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1 Model parameters: values and biological significance
1.1 Values
Task 1. We use cE = 0.2 and cI = 0.5. The parameters are J0 = 0.015, θ(E) = 0.08rmax, θ(I) = 0.12rmax, η(E) = 1,
η(I) =−1.2, and β1 = 0.8, β2 = 0.6(rmax/J̄)2, θ0(E) = θ0(I) = 0.8rmax and J̄ = 0.25, fmax =− fmin = 0.2rmax. Note that, in
this setting, the associative behaviour of excitatory synapses is triggered for lower values of activity (θ(E)< θ(I)); however,
inhibitory potentiation is favored by |η(I)| > η(E). For the sake of inferring J, we use nprobe = 10 plus the four input
stimulations related to the task. The control stimulation lasts ∆t = 0.003τs. Probing for estimating connectivty is done by
choosing fi = 0, fmax with equal probabilities.

Task 2. Parameters are chosen as follows: θ(E) = 0.2rmax, θ(I) = 0.16rmax, η(E) = 1, η(I) = 1, and β1 = 0.8, β2 =
1.25(rmax/J̄)2, θ0(E) = θ0(I) = 0.16rmax and J̄ = 0.1, fmax = − fmin = 0.4rmax. We use nprobe = 10 and ∆t = 0.003τs.
Probing for estimating connectivity is done with fi distributed uniformly in [ fmax/2, fmax] for excitatory neurons and [0, fmax/2]
for inhibitory neurons; further inforamtion is available in SI, Section 5.2.

The interaction strengths J and modulations K entering the interaction kernels, see Eqs. (21)(22) in the main text, are chosen
to be JE,E = JI,E+ = −JE,I = −JI,I = 0.1, and K−1/2

E,E = 0.08, K−1/2
I,E = 0.05, K−1/2

E,I = 0.15, K−1/2
I,I = 0.1. These parameter

values are compatible with the existence of two self-sustained bumps of activity, localized and diametrically opposed on the
two rings.

In the cost U in Eq. (3), the weight factors are chosen as wεiε j =
(
4∑ab|εa=εi,εb=ε j [J

target
ab ]2

)−1 to ensure that the cost assesses
the average relative errors over the four classes of connections E/I→ E/I.

1.2 Current-to-firing rate activation function
We discuss here the expression for the activation function Φ used in Eqs. (1) and (8) in the main text. Three regimes must be
distinguished.

From input currents to firing rates. Consider the linear integrate-and fire model of a spiking neuron. In the absence of
leakage (zero conductance), the membrane potential V obeys the following dynamical equation

CV̇ = I, (1)

where I is the input current (considered to be constant over time) and C the capacitance. The neuron fires with rate

r(I) = MF× I with MF =
1

C(Vthreshold−Vrest)
, (2)

and Vrest and Vthreshold are, respectively, the rest and instability potentials. Equation (2) shows that input currents can be
expressed in units of firing rates through the rescaling by the multiplicative factor MF : I→ Ĩ = MF× I. This is the convention
we adopt throughout our paper.

An order of magnitude for MF is given by the slope of the current-to-frequency relationship for human pyramidal cells1,
with the result MF ≈ 50 Hz/nA. Compatible values are reported for pyramidal cells in the primary visual cortex of cats2, with
MF ≈ 100−500 Hz/nA.
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High activity regime. The maximal firing rate rmax is the inverse of the refractory period, with values of the order of a few
hundreds Hz. The linear current-rate relation in Eq. (2) can be simply modified as

r(Ĩ) =
rmax Ĩ

rmax + Ĩ
( large Ĩ ) . (3)

This expression fixes both the maximum firing rate and the way r reaches it for large currents Ĩ. Many effects such as fatigue,
temporal fluctuations (in the concentration of neurotransmitters), or short term plasticity are not taken into account.

Low activity regime. For low external input Ĩ, noisy synaptic effects can become predominant and set a baseline firing
activity rlow for the neuron. We can interpolate between the linear response in Eq. (2) and this low current, baseline activity
regime through the introduction of a smooth function,

r(Ĩ) = r0 log
(
1+ exp(Ĩ/r0)

)
( small Ĩ ) . (4)

where r0 = rlow/ log2. Note that r0 also defines the scale at which Ĩ can be considered small. We expect r0 to range between 0.1
and 1Hz1. The ratio between the maximal and baseline firing rates is thus of the order of rmax/r0 = 50−2000. In this paper,
we use rmax/r0 = 250−500.

Complete activation function. The activation function described in Eq. (8) of Methods, main text, interpolates between the
low, intermediate, and high activity regimes corresponding, respectively, to Eqs. (4), (2), (3).

1.3 Synaptic connections
A pre-synaptic neuron, depending on its type, can give rise to small excitatory or inhibitory post-synaptic potentials, referred to
as EPSP or IPSP, each time it emits a spike. The mean value of the resulting current incoming onto the post-synaptic neuron is,
after rescaling by MF , equal to

Ĩ =
δV

Vthreshold−Vreset
rpre , (5)

where δV is the value of the EPSP or IPSP, and rpre is the firing rate of the pre-synaptic neuron. We deduce the dimensionless
expression of the synaptic connection, compare with Eq. (1) in the main text,

J =
δV

Vthreshold−Vreset
. (6)

Typical values for |δV | range from tens to hundreds µV3. As Vthreshold−Vrest is about 20 mV, we find J to be of the order of
5.10−4 to 5.10−2. These values are consistently lower than the soft bounds J̄ = 0.25 in Task 1 and J̄ = 0.1 in Task 2.

1.4 Control stimulation
Amplitude. The second source of input in our model is the external control f , see Eq. (1) in the main text. Literature
reports accurate control of the activity of genetically-modified neurons through light activation, with firing rates up to 30 Hz
with Channelrhodopsin-24 and up to 100 Hz with faster Chrimson variants5. The firing rates can be controlled both through
the frequency of light pulses and the illumination power. These values are compatible with ratios fmax/rmax reaching a few
tenths, as considered in this work. Inhibitory stimulations can also be obtained with optogenetic tools, resulting in strong
hyperpolarization of cells by more than 10 mV, and strong reduction (50%) in the firing activity6.

Duration. Due to the choice of the parameters and the values of firing rates, all terms on the right hand side of Eq. (2) in
the main text take values of the order of unity. The order of magnitude of the time required for a variation δJ in a synaptic
connection is therefore

δ t ≃ τs δJ . (7)

Substituting δJ with J̄/10 in the above equation, where J̄ is the soft bound on the (absolute) value of connections, we find that
a significant change to connection requires time δ t ≃ τs× J̄/10≃ 0.01 τs.

Hebbian plasticity is associated to a variety of times scales δ t, ranging from few seconds to few minutes, with homeostatic
effects taking place over a large interval of time scales too7. Choosing δ t of the order of 1 minute gives τs in Eq. (2) of the
order of a few hours. The duration of one cycle of control stimulation is then approximately equal to ∆t = 0.003 τs ≃ 30 sec.
This time scale is consistently larger than the time τr for convergence of the network activity, see next Section and Discussion
in the main text.
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2 Stationary activity of the rate model

2.1 Convergence of dynamics
The stationary states of activity are the roots of the N coupled implicit equations

r = Φ
(
J · r+ f

)
. (8)

Solutions, in general, are not unique. Moreover, since the external input f is arbitrary, uniqueness may hold for some f and not
for others. However, if the largest singular value of J, σ(J), is smaller than unity, the solution r⋆ of (8) is guaranteed to be
unique1. Moreover, r⋆ is a globally attractive fixed point of the dynamical equations (expressing time in units of τn to lighten
notations):

ṙ =−r+Φ(J · r+ f). (9)

and, therefore, no limit cycle can exist.

Uniqueness of solution. Consider the discrete-time dynamics

r(k+1) = Φ(J · r(k)+ f) . (10)

As σ(J) = maxx ∥J x∥/∥x∥< 1, the map LJ, f : r 7→ J · r+ f is a global contraction for any f. Moreover, since |Φ′|< 1, Φ is
a global contraction, too. Hence, the map in (10), which can be written as Φ◦LJ,f, is a global contraction. According to the
contraction mapping theorem, Eq. (10) has a unique fixed point given by r⋆ = limk→∞ r(k) for any r(0). This result gives us a
practical and fast way to compute r⋆.

Attractivity of solution. We now show that the unique solution of the stationary solution is an attractive fixed point of the
continuous-time dynamics. Assume r ̸= r⋆ and note that, under dynamics (9),

1
2

d
dt
∥r−ΦΦΦ∥2 = (r−ΦΦΦ)T ·M(r) · (r−ΦΦΦ)−∥r−ΦΦΦ∥2 (11)

where we have used the shorthand notation ΦΦΦ = Φ(J · r+ f) and Mi j(r) = Φ′i(J · r+ f)Ji j. Note that since Φ′i < 1 for all i, the
element-wise multiplication by Φ′i is a contraction. Then, if σ(J)< 1, ∥J(r) · (r−ΦΦΦ)∥< ∥r−ΦΦΦ∥, from which it follows that

d
dt
∥r−ΦΦΦ∥2 < 0 ∀r ̸= r⋆. (12)

We conclude that L(r) = ∥r−ΦΦΦ∥2 is a global Lyapunov function for (9) for any f in the sense that it satisfies Lyapunov’s second
method for stability; note that L(r⋆) = 0. Hence, whatever the initial condition, r converges asymptotically to r⋆ under the
dynamics (9).

In practice, to find the fixed point, we iterate (10). Note that σ(J)< 1 is a sufficient but not a necessary condition. Violating
it does not always appear to be too detrimental to convergence. While we softly enforce this condition in the classification
Task 1, we violate it on purpose in the case of Task 2, since a continuous attractor is expected to have multiple solutions by
construction.

2.2 Relaxation time
We can also estimate how fast the firing rates converge towards the stationary solution. Linearizing the dynamics in Eq. (9) to
the first order in δr = r− r⋆, we obtain

d
dt

δr = (−Id+M(r⋆)) ·δr . (13)

Hence, the relaxation time τr is given by

τr =
τn

1−max{Real part of eigenvalues of M(r⋆)}
. (14)

The relaxation time τr includes network effects, and is expected to be larger than the single-neuron time scale τn. Note that τr
does not depend only on the connectivity J, but also on the input f. We show how the ratio τr/τn varies during training in Fig. 1,
both for Tasks 1 and 2. We observe that the introduction of a regularization over the connections for Task 1 consistently reduces
the relaxation time. However, even in the absence of this extra cost as in Task 2, the value of τr/τn remains moderate up to the
end of the training phase.

1σ(J) coincides with the spectral radius of
√

JT J
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Figure 1. Relaxation times τr/τn for Task 1 (top row, A and B), and Task 2 (bottom row, C and D). In the left column we show
results for the training patterns, while the outcome for random probing patterns (with random entries 0 or 1) used for
connectivity estimation are shown in the right column. Results are averaged over 10 instances for training examples, and over
20 examples in the case of the inference patterns; the blue shaded area corresponds to one standard deviation from the mean.

3 Optimization loop over the control
The control f can be found with a training loop that minimizes the auxiliary cost

W (f) =
∆U(f)

∆t
+ γ∥∆J(f)∥2 (15)

with

∆U(f) =U(J+∆J(f))−U(J) (16)

and γ = 1/(J̄/10)2/cN. Exit from the minimization loop takes place if W is sufficiently low, i.e. below a hyper-parameter
W threshold , which is negative at the beginning to make sure that the algorithm does not get stuck immediately, but is then set
to 0. This condition is checked once W is not changing anymore, i.e. either the gradient of W is zero or the running average
of the differences ∆W of W between two successive loop iterations is small than a threshold ∆W threshold (defining another
hyper-parameter). If either of these conditions is verified, the loop is broken if ∆U < ∆U threshold and re-initialized with a new
initial condition for f otherwise. A pseudocode for the training loop to find f at a given time step is provided below. A number
of hyper-parameters and checks are involved in this optimization, which depend on the setting and can be found in the code.

4/13



Initialization:
Take fold from previous control stimulation (if there is one) and a random new one frandom. Check which one has lowest

scalar product with ∂∆U/∂ f and pick this as initial condition for the loop. This step aims at preventing the control to get stuck
in local minima.

Loop:

1. compute
dW
df

.

2. If
dW
df

= 0 or ⟨∆W ⟩< ∆W threshold then

• if ∆U < ∆Uthreshold then exit
• else reset. Randomly draw a new f and reset the running average ⟨∆W ⟩ to a high value.

3. else update the control as follows

f← f−α
dW
df

(17)

where the learning rate α is chosen to minimize ∆W by scanning multiple values; this step is necessary because the
optimum learning rate significantly changes with the connectivity J. Clip element-wise f in the range [ fmin−q, fmax +q]
for a small value of q (introduced to improve the numerical procedure).

4. compute W and ∆U and update the running average ⟨∆W ⟩.

The variation of the control variable f between two successive time steps is often small. However, large discontinuities
may be occasionally present, in particular at the end of the protocol, see Task 1 and Fig. 8 in the main text. The fact that
a discontinuous control can emerge in dynamical problems without discontinuities is well known, for in stance in optimal
control8. These discontinuities may have two origins. The first is an external reset, see step 2 in the loop above. If the control
variable is stuck in a minimum with positive ∆U(f) (or higher than the threshold), the gradient descent is reset with a different
initial condition, see Fig. 2A. This may also happen if, before the gradient descent starts, if the previous control f is worse
than a randomly drawn new one. The second possibility is that the gradient descent of W finds a path to access a new distant
solution, which was previously inaccessible, see Fig. 2B.

The choice of hyper-parameters is the following: q = 1/10 fmax, nav = 10 (size of the sliding window for running
average), α is chosen from α = 10−s

∥∥ dW
df
∥∥−1

with s ∈ {−1+ k/2|k = 0,1, ...,10}. A few hyper-parameters are task-specific.
Task 1: ∆U threshold = 0; ∆W threshold = (∆U threshold−W )/500 if ∆U threshold >W , else ∆W threshold = (∆U threshold−W )/(500+
50 min(nresets,15)− k) where k is the iteration number after the last reset (or beginning of the loop) and nreset is the number
of resets; when resetting f, components fi are drawn independently and uniformly between [ fmin, fmax]. Task 2: U threshold =
0.001/∆t if U > 0.7 and 0 otherwise and ∆W threshold as in Task 1; when resetting f, components fi are drawn independently
and uniformly between [0, fmax]. Additional details can be found in the code.

4 Further information on Task 1
4.1 Effect of parameters
Depending on the choice of parameters and hyper-parameters the training process can change from fast and easy to very hard or
even impossible. We consider in particular the role of the size of the network, the control strength range and the choice of
parameter in the learning rule. We stress that the hyper-parameters (including the time after which the training was interrupted)
were optimized for the setting reported in the main text and were not changed as we varied these parameters.

In Fig. 3A, we study the dependency of the training curves with the size N of the network for fmax = 0.2rmax as in the main
text. We observe that learning becomes harder (longer) and shows increased variability for smaller networks. Note the note the
non monotonic behaviour in N, which should, however, be interpreted with caution since the parameter scaling with the size
should be treated more carefully.

We now consider the role of the control strength fmax for networks with N = 100 neurons. Intuitively, the larger the range,
the easier the control. This is confirmed by Fig. 3B, where the training curves are shown for five values of fmax/rmax = 0.1,
0.15, 0.2, 0.25, 0.3; 0.2 is the value used in the main text). It is important to highlight that if the control is too weak, training
seems to fail. While this minimal value of fmax correspond to Task 1, and is not expected to hold for other tasks2, we expect the

2In particular, it is likely that the value of the minimal fmax could be slightly improved by optimizing over the hyper-parameters.

5/13



 f

 0

 ΔU

 0

 0

 0
 (a)

 (b)

 (c)

 (d)

Random reset

 f

 0

 ΔU

 0

 0

 0
 (a)

 (b)

 (c)

 (d)

Resetting when the solution

 is stuck in a local minimum

Distant solution found by gradient descentA B

Figure 2. The two mechanisms generating large discontinuities in the control variable. Panel A: external reset. Panel B distant
solution found by gradient descent. The horizontal axis symbolizes the control variable f on a line. The vertical axis the value
of ∆U , with negative values colored in blue. The cartoon shows four successive time steps (a)-(d). At each time step, the initial
condition (orange) goes to a local minimum (red) which is used as initial condition for the following iteration. However, at step
(e), in panel A, the local minimum is positive so an external reset is needed. Note how two different mechanisms at time step
(e) in panels A and B produce the same effect.

existence of a critical value of fmax below which learning through stimulation cannot be implemented to be quite generic.
In Fig. 3C, we change some parameter values, focusing on β1,θ(E) and θ(I).

• Setting 1: θ(E) = 0.08rmax, θ(I) = 0.12rmax, β1 = 4, θ0(E) = θ0(I) = 0.16rmax;

• Setting 2 (as in the main text): θ(E) = 0.08rmax, θ(I) = 0.12rmax, β1 = 0.8, θ0(E) = θ0(I) = 0.16rmax;

• Setting 3: θ(E) = 0.1rmax, θ(I) = 0.06rmax, β1 = 4., θ0(E) = θ0(I) = 0.16rmax;

• Setting 4: θ(E) = 0.1rmax, θ(I) = 0.06rmax β1 = 0.8, θ0(E) = θ0(I) = 0.16rmax;

• Setting 5: θ(E) = 0.12rmax, θ(I) = 0.1rmax, β1 = 4, θ0(E) = θ0(I) = 0.16rmax;

• Setting 6: θ(E) = 0.12rmax, θ(I) = 0.1rmax, β1 = 0.8, θ0(E) = θ0(I) = 0.16rmax.

All the other parameters keep the same values as in the main text. In particular all results in Fig. 3C were obtained with N = 100
neurons.
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A

B

C

Figure 3. Training cost as a function of the learning cycle for Task 1 with parameter variations. Two examples, colored in the
same way, are shown for each case. A: Changing the control maximal value fmax. Notice that, for fmax = 0.1rmax, training fails.
B: Changing the network size N; in practice, Nin and Nout are left unchanged, while Nproc = N−30 is varied. C: Changing
other parameters, see descriptions of settings 1 to 6 in the text.

4.2 Case of Hebbian rule for inhibitory neurons
Last of all we show, in Fig. 4, that Task 1 can also be done with Hebbian learning for inhibitory synapses. The picture is not
much different from the anti-Hebbian case. We show a few settings with N = 100. The settings are the following.
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• Setting 1: θ(E) = 0.2rmax, θ(I) = 0.12rmax, θ0(E) = θ0(I) = 0.08rmax, β1 = 3.125, β2 = 0.5× (rmax/J̄)2.

• Setting 2: θ(E) = 0.06rmax, θ(I) = 0.1rmax, θ0(E) = θ0(I) = 0.08rmax, β1 = 3.125, β2 = 0.5× (rmax/J̄)2.

• Setting 3: θ(E) = 0.12rmax, θ(I) = 0.08rmax, θ0(E) = θ0(I) = 0.08rmax, β1 = 3.125, β2 = 0.5× (rmax/J̄)2.

• Setting 4: θ(E) = 0.08rmax, θ(I) = 0.12rmax, θ0(E) = θ0(I) = 0.08rmax,β1 = 3.125, β2 = 0.5× (rmax/J̄)2.

• Setting 5: θ(E) = 0.10rmax, θ(I) = 0.06rmax, θ0(E) = θ0(I) = 0.08rmax, β1 = 3.125, β2 = 0.5× (rmax/J̄)2.

• Setting 6: θ(E) = 0.08rmax, θ(I) = 0.12rmax, θ0(E) = θ0(I) = 0.08rmax,β1 = 3.125, β2 = 0.5× (rmax/J̄)2.

4.3 Neural activation and input representation
If Fig. 5 we provide a picture of how the neural network represents different inputs in the proc region of the network and how
the differentiation emerges. First we show the fraction of neuron activating (defined as being surpassing a certain activity
threshold). We see in Fig. 5A that, no metter the input, a large fraction of neurons is always responding. In Fig. 5B we show the
fraction of neurons which contribute in differentiating the representation of different digits. It is interesting to see that inhibitory
neurons contribute the most.
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Figure 4. Hebbian rule for inhibitory neurons in Task 1.

5 Further information on Task 2
5.1 Multiple solutions for the stationary activity
As the target connectivity in Figure 5A has its largest singular value larger than one, the stationary equations for the neural
activity may have multiple solutions. Multiple solutions are rare but do occur occasionally (notice that limits cycles are in
principle possible but were never observed during the stimulation protocol).

When multiple solutions are present, it is possible that the control optimization loop selects a certain contrl stimulation
pattern f∗ associated to a specific state of neural activity r∗ but, once the control stimulation is applied , another state of activity,
say, r′, is reached by the neural dynamics. We stress that we are addressing here the case of a large difference between r∗ and r′.
Small differences are always expected to take place due to the small discrepancies between the true (and unknown) connectivity
and its estimate used for the computation of the optimal control. Since the plasticity inducing stimulation is long compared to
τr, we assume it can be interrupted in time should this scenario take place. Then, the control stimulation is applied again. This
goes on until the correct fixed point is selected. This procedure is effective only if there is a limited number of coexisting fixed
points, as appears to be the case. In practice, if the wrong solution is reached during the control stimulation phase, the fixed
point iteration of the neural dynamics is restarted with a new initial condition.

5.2 Choice of probing stimulations for connectivity inference
While the activation function Φ in Eq. (8) (Methods, main text) is invertible, Φ−1 is ill conditioned for very low firing rates. To
avoid numerical issues in the estimation of the connectivity, we consider probing stimulations such that the least active neuron
still has detectable activity. We use stimulations stronger for excitatory than for inhibitory neurons. Excitatory neurons are
stimulated with a random forcing in the range [ fmax/2, fmax], while for inhibitory neurons, the range considered is [0, fmax/2].
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A B

Figure 5. A: Bar plots of the fractions of active bulk neurons (r/rmax > 0.01) for each input. B: fractions of neurons that
separate the representations of two or more inputs. A neuron is said to separate two inputs µ and ν if its activity significantly
varies with the applied input, i.e. |r(fµ)− r(fν)|/rmax > 0.01; this inequality should hold for any pair of inputs if more than two
are considered.

Despite this procedure, if a neuron j is found to have low activity (less than 0.2 10−3 rmax), then its stimulation f j is increased
by a random amount in the range [0, fmax/2] (and the value is then cropped at fmax if necessary). If, after correcting all the
components f j, any neuron remain inactive, the stimulation pattern is discarded and another one is randomly drawn.

At the beginning of the training phase, this procedure is largely unnecessary, but at later (training) times, large quasi-
disconnected (i.e. with very weak synaptic connections) groups of neurons appear. At this point, the pattern correction
procedure become essential. After some times, all neurons will be again connected together and corrections are less and less
frequent. We stress that correcting a probing stimulation pattern does not require to stimulate the system more times as, based
on our relatively accurate estimate of the network connectivity, we can predict the response of the network in a reliable way.

5.3 Case of anti-Hebbian rule for inhibitory neurons
In this section we train out network on Task 2 with anti-Hebbian learning rule for inhibitory synapses (see 6). We show twelve
different settings, highlighting a certain variability in the learning curves.Indeed, the protocol works as intended in the sense that
the structural cost decreases. However, if we look at the continuous attractor behaviour, we get a different picture. For instance,
we can focus on setting 3 and 7, for which the final cost is approximately the same at the end of the protocol. Likewise, the
connectivity structures are very similar (see Fig. 6B). However, in the setting 7, receptive fields appear, while in setting 3 they
do not, since. The reason is that the final result is not given by a random but unbiased perturbation of the target connectivity
state but, rather, a biased version of it, due to the effect of plasticity constraints in the learning process. Specifically, we can
clearly see the interference of the formation of different “stripes” in the connectivity matrix.

The settings are the following (we only specify parameters differing from those of the main text).

• θ(E) = 0.175rmax, θ(I) = 0.1rmax, η(I) =−1.1, β1 = 6.25, β2 = 2.5× (rmax/J̄)2, θ0(E) = θ0(I) = 0.16rmax

• θ(E) = 7rmax/30, θ(I) = 4rmax/30, η(I) =−1, β1 = 6.25, β2 = 2.5× (rmax/J̄)2, θ0(E) = θ0(I) = 0.16rmax

• θ(E) = 6rmax/70, θ(I) = 6rmax/70, η(I) =−1.5, β1 = 6.25, β2 = 2.5× (rmax/J̄)2, θ0(E) = θ0(I) = 0.16rmax

• θ(E) = 4rmax/35, θ(I) = 2rmax/35, η(I) =−0.9, β1 = 3.125, β2 = 2.5× (rmax/J̄)2, θ0(E) = θ0(I) = 0.16rmax

• θ(E) = 2rmax/35, θ(I) = 3rmax/35, η(I) =−1.5, β1 = 1.25, β2 = 2.5× (rmax/J̄)2, θ0(E) = θ0(I) = 0.16rmax

• θ(E) = 0.12rmax, θ(I) = 0.08rmax, η(I) =−2., β1 = 3.125, β2 = 2.5× (rmax/J̄)2, θ0(E) = θ0(I) = 0.16rmax

• θ(E) = 0.16rmax, θ(I) = 0.08rmax, η(I) =−1.1, β1 = 3.125, β2 = 2.5× (rmax/J̄)2, θ0(E) = θ0(I) = 0.16rmax

• θ(E) = 0.16rmax, θ(I) = 0.12rmax, η(I) =−1.1, β1 = 3.125, β2 = 2.5× (rmax/J̄)2, θ0(E) = θ0(I) = 0.16rmax
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• θ(E) = 0.16rmax, θ(I) = 0.12rmax, η(I) =−3., β1 = 3.125, β2 = 2.5× (rmax/J̄)2, θ0(E) = θ0(I) = 0.16rmax

• θ(E) = 0.16rmax, θ(I) = 0.12rmax, η(I) =−1.3, β1 = 1.25, β2 = 2.5× (rmax/J̄)2, θ0(E) = θ0(I) = 0.16rmax

• θ(E) = 0.12rmax, θ(I) = 0.12rmax, η(I) =−1.3, β1 = 3.125, β2 = 2.5× (rmax/J̄)2, θ0(E) = θ0(I) = 0.16rmax

• θ(E) = 0.12rmax, θ(I) = 0.08rmax, η(I) =−1.3, β1 = 1.25, β2 = 2.5× (rmax/J̄)2, θ0(E) = θ0(I) = 0.16rmax

5.4 Effect of variation of parameters
In Fig. 7 we show the learning curves associated to different sets of parameters. We only mention parameters differing from the
setting in the main text and, in particular, we provide some example of the effect of perturbation of the hebbian post-synaptic
threshold

• θ(E) = 0.12rmax, θ(I) = 0.08rmax , θ0(E) = θ0(I) = 0.08rmax

• θ(E) = 0.08rmax, θ(I) = 0.12rmax, θ0(E) = θ0(I) = 0.08rmax

• θ(E) = 0.2rmax, θ(I) = 0.16rmax, θ0(E) = θ0(I) = 0.08rmax (as in the main text)

• θ(E) = 0.2rmax, θ(I) = 0.08rmax , θ0(E) = θ0(I) = 0.08rmax

• θ(E) = 0.16rmax, θ(I) = 0.12rmax , θ0(E) = θ0(I) = 0.08rmax

Setting 3 Setting 7
A B

Figure 6. Panel A: anti-hebbian inhibitory synapses. We show different learning curves for 12 different parameter settings for
Task 2. The label on each curve (yes/no) tells if the attractor was generated or not. Dotted lines are used to make overlapping
lines visible. Panel B shows the connectivity matrix J and the receptive fields for settings 3 and 7 at the end of the training,
while panel. Notice how similar connectivity structures and cost values are associated to very different performances in term of
receptive field formation.

6 Additional Task 3: logical AND function in a small circuit

Definition of the task. We propose an additional simple task in a feed-forward network, with few neurons and simplified
activation function, which lacks the complexity and theoretical interest of the tasks in the main text, but offers a detailed
visualization of the quantities involved in learning. We set rmax = ∞ and r0 = 0 (i.e. we use the standard , i.e. the standard
ReLU as activation function). Hence, we cannot express quantities in units of rmax. Instead, we use as a unit of measure a
value r̄ which is assumed to be an intermediate frequency r0≪ r̄≪ rmax. The task consists in the realization of a logical AND
between two inputs in a circuit made of N = 4 neurons, out which NE = 3 are excitatory and NI = 1 is inhibitory. We assume
neurons 1 and 2 can receive binary input stimulations, in practice f1, f2 = 0× r̄ or 1× r̄ (which we identify, respectively, with
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Figure 7. Learning curves for Task 2 with Hebbian inhibitory connections (as in the main text) but with different parameter
choices.

logical values False=‘0’ and True=‘1’), while we set f3 = 1 r̄. We demand that the activity r4 of neuron 4 expresses the logical
AND, i.e. r4 = r̄(= ‘1′) if both f1 and f2 are ‘1’, and r4 = 0(= ‘0′) otherwise. A possible circuit implementing this task in
shown in Fig. 8. Two excitatory neurons (nodes 1 and 2) and an interneuron (node 3) are connected to an output neuron (node
4). The non-zero connections are set to J41 = J42 =−J43 = 1: the inhibitory input to neuron 4 coming from neuron 3 is large
enough to suppress the inputs from either neuron 1 or 2, but not from both.

We next train a network with random initial connectivity with the following cost, see Eq. (4),

Utask
(
J
)
=

1
4

[(
r4(1,1)− r̄

)2
+
(
r4(0,1)−0

)2
+
(
r4(1,0)−0

)2
+
(
r4(0,0)−0

)2
]
, (18)

which is the sum of squared errors for the four possible combinations of binary inputs. The activities of neurons 1, 2 and 3
are not considered in the cost. This cost is functional and not structural: it does not impose a priori any target value for the
connectivity matrix, but rather constrains the function to the achieved.

Training: stimulations and network. Despite its simplicity, the AND task case highlights the underlying difficulty in training
a plastic network and the difference with the standard gradient descent (GD) used in machine learning. Figure 8B shows the
cost dynamics with GD and with our stimulation protocol. While both algorithms successfully learn the task, GD is faster, as
we expect. For the plastic network, the three synapses cannot be updated independently, since the activity of the post-synaptic
neuron 4, which enters both the Hebbian and the homeostatic part of the plasticity rule, influences at once the evolution of
all the connections we are trying to update. As a result of this constraint, the changes in the J matrix cannot align along the
gradient of the cost as is the case for the GD dynamics, see Fig. 8D. Our protocol is nevertheless able to make the cost decrease
at all times. This decrease demonstrated that the task is progressively learned, as visible from the responses of neuron 4 to all
possible pairs of inputs reported in Fig. 8E.

The behaviour of the connectivity is displayed in Fig. 8C. We observe that our stimulation protocols drives the network
connectivity to the circuit shown in Fig. 8A. It is easy to check that this network is the only one achieving zero cost, see Eq. (18)
and Methods. For larger networks, we expect the task to be achieved by many connectivity networks9, and our learning protocol
will select one of them.

The time course of the applied stimulations fi(t) is displayed in Fig. 8F. We observe that, most of the time, the control
smoothly changes across stimulation periods, but occasionally shows large discontinuities (as explained in Fig. 2) in this case,
no discontinuity is due to an external reset.

Some remarks about the solution. Assuming symmetry between neurons 1 and 2, we can call J+ = J41 = J42 and J− =−J43.
Then, essentially, the task is solved when we have 1 = max(2J+− J−,0) = 1 and max(J+− J−,0) = 0 (and max(−J−,0) = 0
which is always true). It means that the solution is given by the curve J− = 2J+−1 in the {J− ≥ J+}∩{J± > 0} space, which
is the J− = 2J+−1 curve for J+ ≥ 1. Since we start with small synaptic strength values, it is not surprising the smallest possible
values for the connections are selected by optimization procedure, as shown in Fig. 8C.

Parameters. We use ∆t = 10−2τn, θ(E) = θ(I) = θ0(E) = θ0(I) = r̄/2, β1 = 0.2, β2 = 0.
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Figure 8. A Example of a 4-neuron circuit implementing a logical AND between two inputs. Two excitatory (nodes 1 and 2)
and one inhibitory (node 3) neurons are connected to an output neuron (node 4). The three non zero connections are
approximately J41 = 1, J42 = 1 and J43 =−1 at the end of the training. We set fmax = 0.7 r̄ and fmin =−0.5 r̄. B: Cost Utask
as a function of the time step (time t/∆t) during learning with our stimulation protocol (full curve) and standard gradient
descent (dashed line). For the latter, we choose the learning rate in such a way that the first connectivity change has the same
norm ∥∆J∥ as with the stimulation protocol. C: activity r4 of neuron 4 (in r̄ units)in response to the four possible pairs of inputs
onto neurons 1 and 2 through the training process. D: Cosine similarity between (minus) the gradient of the cost ∂U/∂J and
the time derivative of the connectivity J̇. The gap between the similarity and one (corresponding to gradient descent) reflects
the limited accessibility of the connectivity space imposed by the plasticity rule, see Fig. 3 from the main text. Notice that the
similarity remains positive at all times, implying that the plasticity rule can be exploited to decrease the cost and learn the task.
(E) Evolution of the synaptic strengths during learning with our stimulation protocol (full lines) and standard gradient descent
(dashed lines). (F) control fi(t) (in r̄ units) applied to the neurons i = 1,2,3,4. The control stimulations smoothly vary for a
certain period of time, then abruptly jump when no local solution for the control optimization process are found near that at
previous step.
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