On the inverse optimality of a class of PWA functions through liftings - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

On the inverse optimality of a class of PWA functions through liftings

Songlin Yang
Sorin Olaru

Résumé

This paper focuses on the (re-)construction of the optimal solution for the multi-parameter quadratic programming (mpQP) problems. Optimization problems of this nature are widely employed in the formulation of modelbased predictive controllers (MPC) for discrete linear systems, wherein input and state constraints are imposed. This study examines the geometric characteristics of the explicit solution of an mpQP problem and introduces a novel convex-concave lifting technique to synthesize an equivalent mpQP problem. Whenever the solution corresponds to a PWA function, the present approach maintains the structure and control laws for the original systems. A new (less complex) cost function and a corresponding feasible domain are constructed through lifting for the equivalent optimization problem. The effectiveness of this strategy is demonstrated through an illustrative example.
Fichier principal
Vignette du fichier
On_the_inverse_optimality_of_a_class_of_PWA_functions_through_liftings (2).pdf (515.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04320902 , version 1 (04-12-2023)

Identifiants

Citer

Songlin Yang, Sorin Olaru, Pedro Rodriguez-Ayerbe. On the inverse optimality of a class of PWA functions through liftings. 27th International Conference on System Theory, Control and Computing, Oct 2023, Timisoara, Romania. ⟨10.1109/ICSTCC59206.2023.10308481⟩. ⟨hal-04320902⟩
36 Consultations
50 Téléchargements

Altmetric

Partager

More