uncertainty is even more delicate: in practice,
neither the equations describing the neural activity dynamics, nor the plasticity rules are exactly known. Any modelling error
will be a source of correlated errors in the determination of the stimulation protocol. Controlling those errors and designing
robust stimulation schemes will be crucial for future applications.
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Methods

Network structure and activation function
The fractions of excitatory and inhibitory subpopulations are equal to, respectively, 80% and 20%. The synaptic structure is
encoded in the binary matrix C: neuron j is connected to neuron i if Ci j = 1, and is not if Ci j = 0. The structure matrix C is
random and fixed during the training, while the intensities Ji j of the existing connections (Ci j = 1) vary over time according to
Eq. (2).

The neuron activation Φ is a monotonously increasing function of the input x (which is dimensionally a frequency, see SI)
and is chosen to be

Φ(x) = rmax
ψ(x)

1+ψ(x)
, where ψ(x) =

r0

rmax
log
[

1+ exp
(

x
r0

)]
(7)

is a differentiable and invertible sigmoid function. Here, rmax is the maximal firing rate reached for large inputs, and r0 is the
magnitude of the spontaneous firing activity in the absence of input (SI, Section 1).

Relaxation dynamics of the network activity
While single-neuron activities are associated to the time constant τn in Eq. (1), the effective relaxation time τr can be longer
due to network effects. We estimate τr by linearizing the dynamics of the rates around their stationary values, ri. Denoting by D
the N-dimensional diagonal matrix with elements Dii = Φ′(ri) and zero outside the diagonal, we have

τr =
τn

ρmin
, where ρmin = smallest real part of the eigenvalues of Id−D ·J . (8)

Estimates of τr are shown for the different tasks in SI Fig. 1

Inference of connectivity
Initialization: estimate of the synaptic structure C and of the neuron types ε. The support of the synaptic interactions,
Ci j = 0,1 and the nature of neurons, εi = E/I, are initially unknown. To determine their values we start to probe the network
activities rν

i in response to nprobe randomly chosen stimulation patterns f ν
i , and rewrite the stationary relations in Eq. (6) as

∑
j

Ji j rν
j = tν

i , where tν
i = Φ

−1(rν
i )− f ν

i (9)

for all i,ν . As the initial number of probing stimulations does not have to be small (plastic changes would simply affect the
starting state of the connectivity for the training phase), we can choose nprobe ≥ N, and the linear system above generically
determines the matrix J in a unique way. To avoid large numerical errors on currents through Φ−1, the probing stimulations f ν

i
are chosen to be large enough to avoid the presence of low firing rates (r ≃ 0), see SI, Section 1.

Once J has been estimated, we estimate the identity of neurons and the support of the connectivity through, respectively,

εi =

{
E if ∑ j J ji > 0
I otherwise and Ci j =

{
1 if |Ji j|> Jmin
0 otherwise , (10)

where Jmin is a small threshold, set to 10−6. These estimates of ε and C are left unchanged throughout the training process.

Updating of the connectivity estimate after a training period. Let Ji be the vector of connections incoming onto neuron
i prior to a training stimulation period of duration ∆t; the dimension of Ji is equal to di = ∑ j Ci j. After the training period
the vector connections is J′i. To estimate this vector we probe the network with nprobes stimuli, and record the corresponding
activities. We call R the (nprobes ×di)-dimensional matrix of activities rν

j and ti the nprobes-dimensional vector of components
tν
i appearing in Eq. (9). The solution to the constraints R ·J′i = ti is therefore not unique. To lift this ambiguity we select the

solution J′i closest (in terms of L2 norm) to the previous estimate Ji. Formally, we obtain53

J′i = Π
⊥
i ·Ji +R+ · ti , (11)

where R+ denotes the pseudo-inverse of R and Π
⊥
i = Id−R+ ·R is the projector orthogonal to the nprobes-dimensional space

spanned by the rows of R. This updating step is then iterated over the N neurons i to obtain all the vectors J′i.
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Regularization of the connectivity matrix
A common practice in machine learning is to introduce a regularization cost over the model parameters, hereafter denoted as
Ureg(J), to smooth out the training trajectories. In addition, regularization can help ensure that the neural activities reach their
stationary values quickly (under fixed stimulation) through the network dynamics in Eq. (1), which is important for training and
for connectivity estimation.

We impose regularization to bound the modulus σ(J) of the largest singular value of the connectivity matrix. The rationale
is that a sufficient condition for the network dynamics to have a unique activity stationary state and converge exponentially fast
to this unique state is that σ(J)< 1, see Eq. (8) and SI, Section 2.2. For each singular value λk of J, the regularization cost
is approximately zero if λk ≪ 1, and grows linearly as g2 λk for λk ≫ 1. We implement this dependence through a softplus
function:

Ureg(J) =
g2

g1

N2

∑
k=1

log
(

1+ eg1 (λk−1)
)

with g2 = 2, g1 = 10 . (12)

This regularization cost can be explicitly differentiated with respect to the entries of the connectivity matrix, see below.

Determination of the optimal stimulation f∗
Derivative of the costs with respect to connections and time. The task cost Utask depends on the connectivity J, both
directly and indirectly through the stationary activity r. The expression for the total derivative of Utask with respect to an entry
of J is, according to chain rule,

dUtask

dJi j
=

∂Utask

∂Ji j
+∑

k

∂Utask

∂ rk

∂ rk

∂Ji j
(13)

which requires knowledge of the derivatives of the neuron firing rates. These can be computed using the implicit function
theorem54 applied to the stationary equations for the dynamics, with the result:

∂ rk

∂Ji j
=
[(

Id−D ·J
)−1]

k,i Dii r j , (14)

where D was first used in Eq. (8). The gradient of the regularization cost, Ureg in Eq. (12), can be easily expressed using the
derivatives of the singular values: dλk

dJi j
= uk,i vk, j, where uk and vk denote, respectively, the left and right eigenvectors of J

associated to λk.
In addition, the gradient component associated to the connection Ji j is set to zero if Ci j = 0 (no connection is actually

present), or if Ji j = 0 and descending the gradient would violate the constraint on the sign of the interaction resulting from the
pre-synaptic neuron type, i.e. dU

dJi j
> 0 if ε j = E or dU

dJi j
< 0 if ε j = I. Notice that knowledge of the gradients of Utask and Ureg

with respect to Ji j gives access to the time derivatives of these costs (under fixed stimulation) through the generic formula

.
U = ∑

i, j

∂U
∂Ji j

.
Ji j , (15)

where the latter term can be directly obtained from the dynamics over synapses described by Eq. (2).

Objective function and gradient over stimulations. The total cost U is defined as sum of the task and regularization costs,
U =Utask +Ureg. To determine the best control stimulation f over the next period we search for the minimum of the modified
change

∆U(f;γ) =U
(
J+∆J(f)

)
−U

(
J
)
+∆t γ ∥∆J(f)∥2 (16)

where J is the matrix of connectivity estimated through probing at the end of the previous control stimulation period,
γ = 1/((J̄/10)2 cN2) and

∆J(f) = [J+∆t J̇(f)]ε −J (17)

where [·]ε indicates that connections have been clipped to respect their excitatory/inhibitory types ε imposed by the pre-synaptic
neurons. The last term in Eq. (16) constrains the change in the interactions to be small over the period of stimulation, effectively
introducing a saturating non-linearity over the gradients.
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Computing the gradient of ∆U in Eq. (16) with respect to the control stimulation components fi requires the expressions for
the derivatives of the costs with respect to the connections in Eqs. (13),(14), and with respect to time, see Eq. (15). In addition,
the derivatives of the firing activities are needed. Using again the implicit function theorem we obtain, see Eq. (14),

∂ rk

∂ fi
=
[(

Id−D ·J
)−1]

k,i Dii . (18)

To enforce the conditions fmin < fi < fmax we set the gradient components of ∆Utot to zero when these boundaries are met.

Minimization of the cost. The optimal control f∗ can be found through a iterative descent of ∆U in Eq. (16). The control is
updated along minus the gradient of ∆U(f,γ), and the resulting fi’s are clipped if the boundaries fmin or fmax are crossed. The
iterative process halts if the decrease of ∆U(f,γ) is smaller (in absolute value) than some threshold, or the expected decrease
(based on a fit of the previous steps in the process) is too low. Then, if ∆U(f,0) is negative (i.e. the cost function is decreasing),
the solution is accepted, while the gradient descent is repeated otherwise.

Details about the implementation, with the pseudocode for the optimization loop and the values of the hyper-parameters
involved can be found in SI, section 3.

Task 1
Initialization and setting. Elements of the structure matrix Ci j are randomly set to 0 or 1 with respective probabilities 1− cE
and cE for excitatory columns (J such that ε j = E) and 1− cI and cI for inhibitory ones (ε j = I). To ensure that the task is
not easily implementable no direct connection between the Nin input neurons and the Nout output neurons is present.Initial
connections Ji j are drawn uniformly at random in the ranges [0,J0] if ε j > 0 or [−J0,0] if ε j < 0. See SI, Section 1 for parameter
values.

Task-associated cost. We define a set of ntask input stimulations fµ (defined over the Ni input neurons) and output binary
activation σσσ µ (over the No output neurons), with µ = 1, ...,ntask. The goal of training is that output neuron i should display
High or Low firing activity in response to input µ when, respectively, σ

µ

i = H or L. In practice we enforce that the firing rates
associated to neurons with low (σ = L) and high (σ = H) activities should differ by more than a prescribed gap δ r = 0.12rmax.
The task cost reads

Utask(J) =

∑
(µ,i):σ µ

i =L
∑

(ν , j):σν
j =H

∆(µ, i;ν , j) eγ ∆(µ,i;ν , j)

∑
(µ,i):σ µ

i =L
∑

(ν , j):σν
j =H

eγ ∆(µ,i;ν , j) (19)

where γ = 1/(δ r/2)2 and we have introduced the mismatch

∆(µ, i;ν , j) = h2
(
rµ

i − rν
j +δ r

)
with h2(u) = u2 if u > 0, 0 otherwise. (20)

The exponential factors give more weights to large mismatches ∆ in the expression of the cost. The dependence of the cost on
J (and on the input stimulations fµ ) in Eq. (20) is implicit through the firing rates ri. Minimizing Utask is thus equivalent to
separating the activities of the H and L neurons as required by the classification task, i.e. making all ∆(µ, i;ν , j) = 0.

Linear response analysis. To characterize how the association mechanism emerges across training, we consider the input-to-
output response matrix R = dr

df linearized around the average input f̄ = ∑µ fµ/ntask. We define the linear sub-spaces spanned by
the inputs and outputs as, respectively, In = span({fµ − f̄}µ=1,...,ntask) and Out = span({σσσ µ − σ̄σσ}µ=1,...,ntask), where we have
converted σ

µ

i =High/Low to 1/0 and σ̄σσ = ∑µ σσσ µ/ntask is the average output. We then partition R in four blocks, through
projections on In and its orthogonal complement In⊥ on one side, and Out and Out⊥ on the other side. The normalized (divided
by
√

dim(Out) or
√

dim(Out⊥)) largest singular value of these four sub-matrices can be tracked across learning as a metric of
the relative importance of each block.

Task 2
Initialization and setting. The connectivity matrix is initialized as in the classification task above, but no a priori restriction
is imposed to the structure, i.e. cE = cI = 1. See SI, Section 1 for parameter values.
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Task and cost. The structural cost is defined in Eq. (3). We now specify the target connectivity. Neurons are associated
angles on two rings, depending on their types ε = E or I. The angle attached to the excitatory neuron i is θ E

i = 2π
i

NE
, where

NE is the number of excitatory neurons. A similar formula holds for the NI inhibitory neurons: θ I
i = 2π

i
NI

. The target synaptic
connection from neuron j to i reads

Jtarget
i j = Jεi,ε j ×M

(
θ

εi
i −θ

ε j
j −π δεi,I ;Kεi,ε j

)
, (21)

where δ.,. denotes the Kronecker delta. The angular modulation is done through von Mises function,

M (∆θ ;K) = e−K+K cos(∆θ) , (22)

which is maximal for vanishing angular separation (∆θ = 0) and decays over the width ≃ K−1/2. Parameter values are listed in
SI, Section 1.

Receptive fields. We apply a weak local input stimulation fi = 0.06rmax, fi±1 = 0.028rmax, fi±2 = 0.012rmax, fi±3 =
0.004rmax to induce polarization of neuron i, and repeat the process for all i. Results for the activities are averaged over 100
trials.
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Figure 1: Computational targets for plastic neural networks.
A. Our goal is to reconfigure a naive neural network and reach some target, either structural (a specific connectivity state) or
functional (for instance, the network is required to implement some input–output associations). This reshaping is achieved
through a learning process, in which appropriate spatio-temporal stimulations of the neurons exploits intrinsic plasticity
mechanisms.
B. The computational target, here, the functional task in panel A, is reached through a learning cycle. Prior to the learning
process, the naive network associates the inputs to random outputs (left). Our algorithm computes the best control to be applied
to the network to modify its connectivity through plastic changes. Applying this control stimulation to the neural population
results in an enhancement of the network performance (middle). The control is then re-optimized and applied during a new
stimulation period. After multiple iterations, the correct input-to-output association is achieved (right).
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Figure 2: Stages of the learning cycle: planning of control stimulations, reconfiguration under plasticity
effects, and connectivity estimation.
In each cycle, a control stimulation f ∗i is applied to the neurons i in the network, generating stationary firing rates ri (middle).
In turn this activity pattern leads, through the plasticity rule, to specific strengthening or weakening of the connections Ji j,
indicated by the changes in the thicknesses of the connection arrows (top). Once the control period halts, few short and random
stimulations are applied to the neurons, and the corresponding activities are recorded (bottom, right). These data are then used
to update the estimate of the network connectivity, and to plan the optimal control for the next cycle (bottom, left).
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Figure 3: Schematic dynamics of the network and feasible directions in the high-dimensional connectivity
space during the training process.
Grey levels show values of the cost U , which quantifies the mismatch between the current connectivity J of the network and the
target. Dark blue balls locate the connectivity J at the beginning of each control stimulation period. The set of all directions in
the N2-dimensional connection space along which U decreases is shown by the cyan area, centered around the direction of
steepest descent of U indicated by the blue arrows. The purple cone symbolically represents the set of all feasible directions for
J under the plasticity dynamics, i.e. which can be reached under any N-dimensional control stimulation f.
(1) Initial situation, prior to any control stimulation. The synaptic change corresponding to a random f may point to a ‘bad’
direction outside the cyan region (orange arrow), while the change associated to the optimal control stimulation f∗ lies on the
edge of the purple cone (red arrow), as close as possible to the best direction (blue arrow).
(2) After one control stimulation period. Repeating the same control stimulation as before would lead to a suboptimal change
of J (orange arrow), while the best stimulation (red arrow) yields a larger decrease in U .
(3) Control stimulations are updated to ensure optimal synaptic changes until (4) all local updates of the previous f∗ lie outside
the ‘good’ (cyan) region. We then choose a new initial f, and resumes the search for the optimal f∗ as in cycle (1). This process
is iterated, until the change in U are very small and the optimization is completed, or the feasible and ‘good’ regions do not
overlap any longer (point (5)). The performance of the network (final value of U) is then assessed.
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Figure 4: Task 1: non-additive input-output association.
A. The npairs = 4 pairs of input-output associations to be learned by the network. Input patterns: flashes locate the input neurons
(out of Nin = 15) subject to a strong stimulus ( fi = fmax), while the other neurons (empty squares) receive no input ( fi = 0).
Output patterns: target activities of the Nout = 15 output neurons (black: ri > 0.04rmax, light gray: ri < 0.01rmax).
B. Sketch of the network, with the bulk processing area including Nproc = 70 neurons, connecting the input and output neurons.
The overall fractions of excitatory and inhibitory neurons in the network are equal to, respectively, 80% and 20%.
C. Control stimulations fi(t) (see color bar for values) applied to the neurons as a function of the learning step. From top to
bottom: input, output, bulk inhibitory, and bulk excitatory neurons.
D. Costs associated to the task (green, left scale) and to regularization (orange, right scale) as functions of the learning cycle.
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E. Activities of the output neurons in response to the input stimulation patterns during learning. The color (black or light gray)
of each one of the npairs ×Nout = 60 curves indicates the level of activity requested for the corresponding output neuron (high
or low, see panel A). Training is successful when the black and light gray curves become well separated.
F. Average activities of the output neurons for the four time steps identified with dashed line in panel D, showing how the figures
of digit emerge from the initial random image. Black and light gray activities are consistent with panel E, with intermediate
gray levels defined in the bar.
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Figure 5: Learning dynamics and internal representations for Task 1.
A. Top singular values σ of the four blocks of the input-to-output matrix R, see Methods. To allow for comparison the σ ’s are
normalized by the square root of the block dimensions (according to random matrix theory). At the beginning of training the
four responses have similar amplitudes. All responses then decay due to regularization (Fig. 4C and Eq. (12) in Methods) until
time step 400. As training proceeds, the response through the input-to-output channel (In and Out) becomes dominant.
B. Histograms of interactions Ji j between the neurons in the E and I populations. Dashed lines show the soft bounds in ±J̄.
C. Output neuron activities (gray levels) in response to combinations of inputs αµ fµ +αν fν , with 0 ≤ αµ ,αν ≤ 1. The bottom
left corner corresponds to vanishing input and the bottom, right and top,left corners to pure inputs associated to, respectively,
digits µ and ν . The background colors (middle squares) indicate the most resembling digits. (Left) case µ = 0,ν = 1: the
output of the linear combination of inputs is not the linear combination of the outputs, as required by the association task.
(Right) Case µ = 0,ν = 3: the response to linear combinations of f0 and f3 is approximately additive.
D. Scatter plot of the activities of the 70 bulk neurons for inputs 0,1 (top) and 0,2 (bottom) after training. The representations
associated to patterns 0 and 1 are not correlated, as expected from the orthogonality of f0 and f1 (Fig. 4A). Conversely, the
representations of 0 and 2 are strongly correlated, reflecting the relation f2 = f0 + f1 (Fig. 4A).

19/21



(1) (2)

Synaptic strength
(1)

(3)
(4)

cycle 1

cycle 100

cycle 400 cycle 700

A

Pre-synaptic

E → I

E → E

I → I

I → E

Excitatory ring

Inhibitory ring

Bump of 

activity

(3) (4)

Po
st

-s
yn

ap
tic

r/rmax

(2)

B C

D Ef/rmax

Figure 6

Figure 6: Task 2: building a continuous attractor.
A. Target network (left) and connectivity matrix Jtarget (middle). Excitatory neurons (E) are arranged on the outer ring
(NE = 80), and inhibitory neurons (I) on the inner one (NI = 20). Neurons on the E ring have strong excitatory connections with
their neighbours, and project to inhibitory neurons diametrically opposed on the I ring. Inhibitory neurons repress neighbouring
neurons on the E ring and repress the opposite side of the I ring, leading to a localization of the activity (bump). Right: Radial
plots of receptive fields of neurons associated to angles 0 (blue), 120 (green) and 240 (red) degrees on the E ring. A weak
localized input stimulation is applied for each angle (Methods) and the activities (averaged over 100 trainings) of all neurons in
the stationary state are shown.
B. Task cost evolution during learning for 10 random naive networks (gray curves); the back line shows the average cost. Four
representative learning cycles, labelled (1), (2), (3), (4) are referred to in panel C.
C. Connectivity matrices (top) and receptive fields (bottom) at cycles (1), (2), (3), (4), showing different stages of learning.
Same color codes as in panel A.
D. Control stimulations fi(t) as functions of the learning cycle.
E. Amplitude f̂ ε

k (t) = ∑
Nε

ℓ=1 fℓ(t) cos(2πk ℓ/Nε) of the Fourier modes k = 0,1, ...,Nε/2 associated to the control stimulations
shown in panel D, for excitatory (ε = E) and inhibitory (ε = I) neurons. Initially, the control stimulation stimulation mainly
consist of large waves (low-k Fourier modes), while at the end of training, modes at large k are used to refine the synaptic
structure on short angular scales. Notice the global suppression at cycle ≃ 750, after the receptive fields are formed.
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